CN1143944A - 具有高疲劳寿命的氮化硅轴承球 - Google Patents

具有高疲劳寿命的氮化硅轴承球 Download PDF

Info

Publication number
CN1143944A
CN1143944A CN95192160A CN95192160A CN1143944A CN 1143944 A CN1143944 A CN 1143944A CN 95192160 A CN95192160 A CN 95192160A CN 95192160 A CN95192160 A CN 95192160A CN 1143944 A CN1143944 A CN 1143944A
Authority
CN
China
Prior art keywords
bearing
silicon nitride
oxide shape
present
granule boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95192160A
Other languages
English (en)
Other versions
CN1078875C (zh
Inventor
R·L·耶克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Ceramics and Plastics Inc
Original Assignee
Saint Gobain Norton Industrial Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Norton Industrial Ceramics Corp filed Critical Saint Gobain Norton Industrial Ceramics Corp
Publication of CN1143944A publication Critical patent/CN1143944A/zh
Application granted granted Critical
Publication of CN1078875C publication Critical patent/CN1078875C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

公开了一种轴承球,它基本上含有:a)至少约94w/o的晶相氮化硅,和b)主要由Mg,Al,Si和O构成的单一颗粒边界相。

Description

具有高疲劳寿命的氮化硅轴承球
新颖结构的陶瓷材料因其优异的性能质量而引起了工业界的注意。这些性能,如优异的高温强度、高刚性、耐热冲击和耐氧化性,为它们在多种应用中的潜在用途奠定了基础。
美国专利No.4,935,388(Lucek)指出,陶瓷材料的可靠性与其空间同质性相关,而这种同质性以材料展现的光学异常程度为特征。Lucek特别指出,当材料具有空间同质性时,氮化硅的可靠性会大大提高,例如大于约70微米就没有光学异常现象。Lucek提出,上述光学异常预示了许多种不同质的现象,其中包括(但并不限于)多孔区域、被铁等材料污染的区域和具有微小裂缝的区域。Lucek公开的氮化硅陶瓷含有约1w/o氧化镁作为烧结助剂,其滚动接触疲劳寿命(roll contact fatigue life,简称“RCF寿命”)用L10值表示时,(用ASTM测试方法STP 771进行测试,6.9GPa接触应力)至少为4百万个应力周。尽管该RCF寿命是已知最高中的一个,但是商业上仍需要RCF寿命进一步提高的碳化硅材料。
因此,本发明的目的是提高一种具有优异RCF寿命的氮化硅材料。发明概述
根据本发明,提供了一种轴承球,它基本上含有:
a)至少约94w/o的晶相氮化硅,和
b)主要由Mg,Al,Si和O构成的单一颗粒边界相。
在优选例子中,颗粒边界相基本上由下列物质构成:1-2w/o Mg,以氧化镁状;0.2-1.0w/o Al,以氧化铝状;和2-4w/o Si,以氧化硅状;以及氧。更佳地,颗粒边界相的Mg组份为轴承的1.0-1.6w/o,以氧化镁状;颗粒边界相的Al组份为0.3-0.6w/o,以氧化铝状;颗粒边界相的Si组份为2.0-3.0w/o,以氧化硅状。在特别优选的例子中,轴承用ASTM测试方法STP 771,6.9GPa接触应力下进行测试,其L10值为50-80百万应力周。发明详细描述
出乎意料地发现,向基本由氮化硅和约1w/o氧化镁构成的绿体(greenbody)添加约0.20-1.0w/o的氧化铝,获得了RCF寿命非常高的陶瓷。
为了不受某一具体理论的束缚,据信,在Lucek的常规氮化硅陶瓷的烧结过程中,氧化镁烧结助剂和3w/o氧化硅(以杂质形式存在于氮化硅粉末中)在平衡时形成至少两种不可混和的液相,从而在烧结体内形成至少两种颗粒边界相。这种非均一的颗粒边界相可能降低了陶瓷的强度、刚性和RCF寿命。根据相图,在本发明中添加氧化铝据信可在平衡时生成单一的MgO-SiO2-Al2O3相。因此能获得更好的均匀性和更高的性能。
本发明的氮化硅陶瓷可用常规材料和常规的加工方法制造。在优选例子中,陶瓷是用氮化硅粉末或其初始粉末制造的。如果陶瓷是用氮化硅粉末制造的,那么可以使用任何一种常规的氮化硅粉末。典型地,氮化硅占本发明陶瓷的至少约94w/o,更佳为约97-98.5w/o。
在本发明的优选例子中,氧化镁和氧化铝被用作烧结助剂。氧化镁的添加量为烧结陶瓷的约1.0-2.0w/o,较佳为约1.0-1.6w/o。最佳地,使用约1w/o,纯度大于99%,平均颗粒大小小于1微米的氧化镁。类似地,氧化铝的添加量为烧结陶瓷的约0.20-1.0w/o,较佳为约0.4-0.6w/o。最佳地,使用约0.47w/o,纯度大于99%,平均颗粒大小小于1微米的氧化镁。
氧化硅可以杂质形式存在于原料氮化硅粉末中。最后,硅以氧化硅状态存在于烧结陶瓷的颗粒边界相中,含量约为陶瓷的2-4w/o,较佳为2-3w/o。
氮化硅和烧结助剂粉末可用任何已知的混合方法进行混合,其中包括(但并不限于)球磨或碾磨法。在本发明的优选例中,优选振磨法(vibratory milling)。
如果形成绿体,那么可用本领域中任何典型方法进行。这些方法包括粉浆浇注、压模、冷冻铸模、和冷等静压。在本发明的优选例中,本发明的粉末是用冷等静加压法。
本发明的烧结周期可包括任何常规的烧结方法,包括无压烧结、气体压力烧结、热模压和使用玻璃的热等静压法(“玻璃密封hipping”)。在本发明的优选例中,使用美国专利No.4,446,100和4,339,271中所述的玻璃密封hippping法。更优选的是在非常高的填充效率时(即各部件相互接触)使用美国专利No.4,446,100和4,339,271的例子。
实施例I
将具有下列性能的氮化硅粉末用作该实施例的粉末:大于约90w/o αSi3N4,小于约2.0w/o总氧,小于0.1w/o钙,约0.03w/o铁,约0.05w/o铝和约5-9平方米/克的表面积。
将约98重量份数的这种粉末与约1.33重量份数的试剂级的碳酸镁和约0.47重量份数氧化铝和异丙醇混合,形成含45%固体的浆料。浆料在振动式研磨机中与氮化硅研磨介质一起同时进行共混和研磨。最终的表面积为约10-14平方米/克。得到的浆料通过20微米的筛网和磁性分离器。浆料通过横向过滤被浓缩至含65%固体。接着,向浆料中加入占粉末约1.25w/o的PVP(聚乙烯吡咯烷酮)。接着,浆料在防爆喷射干燥器中干燥。干燥的粉末再通过30目的nalgene筛网。所有上述操作都是在一个1000级的用于氮化硅加工的清洁室中进行的。干燥的结块粉末在30ksi下用冷等静压法压成圆柱体并磨成直径约0.52英寸、长约3.8英寸的小棒。粉末压缩物在600℃下燃烧以去除PVP。样品被密封在玻璃介质中,在约1790℃,30,000psi压力下热等静压约1小时。实施例II和III
基本上相同地重复上述过程,除了生产3/4英寸的球体和3×4×50毫米的曲率棒。
测量形成的陶瓷的硬度。10千克负荷时产生了维氏金刚石棱锥硬度缺口。平均硬度为约15.2GPa。作为比较,Norton Company(Worcester,MA)生产的含1w/o氧化镁的氮化硅轴承材料的硬度为约15-15.6GPa。
断裂刚性是通过测量在内径的拉力表面上带有维氏缺口(10千克负荷)的3×4×50毫米的4点弯曲样品在十字头速度约为0.5毫米/分钟时的断裂情况加以确定的,根据P.Chantikul等人在“a Critical Evaluation of IndentationTechniques for Measuring Fracture Toughness II:Strength Menthods”,J.Am.Ceram.Soc.64(9),pp.539-544(1981)中所述的程序进行。本发明陶瓷的平均刚性为约5.6MPa M1/2。作为对比,NBD-200的断裂刚性为约5-5.8MPa M1/2
还测量了本发明陶瓷的4点挠曲强度。选择3×4×50毫米的B型样品在外径40毫米、内径20毫米的测试夹具(ASTM C1161-90)进行测试。测得的平均挠曲强度为约950MPa。作为对比,NBD-200的挠曲强度为约700-850MPa。
还用ASCERA拉伸强度测试程序分析拉伸强度。该程序可参见Brit.Ceram.Trans J.,89,21-23,1990。本发明的拉伸强度为约475MPa。作为对比,NBD-200的拉伸强度为约400MPa。
还测试了在实施例II中制备的棒的滚动接触疲劳(RCF)寿命,具体地用ASTM-STP771中所述的加速轴承测试程序。该测试程序中施加的接触压力比常规遇到的压力为大,从而加速测试材料的疲劳损伤。该测试对许多测试样品的数据进行统计分析,结果一般用变量Lx表示,它表示在给定应力水平下导致X百分比的被测试样品损伤的应力周期的数目。在对本发明进行RCF测试时,装入3个用AISI52100不锈钢制成的从动球(slave ball)碰撞本发明的氮化硅棒,施加约6.9GPa的平均接触应力。棒用电动机以约3600rpm的速度进行旋转。从动球和棒两者都通过滴加器以每分钟滴加约8滴润滑油的速度而得以润滑。测试在棒上产生了约0.1英寸宽的外周疲劳裂纹。本发明的氮化硅表现出通常的断裂模式和均匀的磨损。在24根用于RCF测试的本发明的棒中,第一根断裂的棒在约5400万周时发生断裂。如果假设维泊尔斜率为0.74(即假设本发明的断裂机制与NBD-200相同。),那么本发明的L10达到8000万周左右。作为对比,NBD-200的L10寿命为400万周。
以实施例I-III为代表性例子的本发明的机械性能总结于表1,表中还列出了作为对比的氮化硅陶瓷NBD-200。
                   表1
        性能     实施例I-III        NBD-200
   L10 RCF寿命(周)     80,000,000       4,000,000
    拉伸强度(MPa)         475          400
    挠曲强度(MPa)         950         <850
 断裂刚性(MPa m1/2)         5.6         <5.8
     硬度(GPa)         15.2         <15.6
本发明的氮化硅可用于多种常规的陶瓷应用场合,其中包括(但并不限于):球形轴承、滚动轴承、平面滑动轴承和其它结构或磨损件。
根据PCT条约第19条修改权利要求的声明
本修改后的权利要求1-7用于替换原始提交申请中的权利要求1-8。目前的权利要求1包括了原权利要求1和2的限制条件。每个权利要求都提到烧结的氮化硅球轴承。
               权利要求书
              按照条约第19条的修改
1.一种烧结氮化硅球轴承,其特征在于,它基本上含有:
a)至少约94w/o的晶相氮化硅,和
b)主要由Mg,Al,Si和O构成的单一颗粒边界相,其中,颗粒边界相基本上由下列物质构成:1-2w/o Mg,以氧化镁状;0.2-1.0w/o Al,以氧化铝状;和2-4w/o Si,以氧化硅状;以及氧。
2.如权利要求1所述的烧结氮化硅球轴承,其特征在于,颗粒边界相的Al组份为轴承的0.3-0.6w/o,以氧化铝状。
3.如权利要求1所述的烧结氮化硅球轴承,其特征在于,颗粒边界相的Si组份为轴承的2.0-3.0w/o,以氧化硅状。
4.如权利要求1所述的烧结氮化硅球轴承,其特征在于,用ASTM测试方法STP771,在6.9GPa接触应力下进行测试,其L10值至少为50百万应力周。
5.如权利要求1所述的烧结氮化硅球轴承,其特征在于,其L10值至少为60百万周。
6.如权利要求1所述的烧结氮化硅球轴承,其特征在于,其L10值至少为70百万周。
7.如权利要求1所述的烧结氮化硅球轴承,其特征在于,挠曲强度至少为950MPa。

Claims (8)

1.一种轴承球,其特征在于,它基本上含有:
a)至少约94w/o的晶相氮化硅,和
b)主要由Mg,Al,Si和O构成的单一颗粒边界相。
2.如权利要求1所述的球,其特征在于,颗粒边界相基本上由下列物质构成:1-2w/o Mg,以氧化镁状;0.2-1.0w/o Al,以氧化铝状;和2-4w/o Si,以氧化硅状;以及氧。
3.如权利要求2所述的轴承,其特征在于,颗粒边界相的Mg组份为轴承的1.0-1.6w/o,以氧化镁状。
4.如权利要求2所述的轴承,其特征在于,颗粒边界相的Al组份为轴承的0.3-0.6w/o,以氧化铝状。
5.如权利要求2所述的轴承,其特征在于,颗粒边界相的Si组份为轴承的2.0-3.0w/o,以氧化硅状。
6.如权利要求2所述的轴承,其特征在于,用ASTM测试方法STP 771,在6.9GPa接触应力下进行测试,其L10值至少为50百万应力周。
7.如权利要求2所述的轴承,其特征在于,其L10值至少为60百万周。
8.如权利要求2所述的轴承,其特征在于,其L10值至少为70百万周。
CN95192160A 1994-03-22 1995-03-17 具有高疲劳寿命的氮化硅轴承球 Expired - Fee Related CN1078875C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/215,834 US5508241A (en) 1994-03-22 1994-03-22 Silicon nitride bearing ball having a high rolling contact fatigue life
US08/215,834 1994-03-22

Publications (2)

Publication Number Publication Date
CN1143944A true CN1143944A (zh) 1997-02-26
CN1078875C CN1078875C (zh) 2002-02-06

Family

ID=22804594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95192160A Expired - Fee Related CN1078875C (zh) 1994-03-22 1995-03-17 具有高疲劳寿命的氮化硅轴承球

Country Status (9)

Country Link
US (1) US5508241A (zh)
EP (1) EP0751918B1 (zh)
JP (1) JP2756189B2 (zh)
KR (1) KR100186855B1 (zh)
CN (1) CN1078875C (zh)
CA (1) CA2185131C (zh)
DE (1) DE69500961T2 (zh)
NO (1) NO313135B1 (zh)
WO (1) WO1995025703A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734330A (zh) * 2011-03-29 2012-10-17 谢夫勒科技股份两合公司 滚动轴承
US8943944B2 (en) 2011-12-15 2015-02-03 Tong Oil Tools Co., Ltd Structure for gunpowder charge in multi-frac composite perforating devices
US8960289B2 (en) 2009-11-11 2015-02-24 Tong Oil Tools Co., Ltd. Combined fracturing and perforating method and device for oil and gas well
US9027667B2 (en) 2009-11-11 2015-05-12 Tong Oil Tools Co. Ltd. Structure for gunpowder charge in combined fracturing perforation device
CN104728271A (zh) * 2015-02-13 2015-06-24 佛山市新战略知识产权文化有限公司 一种陶瓷轴承滚动体及其制备方法
CN105319222A (zh) * 2014-06-06 2016-02-10 上海材料研究所 一种基于晶界相评价氮化硅滚动接触疲劳性能的方法
US9297242B2 (en) 2011-12-15 2016-03-29 Tong Oil Tools Co., Ltd. Structure for gunpowder charge in multi-frac composite perforating device
US9297243B2 (en) 2010-12-29 2016-03-29 Tong Oil Tools Co., Ltd Composite perforation method and device with propping agent

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925171A (ja) * 1995-07-11 1997-01-28 Ngk Insulators Ltd 成形用造粒粉体及びその製造方法並びに当該粉体を用いて作製された窒化珪素焼結体
DE19746008A1 (de) * 1997-10-20 1999-04-22 Bayer Ag Sinteradditive und Si02-enthaltende Siliciumnitridwerkstoffe, ein Verfahren zu deren Herstellung und deren Verwendung
JP4301623B2 (ja) * 1999-03-26 2009-07-22 株式会社東芝 耐摩耗部材
JP4642956B2 (ja) * 1999-12-28 2011-03-02 株式会社東芝 ベアリングボール、ベアリング、およびベアリングボールの製造方法
US6505974B2 (en) 2001-05-02 2003-01-14 Honeywell International, Inc. Ceramic ball bearings and assembly
ITRM20010725A1 (it) * 2001-12-11 2003-06-11 Umbra Cuscinetti Spa Vite a circolazione di sfere a lunga durata e ridotta rumorosita'.
DE10235965B3 (de) * 2002-08-06 2004-04-15 H. C. Starck Ceramics Gmbh & Co. Kg Keramischer Werkstoff hoher Stoßfestigkeit, Verfahren zu seiner Herstellung und seine Verwendung
CN105315010A (zh) * 2014-06-06 2016-02-10 上海材料研究所 一种疲劳性能优越的氮化硅滚动元件及其制造方法
CN112028637A (zh) * 2020-08-24 2020-12-04 中材高新氮化物陶瓷有限公司 一种航空轴承用高可靠性长寿命氮化硅陶瓷球的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836374A (en) * 1972-01-20 1974-09-17 Norton Co Hot pressed silicon nitride
JPS59184770A (ja) * 1983-04-04 1984-10-20 日本碍子株式会社 窒化珪素焼結体およびその製造法
JPS6172684A (ja) * 1984-09-18 1986-04-14 株式会社東芝 高強度・高耐摩耗摺動部材およびその製造方法
DE3475513D1 (en) * 1984-09-19 1989-01-12 Battelle Memorial Institute Silicon nitride sintered bodies and a method for their production
JPS6191067A (ja) * 1984-10-10 1986-05-09 株式会社東芝 摺動部材
US4935388A (en) * 1985-04-29 1990-06-19 Norton Company Rolling contact bearings, material for bearing surfaces, and process therefor
DE3528934A1 (de) * 1985-08-13 1987-02-26 Feldmuehle Ag Gleitelement aus keramischem werkstoff
JPH0774103B2 (ja) * 1986-12-27 1995-08-09 日本碍子株式会社 高硬度窒化珪素焼結体
JP2512061B2 (ja) * 1987-11-26 1996-07-03 日本碍子株式会社 均質窒化珪素焼結体およびその製造方法
JP2524201B2 (ja) * 1988-08-22 1996-08-14 日本特殊陶業株式会社 窒化珪素質焼結体及びその製造方法
JP2755702B2 (ja) * 1989-07-27 1998-05-25 株式会社東芝 耐摩耗性部材
US5217931A (en) * 1990-01-30 1993-06-08 Mazda Motor Corporation Ceramic sliding member and method of manufacturing the same
US5173458A (en) * 1990-12-28 1992-12-22 Sumitomo Electric Industries, Ltd. Silicon nitride sintered body and process for producing the same
JP2855243B2 (ja) * 1991-12-05 1999-02-10 日本特殊陶業株式会社 耐摩耗性の優れた窒化珪素質焼結体
US5376602A (en) * 1993-12-23 1994-12-27 The Dow Chemical Company Low temperature, pressureless sintering of silicon nitride

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8960289B2 (en) 2009-11-11 2015-02-24 Tong Oil Tools Co., Ltd. Combined fracturing and perforating method and device for oil and gas well
US9027667B2 (en) 2009-11-11 2015-05-12 Tong Oil Tools Co. Ltd. Structure for gunpowder charge in combined fracturing perforation device
US9297243B2 (en) 2010-12-29 2016-03-29 Tong Oil Tools Co., Ltd Composite perforation method and device with propping agent
CN102734330A (zh) * 2011-03-29 2012-10-17 谢夫勒科技股份两合公司 滚动轴承
US8943944B2 (en) 2011-12-15 2015-02-03 Tong Oil Tools Co., Ltd Structure for gunpowder charge in multi-frac composite perforating devices
US9297242B2 (en) 2011-12-15 2016-03-29 Tong Oil Tools Co., Ltd. Structure for gunpowder charge in multi-frac composite perforating device
CN105319222A (zh) * 2014-06-06 2016-02-10 上海材料研究所 一种基于晶界相评价氮化硅滚动接触疲劳性能的方法
CN104728271A (zh) * 2015-02-13 2015-06-24 佛山市新战略知识产权文化有限公司 一种陶瓷轴承滚动体及其制备方法

Also Published As

Publication number Publication date
CN1078875C (zh) 2002-02-06
US5508241A (en) 1996-04-16
NO313135B1 (no) 2002-08-19
JP2756189B2 (ja) 1998-05-25
EP0751918A1 (en) 1997-01-08
EP0751918B1 (en) 1997-10-29
CA2185131A1 (en) 1995-09-28
NO963953L (no) 1996-09-20
JPH09506155A (ja) 1997-06-17
MX9604257A (es) 1997-12-31
NO963953D0 (no) 1996-09-20
CA2185131C (en) 2001-03-06
KR100186855B1 (ko) 1999-04-15
DE69500961D1 (de) 1997-12-04
DE69500961T2 (de) 1998-06-10
KR970701681A (ko) 1997-04-12
WO1995025703A1 (en) 1995-09-28

Similar Documents

Publication Publication Date Title
CN1078875C (zh) 具有高疲劳寿命的氮化硅轴承球
WO1996010546A1 (fr) Ceramique au nitrure de silicium et procede de conformation de cette ceramique
JP2012500767A (ja) 大型セラミック部品及び製造方法
JP2008503437A (ja) 溶融アルミナ/ジルコニア粒子の混合物
Marple et al. Mullite/alumina particulate composites by infiltration processing: III, mechanical properties
Lee et al. Effect of starting powder on damage resistance of silicon nitrides
Ritter et al. High-strength reaction-bonded silicon nitride
Eylon et al. Influence of thermomechanical processing on low cycle fatigue of prealloyed Ti-6AI-4V powder compacts
JP3910310B2 (ja) セラミック材料の製造方法、転がり軸受の部材の製造方法および切削工具の製造方法
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
Wang et al. Fabrication and test of reaction bond silicon carbide for optical applications
Salman Comparison the physical and mechanical properties of composite materials (Al/SiC and Al/B4C) produced by powder technology
US6548011B1 (en) Method for manufacturing surface-modified alumina-based ceramics
US5324693A (en) Ceramic composites and process for manufacturing the same
Quadir et al. Development of Lower Cost Si3N4
Zygmuntowicz et al. Characterization of the alumina oxide, copper and nickel powders and their processing intended for fabrication of the novel hybrid composite: A comparative study
JPH10331857A (ja) セラミックス転動体及びその製造方法
Feldshtein et al. On the fractography and some strength properties of Fe-based sintered materials with multicomponent oxide microadditives
JPH1095674A (ja) 窒化ケイ素/窒化チタン粒子群焼結体およびその製造方法
MXPA96004257A (en) Silicon nitride ball for bearing that has high life to the fat
Lenke et al. Design of metal ceramic composites
Boehlert et al. Properties and damage mechanism in three classes of titanium composite matrices
EP0432326A1 (en) Method of producing polycrystal system compound ceramics
Akopov et al. Static and dynamic response of ceramics and zirconium alumina concrete materials
Kobayashi et al. Microstructure and high-temperature property of reaction HIP-sintered SiC-AlN ceramic alloys

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SAINT-GOBAIN/NORTON INDUSTRIAL CERAMICS CORP.

Free format text: FORMER OWNER: SAINT-GOBAIN/NORTON INDUSTRIAL CERAMICS CORP.

Effective date: 20010723

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20010723

Applicant after: Saint-Gobain/Norton Industrial Ceramics Corp.

Applicant before: Saint-Gobain/Norton industrial Ceramics Corp.

ASS Succession or assignment of patent right

Owner name: ST. GOEBEN CERAMIC & PLASTIC STOCKS CO., LTD.

Free format text: FORMER OWNER: SAINT-GOBAIN/NORTON INDUSTRIAL CERAMICS CORP.

Effective date: 20010821

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20010821

Applicant after: Saint-Gobain Industrial Ceramics Inc.

Applicant before: Saint-Gobain/Norton Industrial Ceramics Corp.

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020206

Termination date: 20120317