CN114084883B - 一种湿法浸泡和低温退火复合提高石墨烯性能的方法 - Google Patents

一种湿法浸泡和低温退火复合提高石墨烯性能的方法 Download PDF

Info

Publication number
CN114084883B
CN114084883B CN202111362184.2A CN202111362184A CN114084883B CN 114084883 B CN114084883 B CN 114084883B CN 202111362184 A CN202111362184 A CN 202111362184A CN 114084883 B CN114084883 B CN 114084883B
Authority
CN
China
Prior art keywords
graphene
pmma
target substrate
low
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111362184.2A
Other languages
English (en)
Other versions
CN114084883A (zh
Inventor
王俊强
郑士瑜
李孟委
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Institute For Advanced Study
North University of China
Original Assignee
Nantong Institute For Advanced Study
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Institute For Advanced Study, North University of China filed Critical Nantong Institute For Advanced Study
Priority to CN202111362184.2A priority Critical patent/CN114084883B/zh
Publication of CN114084883A publication Critical patent/CN114084883A/zh
Application granted granted Critical
Publication of CN114084883B publication Critical patent/CN114084883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明一种湿法浸泡和低温退火复合提高石墨烯性能的方法,由以下步骤组成:将刻蚀掉生长基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中,以增强石墨烯薄膜的亲水性;用目标衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/目标衬底三明治结构;将PMMA/石墨烯/目标衬底浸泡在丙酮溶液中除去PMMA;采用低压低温气氛退火去除转移过程中石墨烯上残留的PMMA光刻胶,工艺中H2作为还原性气体,可与PMMA中的碳原子在高温下反应形成相应的碳氢化合物气体脱离石墨烯表面。该方法包含的两种处理工艺相辅相成、互不影响,既可较好的避免石墨烯表面褶皱的形成,又可高效去除石墨烯表面附着的PMMA残留物,获得完美性能的石墨烯薄膜,以实现石墨烯材料在微电子元器件及传感器中的广泛应用。

Description

一种湿法浸泡和低温退火复合提高石墨烯性能的方法
技术领域
本发明属于半导体制备技术领域,更具体地,涉及一种湿法浸泡和低温退火复合提高石墨烯性能的方法。
背景技术
石墨烯是由单层碳原子蜂窝状排列构成的二维晶体,具有高导电率、迁移率、透光性及其他诸多优异性能。
CVD法作为当今制备石墨烯的主流方法,它不受衬底尺寸的限制,设备简单,可以大批量生产。石墨烯-PMMA自支撑技术是CVD法中石墨烯衬底转移的关键技术,能较稳定高效的完成石墨烯的衬底转移,且能基本保持其优良的性能。但是,石墨烯表面的疏水特性,使其不能与目标衬底完美贴合,在后续烘干处理时会有褶皱的形成,而褶皱的存在将吸附空气中的H2O、O2分子,进而降低石墨烯的电学性能;且PMMA湿法转移的石墨烯上会有光刻胶的残留,这些残胶将导致石墨烯产生显著的p型掺杂和引入大量的散射中心,而大大降低石墨烯的载流子迁移率。
甲酰胺湿法浸泡可提高石墨烯表面的亲水性,增强石墨烯与目标衬底的贴合性,以在后续烘干过程中,降低石墨烯表面褶皱的形成;而转移后的低温低压退火工艺中H2作为还原性气体,可与PMMA中的碳原子在高温下反应形成相应的碳氢化合物气体脱离石墨烯表面。此复合方法优化制备的石墨烯薄膜,实现了石墨烯材料在微电子元器件及传感器中的广泛应用。
发明内容
本发明的目的在于在传统石墨烯转移技术的基础上,提供一种湿法浸泡和低温退火复合提高石墨烯性能的方法,改善石墨烯与目标基底的结合状况,且消除残胶引起的石墨烯性能的退化,进而提高石墨烯薄膜的电学性能。
本发明的技术方案:
1.将刻蚀掉生长基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中,以增强石墨烯薄膜的亲水性;
2.用目标衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/目标衬底三明治结构,且在适宜的温度下处理,以除去水分;
3.将PMMA/石墨烯/目标衬底浸泡在丙酮溶液中除去PMMA;
4.采用低压低温气氛退火去除转移过程中石墨烯上残留的PMMA光刻胶。
优选的,所述的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中5-30min,提高石墨烯表面的亲水性,增强后续石墨烯与目标衬底的贴合度。
优选的,所述的用目标衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/目标衬底三明治结构,且在50-150℃温度下处理10-30min,以除去水分。
优选的,所述的PMMA/石墨烯/目标衬底浸泡在丙酮溶液中5-30min除去PMMA。
优选的,所述的低温低压退火包括以下步骤:
(1)将去除PMMA的石墨烯/目标衬底放入真空气氛管式炉;
(2)管式炉抽真空至0.1-1Pa,通入高纯惰性气体,赶走腔室内的空气;
(3)关闭惰性气体流量,待真空重新恢复至0.1-1Pa,通入高纯H2
(4)设定加热程序,将目标基底缓慢加热,保持真空泵的抽速和步骤(3)中的H2流量不变;
(5)关闭加热程序,系统温度缓慢降至室温,关闭气体流量,关闭真空泵。
优选的,所述的管式炉抽真空至0.1-1Pa,通入高纯惰性气体,所述高纯惰性气体为Ar、N2、He,流量50-500sccm,时间5-20min,以赶走腔室内的空气。
优选的,所述的关闭惰性气体流量,待真空重新恢复至0.1-1Pa,通入高纯H2,流量5-100sccm,时间5-20min。
优选的,所述的设定加热程序,将目标衬底缓慢加热至100-500℃,加热速率1-5℃/min,保持真空泵的抽速和步骤(3)中的H2流量不变,时间10-120min。
总体而言,通过本发明所构思的技术方案具有以下优点:
1.使用甲酰胺湿法浸泡PMMA/石墨烯,再转移至目标衬底烘干后,石墨烯表面的褶皱明显减少;
2.使用低温低压退火工艺处理石墨烯薄膜,优化退火工艺,尽可能的减少了石墨烯表面PMMA的残留量,抑制了掺杂效应,提高了石墨烯的质量。
附图说明
图1是本发明的目标衬底上石墨烯薄膜湿法浸泡、转移与低温退火流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本发明给出如下实施例:
实施例1:
一种湿法浸泡和低温退火复合提高石墨烯性能的方法包括如下步骤:
(1)将刻蚀掉Cu基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中10min,提高石墨烯表面的亲水性,增强后续石墨烯与衬底的贴合度;
(2)用SiO2/Si衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/SiO2三明治结构,且在100℃温度下处理30min,以除去水分;
(3)将PMMA/石墨烯/SiO2/Si浸泡在丙酮溶液中15min除去PMMA;
(4)将去除PMMA的石墨烯/SiO2/Si衬底放入真空气氛管式炉;
(5)管式炉抽真空至0.1Pa,通入高纯(纯度>99.9%)Ar,流量100sccm,时间15min,赶走腔室内的空气;
(6)关闭惰性气体流量,待真空重新恢复至0.1Pa,通入高纯H2,流量10sccm,时间20min;
(7)设定加热程序,将衬底缓慢加热至200℃,加热速率2℃/min,保持真空泵的抽速和步骤(6)中的H2流量不变,时间100min;
(8)关闭加热程序,系统温度缓慢降至室温,关闭气体流量,关闭真空泵。
实施例2:
一种湿法浸泡和低温退火复合提高石墨烯性能的方法包括如下步骤:
(1)将刻蚀掉Cu基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中20min,提高石墨烯表面的亲水性,增强后续石墨烯与衬底的贴合度;
(2)用SiO2/Si衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/SiO2三明治结构,且在120℃温度下处理20min,以除去水分;
(3)将PMMA/石墨烯/SiO2/Si浸泡在丙酮溶液中10min除去PMMA;
(4)将去除PMMA的石墨烯/SiO2/Si衬底放入真空气氛管式炉;
(5)管式炉抽真空至0.5Pa,通入高纯(纯度>99.9%)N2,流量200sccm,时间10min,赶走腔室内的空气;
(6)关闭惰性气体流量,待真空重新恢复至0.5Pa,通入高纯H2,流量30sccm,时间15min;
(7)设定加热程序,将衬底缓慢加热至300℃,加热速率4℃/min,保持真空泵的抽速和步骤(6)中的H2流量不变,时间60min;
(8)关闭加热程序,系统温度缓慢降至室温,关闭气体流量,关闭真空泵。
实施例3:
一种湿法浸泡和低温退火复合提高石墨烯性能的方法包括如下步骤:
(1)将刻蚀掉Cu基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中30min,提高石墨烯表面的亲水性,增强后续石墨烯与衬底的贴合度;
(2)用SiO2/Si衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/SiO2三明治结构,且在150℃温度下处理15min,以除去水分;
(3)将PMMA/石墨烯/SiO2/Si浸泡在丙酮溶液中5min除去PMMA;
(4)将去除PMMA的石墨烯/SiO2/Si衬底放入真空气氛管式炉;
(5)管式炉抽真空至1Pa,通入高纯(纯度>99.9%)Ar,流量300sccm,时间5min,赶走腔室内的空气;
(6)关闭惰性气体流量,待真空重新恢复至1Pa,通入高纯H2,流量60sccm,时间15min;
(7)设定加热程序,将衬底缓慢加热至400℃,加热速率5℃/min,保持真空泵的抽速和步骤(6)中的H2流量不变,时间40min;
(8)关闭加热程序,系统温度缓慢降至室温,关闭气体流量,关闭真空泵。
以上所述仅为本发明较佳的具体实施例而已,并不用于限制本发明,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,包括如下步骤:
(1)将刻蚀掉生长基底的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中,以增强石墨烯薄膜的亲水性;
(2)用目标衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/目标衬底三明治结构,目标衬底为SiO2/Si材质,且在适宜的温度下处理,以除去水分;
(3)将PMMA/石墨烯/目标衬底浸泡在丙酮溶液中除去PMMA;
(4)将去除PMMA的石墨烯/目标衬底放入真空气氛管式炉;
(5)管式炉抽真空至0.1-1 Pa,通入高纯惰性气体,赶走腔室内的空气;
(6)关闭惰性气体流量,待真空重新恢复至0.1-1 Pa,通入高纯H2
(7)设定加热程序,将目标基底缓慢加热,保持真空泵的抽速和步骤(6)中的H2流量不变;
(8)关闭加热程序,系统温度缓慢降至室温,关闭气体流量,关闭真空泵。
2.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,所述的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中,提高石墨烯表面的亲水性,增强后续石墨烯与目标衬底的贴合度。
3.如权利要求2所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,所述的PMMA/石墨烯薄膜浸泡在甲酰胺溶液中,浸泡时间在为5-30 min。
4.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,所述的用目标衬底捞起PMMA/石墨烯,形成PMMA/石墨烯/目标衬底三明治结构,且在50-150℃温度下处理10-30 min,以除去水分。
5.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,所述的PMMA/石墨烯/目标衬底浸泡在丙酮溶液中5-30 min除去PMMA。
6.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,(5)管式炉抽真空至0.1-1 Pa,通入高纯惰性气体,所述高纯惰性气体为Ar、N2、He,流量50-500 sccm,时间5-20 min,以赶走腔室内的空气。
7.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,(6)关闭惰性气体流量,待真空重新恢复至0.1-1 Pa,通入高纯H2,流量5-100 sccm,时间5-20 min。
8.如权利要求1所述的湿法浸泡和低温退火复合提高石墨烯性能的方法,其特征在于,(7)设定加热程序,将目标衬底缓慢加热至100-500℃,加热速率1-5℃/min,保持真空泵的抽速和步骤(6)中的H2流量不变,时间10-120 min。
CN202111362184.2A 2021-11-17 2021-11-17 一种湿法浸泡和低温退火复合提高石墨烯性能的方法 Active CN114084883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111362184.2A CN114084883B (zh) 2021-11-17 2021-11-17 一种湿法浸泡和低温退火复合提高石墨烯性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111362184.2A CN114084883B (zh) 2021-11-17 2021-11-17 一种湿法浸泡和低温退火复合提高石墨烯性能的方法

Publications (2)

Publication Number Publication Date
CN114084883A CN114084883A (zh) 2022-02-25
CN114084883B true CN114084883B (zh) 2023-11-28

Family

ID=80301354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111362184.2A Active CN114084883B (zh) 2021-11-17 2021-11-17 一种湿法浸泡和低温退火复合提高石墨烯性能的方法

Country Status (1)

Country Link
CN (1) CN114084883B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321206B (zh) * 2021-06-02 2022-12-06 中北大学 电子束诱导石墨烯纳米条带原位生长制造方法
CN116460164B (zh) * 2023-05-06 2024-04-19 无锡市时捷钢绳有限公司 一种低损耗长寿命用钢丝绳及其加工工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915926A (zh) * 2012-10-22 2013-02-06 西安电子科技大学 一种基于AlN衬底的石墨烯转移退火方法及制造的器件
CN102931076A (zh) * 2012-10-22 2013-02-13 西安电子科技大学 一种氧化锌衬底转移石墨烯的退火方法
CN111453720A (zh) * 2019-01-22 2020-07-28 南通晶锐新型碳材料科技有限公司 一种铜箔为基底的石墨烯转移方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915926A (zh) * 2012-10-22 2013-02-06 西安电子科技大学 一种基于AlN衬底的石墨烯转移退火方法及制造的器件
CN102931076A (zh) * 2012-10-22 2013-02-13 西安电子科技大学 一种氧化锌衬底转移石墨烯的退火方法
CN111453720A (zh) * 2019-01-22 2020-07-28 南通晶锐新型碳材料科技有限公司 一种铜箔为基底的石墨烯转移方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Improved Transfer Quality of CVD-Grown Graphene by Ultrasonic Processing of Target Substrates: Applications for Ultra-fast Laser Photonics;Guanpeng Zheng et al.;《ACS Appl. Mater. Interfaces》;20131001;第5卷;第10288-10293页 *

Also Published As

Publication number Publication date
CN114084883A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN114084883B (zh) 一种湿法浸泡和低温退火复合提高石墨烯性能的方法
US9691612B2 (en) Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
ATE440385T1 (de) Verfahren zur grosstechnischen herstellung von cdte/cds dünnschicht-solarzellen
JP2006080314A5 (zh)
CN109023291B (zh) 一种石墨烯薄膜及其制备方法与应用
WO2013102360A1 (zh) 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
CN102915926B (zh) 一种基于AlN衬底的石墨烯转移退火方法及制造的器件
CN107311158A (zh) 一种在镍基上制备石墨烯薄膜并转移到其它基底的方法
CN104860297B (zh) 一种多层石墨烯的制备方法
WO2020168819A1 (zh) 一种高效消除化学气相沉积法石墨烯褶皱的方法
CN107217239A (zh) 一种改善常压化学气相沉积法制备的石墨烯薄膜导电性能的方法
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
CN103924208A (zh) 一种制备多层石墨烯薄膜的方法
WO2017101782A1 (zh) 制备蒸馏水的装置
CN112919823A (zh) 一种快速均匀制备大面积石墨烯玻璃的方法
CN109437169B (zh) 制备超低褶皱密度石墨烯材料的方法
CN105755447B (zh) 一种低成本均匀制备石墨烯薄膜的方法
CN113998694B (zh) 一种利用固态碳源获取大尺寸石墨烯的制备方法
CN107541714B (zh) 一种大尺寸石墨烯玻璃的快速生长方法
CN113772662A (zh) 一种具有均一层厚的单层平整石墨烯
CN112919455B (zh) 一种二氧化碳联合低压化学气相沉积制备石墨烯膜的方法
JP2011526077A5 (zh)
CN111994900B (zh) 一种用小分子生长大面积少层氮掺杂石墨烯的方法
CN210607295U (zh) 一种基于二维Ga2S3纳米片的可弯曲式场效应光电晶体管
CN102642822A (zh) 一种分离金属型和半导体型单壁碳纳米管阵列的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221201

Address after: No. 3, Xueyuan Road, Taiyuan, Shanxi 030006

Applicant after: NORTH University OF CHINA

Applicant after: Nantong Institute for Advanced Study

Address before: 226000 building w-9, Zilang science and Technology City, Nantong central Innovation Zone, Changzhou City, Jiangsu Province

Applicant before: Nantong Institute of intelligent optics, North China University

Applicant before: NORTH University OF CHINA

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant