CN114105647A - 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法 - Google Patents

雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法 Download PDF

Info

Publication number
CN114105647A
CN114105647A CN202111246343.2A CN202111246343A CN114105647A CN 114105647 A CN114105647 A CN 114105647A CN 202111246343 A CN202111246343 A CN 202111246343A CN 114105647 A CN114105647 A CN 114105647A
Authority
CN
China
Prior art keywords
fesi
thermoelectric material
beta
composite structure
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111246343.2A
Other languages
English (en)
Inventor
李涵
冯淞维
雷康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202111246343.2A priority Critical patent/CN114105647A/zh
Publication of CN114105647A publication Critical patent/CN114105647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了雾化急冻结晶法快速制备多尺度纳米复合结构β‑FeSi2热电材料的方法,将混合均匀的单质Fe和单质Si置于熔炼炉中,在保护气氛下熔炼,得到熔体;在熔炼炉顶部施加喷气,使熔体雾化,通过熔炼炉底部的嘴喷射到金属盘表面;所述金属盘在工作期间持续旋转,雾化的熔体在金属盘表面冷却并沿着金属盘旋转的方向甩开,得到非晶/纳米晶的粉状物;将得到的非晶/纳米晶的粉状物研磨、压片后在真空条件下进行烧结,得到块状纳米复合相的β‑FeSi2热电材料。本发明的方法能够快速制备单相的β‑FeSi2热电材料,所述β‑FeSi2热电材料还具有多尺度的纳米复合结构。

Description

雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材 料的方法
技术领域
本发明涉及β-FeSi2热电材料的制备,特别涉及一种雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法。
背景技术
能源问题一直是受高度关注的世界性问题。热电转换技术是利用半导体热电材料的温差发电效应将热能转换为电能的技术。通过运用这种技术制造的温差电池,具有系统体积小、可靠性高、运行成本低、寿命长、制造工艺简单、环境友好、适用温度范围广等特点,并且作为特殊电源在空间技术、军事装备等高新技术领域已经获得了普遍应用。β-FeSi2因其在200~900℃温度范围内具有较高的Seebeck系数和电导率、较好的稳定性且原材料丰富,使其成为一种极具实用前景的中、高温热电转换材料。
由FeSi2的相图可知,FeSi2的β相的单相固溶成分范围很窄,而且β相的核形成后,后续包析反应的原子扩散需要通过β相来完成,并且在形成β相的转变过程中会产生阻碍β相生成的堆垛层错,故β相的转变过程非常缓慢。
β-FeSi2现有的先进制备方法包括激光烧结法、快速凝固法。其具体制备工艺如下:
激光烧结法:将高纯度的铁、硅粉充分混合,然后进行热压或者冷压处理得到硅铁粉末块体,再用1—3kw的CO2激光束进行激光烧结,最后将所得的硅铁化合物激光退火或者置于加热炉中退火处理得到β-FeSi2块状热电材料。
快速冷凝法:以高纯铁硅粉为原料,将悬浮熔炼的母体合金置于真空快淬炉中,抽真空再充高纯氩气,进行合金重熔,然后在真空炉中快速水冷、甩出得到针状凝固粉,后经1100℃烧结、800℃下退火21h的热处理即得到β-FeSi2块状热电材料。
熔铸法:目前制备β-FeSi2的主要方法为循环过热熔铸法。由于熔铸法本身工艺的特点,所制备得到的FeSi2铸坯中分布于α相中的ε相还不够均匀、细小,导致最后热处理得到的β-FeSi2无法形成丰富的纳米晶以进一步提升材料的热电性能;其次由于制备工艺中仍需要退火处理,导致整个制备过程仍需较长时间(4至9小时)。
激光烧结法存在着成本较高,能耗大的缺点;快速冷凝法通过加快熔体合金的冷却速率,能够提高了β相的转变速率,但其后续的退火过程较长,不利于工业化生产。无论是激光烧结法还是快速冷凝法,其最终制备得到的β-FeSi2块体材料内部都不具备丰富的纳米复合相,不能显著地降低热导率以得到更高的热电性能。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,能够快速制备单相的β-FeSi2热电材料,制备得到的β-FeSi2热电材料还具有多尺度的纳米晶复合结构。
本发明的目的通过以下技术方案实现:
雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,包括以下步骤:
按化学式FeSi2称量单质Fe和单质Si;
将混合均匀的单质Fe和单质Si置于熔炼炉中,在保护气氛下熔炼,得到熔体;
在熔炼炉顶部施加喷气,使熔体雾化,通过熔炼炉底部的嘴喷射到金属盘表面;
所述金属盘在工作期间持续旋转,雾化的熔体在金属盘表面冷却并沿着金属盘旋转的方向甩开,得到非晶/纳米晶的粉状物;
将得到的非晶/纳米晶的粉状物研磨、压片后在真空条件下进行烧结,得到块状纳米复合相的β-FeSi2热电材料。
优选的,所述喷气的压力为0.6~0.8MPa。
优选的,所述金属盘在工作期间以2000~5000r/s的速度绕其中心旋转。
优选的,所述烧结为放电等离子烧结。
优选的,所述烧结温度为820~880℃,时间为3~8分钟。
优选的,所述保护气体为氩气。
优选的,所述熔炼炉为感应熔炼炉。
优选的,所述金属盘为铜制金属盘。
优选的,所述金属盘装载在用于调控所述金属盘与所述嘴喷之间距离的轨道上。
优选的,所述β-FeSi2热电材料为晶粒尺寸在150~450nm之间的单相材料。
本发明的原理如下:
本发明的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,首先通过将单质Fe和单质Si熔炼成熔融状态合金,再通过施加喷气压力使熔融状态合金雾化成粒径很小的雾状合金,再落在高速旋转的高导热金属盘上,此过程获得极大的冷却速度,使得冷却产物中α与ε相的长大受到抑制,且均匀分布,以显著增加α与ε相间的相界面,从而使粉体在后续烧结过程中β-FeSi2的成核率显著增加,再结合快速致密化的烧结工艺得到晶粒细小的具有纳米复合结构的β-FeSi2
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法制备得到的非晶/纳米晶的粉状物中的α与ε相细小均匀,其中棒状ε相直径在200nm左右,显著增加了α与ε相间的相界面,使其后的烧结过程中β-FeSi2的成核率显著增加,从而得到单相的β-FeSi2
(2)本发明的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法制备得到的非晶/纳米晶的粉状物,由于在高速旋转的高导热金属盘上不同位置的粉体冷却速度不同,可得到不同尺度晶粒的纳米晶。
(3)本发明的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,先采用雾化急冻结晶法制备粉体,再采用放电等离子烧结,整个制备流程只需要2小时左右,具有便于操作、工艺流程和制备时间短、成本低的特点,适用于工业大规模生产。
附图说明
图1为实现本发明的实施例的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法的装置的结构示意图。
图2为本发明的实施例的雾化急冻结晶法快速制备多尺度纳米复合结构β -FeSi2热电材料的方法的流程图。
图3为本发明的实施例1制备的非晶/纳米晶复合结构的粉状产物的XRD 图谱。
图4为本发明的实施例1制备的非晶/纳米晶复合结构的粉状产物的扫描电镜照片。
图5为本发明的实施例1制备的非晶/纳米晶复合结构的粉状产物的高分辨率透射电镜照片。
图6为本发明的实施例1制备的多尺度纳米复合结构β-FeSi2热电材料的 XRD图谱。
图7为本发明的实施例1制备的多尺度纳米复合结构β-FeSi2热电材料的扫描电镜照片。
图8为本发明的实施例1制备的多尺度纳米复合结构β-FeSi2热电材料的热导率测试结果。
图9为本发明的实施例2制备的非晶/纳米晶复合结构的粉状产物的XRD 图谱。
图10为本发明的实施例2制备的非晶/纳米晶复合结构的粉状产物的扫描电镜照片。
图11为本发明的实施例2制备的非晶/纳米晶复合结构的粉状产物的高分辨率透射电镜照片。
图12为本发明的实施例2制备的多尺度纳米复合结构β-FeSi2热电材料的 XRD图谱。
图13为本发明的实施例2制备的多尺度纳米复合结构β-FeSi2热电材料的扫描电镜照片。
图14为本发明的实施例2制备的多尺度纳米复合结构β-FeSi2热电材料的热导率测试结果。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
实现本实施例的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法的装置如图1所示,包括感应熔炼炉和可绕其中心旋转的铜制金属盘1;所述感应熔炼炉包括石英玻璃管2、感应线圈3及喷嘴4;所述石英玻璃管2顶部设有可供喷气进入石英玻璃管的进气口5,底部设有开口,所述喷嘴安装于所述开口上。铜制金属盘装载在用于调控所述金属盘与所述嘴喷之间距离的轨道上,由于铜盘的导热系数较高,容易受到辐射热的影响而降低它对雾状合金的冷却能力,所以在对原料进行感应熔炼的时候,铜盘需要与感应熔炼室保持一定距离(处在待机位置上);当感应熔炼完成后,可以通过装置上的按钮首先将铜制金属盘移至默认距离,然后再进行喷雾;当完成一次制备过程,可以通过装置上的复位按钮再将铜盘移至安全距离。
如图2所示,本实施例的多尺度纳米复合结构β-FeSi2热电材料的制备方法如下:
(1)配料:起始原料使用高纯颗粒状Fe(99.99%),块状Si(>99.9999%) 按化学式FeSi2称重;
(2)乙醇超声清洗原料后,将配料混合,干燥后放入底部有一直径0.35mm 圆孔的石英玻璃管中并置于感应熔炼炉中熔炼,炉内先抽真空至5×10-3Pa,再充以高纯氩气保护,高纯氩气的纯度≥99.99%;熔体在0.6MPa的喷气压力下经过雾化喷嘴喷射到以转度为4000r/s高速旋转的铜盘内表面,得到平均直径在5到 80um的内部为非晶/纳米晶组成的粉状产物.
粉状产物的XRD图谱见图3;由图可知,得到的粉体产物为α-FeSi2与ε-FeSi2的混合物。
粉状产物的扫描电镜照片见图4,其中可以观察到粉状产物内部ε相的尺寸大约为200nm左右。
粉体产物的透射电镜照片见图5,其中大圈所示为纳米晶区域;小圈所示区域为非晶区域。
(3)将非晶/纳米晶复合结构的粉状产物研磨、压片后,用放电等离子烧结方法于真空下烧结,烧结温度为850℃,时间为5min,得到单相、相对密度大于98%、平均晶粒尺寸约为250nm、热电性能指数ZT最大达1.4的n型β-FeSi2热电化合物块体材料。
本实施例从材料准备到制备完成一共花费一个小时。
本实施例制备的多尺度纳米复合结构β-FeSi2热电材料的XRD图谱见图6,由图5可知,粉状产物经放电等离子烧结后得到了FeSi2的β相;β-FeSi2热电化合物块体材料的场发射扫描电镜照片见图7,由图7可知,β-FeSi2热电材料由晶粒尺寸在150-450nm左右的晶粒组成,说明本发明得到了多尺度纳米复合结构β-FeSi2热电材料;β-FeSi2热电材料的热导率见图8,本实施例制备得到的β-FeSi2热电材料在300K到800K的温度区间内,其热导率低至3到4W·m-1K-1之间,其数值在各类制备工艺得到的β-FeSi2热电体系中处于最低的水平。
实施例2
本实施例的多尺度纳米复合结构β-FeSi2热电材料的制备方法如下:
(1)配料:起始原料使用高纯颗粒状Fe(99.99%),块状Si(>99.9999%) 按化学式FeSi2称重;
(2)乙醇超声清洗原料后,将配料混合,干燥后放入底部有一直径0.35mm 圆孔的石英玻璃管中并置于感应熔炼炉中熔炼,炉内先抽真空至5×10-3Pa,再充以高纯氩气保护,高纯氩气的纯度≥99.99%;熔体在0.8MPa的喷气压力下经过雾化喷嘴喷射到以转度为5000r/s高速旋转的铜盘内表面,得到平均直径在5到 80um的内部为非晶/纳米晶组成的粉状产物;
(3)将非晶/纳米晶复合结构的粉状产物研磨、压片后,用放电等离子烧结方法于真空下烧结,烧结温度为750℃,时间为5min,得到单相、相对密度大于98%、平均晶粒尺寸约为250nm、热电性能指数ZT最大达1.3的n型β-FeSi2热电化合物块体材料。
本实施例的测试结果如下:
所得粉体产物的XRD图谱见图9;由图可知,得到的粉体产物为α-FeSi2与ε-FeSi2的混合物。
粉状产物的扫描电镜照片见图10,其中可以观察到粉状产物内部ε相的尺寸大约为200nm左右。
粉体产物的透射电镜照片见图11,可以观察到材料内部为纳米晶/非晶的复合相,其中大圈所示区域即为明显的纳米晶区域,小圈所示即为明显的非晶区域。
本实施例从材料准备到制备完成一共花费一个小时。
本实施例制备的多尺度纳米复合结构β-FeSi2热电材料的XRD图谱见图12,由图5可知,粉状产物经放电等离子烧结后得到了FeSi2的β相;β-FeSi2热电化合物块体材料的场发射扫描电镜照片见图13,由图7可知,β-FeSi2热电材料由晶粒尺寸在200-500nm左右的晶粒组成,说明本发明得到了多尺度纳米复合结构β-FeSi2热电材料;β-FeSi2热电材料的热导率见图14,本实施例制备得到的β-FeSi2热电材料在300K到800K的温度区间内,其热导率低至3到4W·m-1K-1之间,其数值在各类制备工艺得到的β-FeSi2热电体系中处于最低的水平。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,包括以下步骤:
按化学式FeSi2称量单质Fe和单质Si;
将混合均匀的单质Fe和单质Si置于熔炼炉中,在保护气氛下熔炼,得到熔体;
在熔炼炉顶部施加喷气,使熔体雾化,通过熔炼炉底部的嘴喷射到金属盘表面;
所述金属盘在工作期间持续旋转,雾化的熔体在金属盘表面冷却并沿着金属盘旋转的方向甩开,得到非晶/纳米晶的粉状物;
将得到的非晶/纳米晶的粉状物研磨、压片后在真空条件下进行烧结,得到块状纳米复合相的β-FeSi2热电材料。
2.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述喷气的压力为0.6~0.8MPa。
3.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述金属盘在工作期间以2000~5000r/s的速度绕其中心旋转。
4.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述烧结为放电等离子烧结。
5.根据权利要求1或4所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述烧结温度为820~880℃,时间为3~8分钟。
6.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述保护气体为氩气。
7.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述熔炼炉为感应熔炼炉。
8.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述金属盘为铜制金属盘。
9.根据权利要求1或8所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述金属盘装载在用于调控所述金属盘与所述嘴喷之间距离的轨道上。
10.根据权利要求1所述的雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法,其特征在于,所述β-FeSi2热电材料为晶粒尺寸在150~450nm之间的单相材料。
CN202111246343.2A 2021-10-26 2021-10-26 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法 Pending CN114105647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111246343.2A CN114105647A (zh) 2021-10-26 2021-10-26 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111246343.2A CN114105647A (zh) 2021-10-26 2021-10-26 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法

Publications (1)

Publication Number Publication Date
CN114105647A true CN114105647A (zh) 2022-03-01

Family

ID=80376777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111246343.2A Pending CN114105647A (zh) 2021-10-26 2021-10-26 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法

Country Status (1)

Country Link
CN (1) CN114105647A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144825A (ja) * 1992-09-21 1994-05-24 Isuzu Motors Ltd 熱発電素子の製造方法
JP2004088080A (ja) * 2002-06-19 2004-03-18 Jfe Steel Kk β−FeSi2系熱電変換材料および熱電変換素子
CN103320632A (zh) * 2013-05-23 2013-09-25 北京科技大学 一种制备块体β-FeSi2热电和光电转换材料的方法
JP2014165464A (ja) * 2013-02-27 2014-09-08 Tokyo Institute Of Technology 熱電変換材料及びその製造方法
CN107683255A (zh) * 2015-06-12 2018-02-09 株式会社丰田自动织机 硅材料及其制造方法
CN108751956A (zh) * 2018-07-10 2018-11-06 哈尔滨工业大学 一种铝氧燃烧合成急冷法制备氧化铝基非晶和固溶体陶瓷微米粉混合物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144825A (ja) * 1992-09-21 1994-05-24 Isuzu Motors Ltd 熱発電素子の製造方法
JP2004088080A (ja) * 2002-06-19 2004-03-18 Jfe Steel Kk β−FeSi2系熱電変換材料および熱電変換素子
JP2014165464A (ja) * 2013-02-27 2014-09-08 Tokyo Institute Of Technology 熱電変換材料及びその製造方法
CN103320632A (zh) * 2013-05-23 2013-09-25 北京科技大学 一种制备块体β-FeSi2热电和光电转换材料的方法
CN107683255A (zh) * 2015-06-12 2018-02-09 株式会社丰田自动织机 硅材料及其制造方法
CN108751956A (zh) * 2018-07-10 2018-11-06 哈尔滨工业大学 一种铝氧燃烧合成急冷法制备氧化铝基非晶和固溶体陶瓷微米粉混合物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YOSHISATO KIMURA等: "Thermoelectric Properties of Nearly Single-Phase β-FeSi2 Alloys Fabricated by Gas-Atomized Powder Sintering", 《MATERIALS TRANSACTIONS》 *
李涵等: "《熔体旋甩法制备高性能纳米结构方钴矿热电材料》", 30 June 2012 *
黄培云等: "《粉末冶金基础理论与新技术》", 中南工业大学出版社 *

Similar Documents

Publication Publication Date Title
CN103121105B (zh) 一种制备微细球形Nb-W-Mo-Zr合金粉末的方法
CN100377378C (zh) 一种Bi-Sb-Te系热电材料的制备方法
CN107681043B (zh) 一种柔性热电器件的碲化铋基复合热电材料及制备方法
CN103700759B (zh) 一种纳米复合结构Mg2Si基热电材料及其制备方法
CN101736173B (zh) 熔体旋甩结合放电等离子烧结制备碲化银锑热电材料的方法
CN102637817A (zh) 一种碲化铋基块体热电材料的制备方法
KR20100024663A (ko) 열플라즈마를 이용한 나노 복합 분말의 직접적, 연속적 합성 방법과 이를 위한 플라즈마 토치
CN105057680A (zh) 一种机械合金化铜钨合金粉末的制备方法
CN104084594A (zh) 一种制备微细球形铌粉的方法
CN105936985A (zh) 一种高性能多尺寸纳米结构方钴矿材料的制备方法
CN103601484A (zh) 一种镥铝石榴石基透明陶瓷的制备方法
CN113800522A (zh) 一种高纯致密碳化钨-钴复合球形粉体材料制备的方法
CN112456971A (zh) 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
CN106191522B (zh) 一种激光高效制备方钴矿热电材料的方法
CN102864343A (zh) 一种原位铝基复合材料孕育剂的制备方法
CN103111623B (zh) 一种制备纳米晶Nb-W-Mo-Zr合金粉末的方法
CN114105647A (zh) 雾化急冻结晶法快速制备多尺度纳米复合结构β-FeSi2热电材料的方法
CN107293637B (zh) 一种高性能GeSbTe基热电材料的制备方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
KR20120068116A (ko) 텅스텐-구리 나노 복합 분말의 제조방법 및 이를 이용한 텅스텐-구리 복합체의 제조방법
CN104711444B (zh) 一种快速制备高性能SiGe高温热电合金材料的方法
CN114082968B (zh) 一种利用喷雾旋甩淬冷规模化制备填充式方钴矿材料的方法
CN108584958B (zh) 一种碳化锆纳米粉体的原位合成方法
CN112441819A (zh) 一种氧化镍基陶瓷靶材材料的热等静压制备方法
KR102033900B1 (ko) 복합체형 열전소재 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220301

RJ01 Rejection of invention patent application after publication