CN113774410A - 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用 - Google Patents

氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN113774410A
CN113774410A CN202111242475.8A CN202111242475A CN113774410A CN 113774410 A CN113774410 A CN 113774410A CN 202111242475 A CN202111242475 A CN 202111242475A CN 113774410 A CN113774410 A CN 113774410A
Authority
CN
China
Prior art keywords
hollow carbon
nitrogen
mesoporous hollow
metal catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111242475.8A
Other languages
English (en)
Other versions
CN113774410B (zh
Inventor
贾海园
尤伟
李亚萍
宋龙森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202111242475.8A priority Critical patent/CN113774410B/zh
Publication of CN113774410A publication Critical patent/CN113774410A/zh
Application granted granted Critical
Publication of CN113774410B publication Critical patent/CN113774410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Abstract

本发明公开了一种氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用,在溶剂体系中,以二氧化硅微球为模板剂,以间苯二酚‑甲醛共聚物为碳源,通过沉积沉淀法制备固体实心微球,将固体实心微球经过热处理和刻蚀制得介孔空心碳纳米球;将活性金属源浸渍附着于介孔空心碳纳米球表面,以氨气为氮源,经过热处理,制备得到氮掺杂介孔空心碳纳米球负载金属催化剂。制得氮掺杂介孔空心碳纳米球负载金属催化剂具有重要的实用价值。

Description

氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与 应用
技术领域
本发明属于能源化工技术领域,具体为一种氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法,该催化剂用于电催化氧还原反应。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
过氧化氢是一种重要的环保型氧化剂,使用过程中副产物仅为水,避免了氯氧化物等漂白剂有毒氯气的释放以及高浓度盐的产生,在化学、化工和医疗等行业被广泛用作漂白剂、消毒剂、有机物降解剂和污水处理氧化剂等。目前,过氧化氢的生产以一个世纪前开发的蒽醌工艺为主。蒽醌法虽然能够生产大量高浓度的过氧化氢,但要经过氢化、氧化、萃取、分离、浓缩等步骤,合成工艺复杂,对设备要求高,高污染,高能耗,且获得的过氧化氢需浓缩至70wt%,以降低运输成本,而过氧化氢在高浓度下易分解爆炸,其不稳定性给运输和储存带来了致命的安全问题,这些缺点限制了蒽醌工艺的广泛应用,其主要适用于大型工业生产过程。因此,开发低成本、分布式和安全高效的过氧化氢生产工艺受到越来越多的关注。H2和O2直接合成是替代方法之一,该路线环保、简捷、经济,但过氧化氢的选择性和产率很低、存在爆炸性安全问题、催化剂易分解过氧化氢,限制了该合成方法的实际生产应用。
电催化氧还原法生产过氧化氢是一种较新的工艺。该方法能耗低,投资少,以再生电力为能源,水和空气为绿色前驱体,在常温常压下实现过氧化氢的合成,可以有效杜绝蒽醌法和直接合成法存在的安全隐患,且适合小规模原位生产过氧化氢,无需运输,从而减少相关成本。
通过电催化氧还原反应合成过氧化氢是环境友好且安全可靠的合成方法,对于该反应,贵金属及其合金(Pt和Pd)是比较优异的催化剂,然而,贵金属的稀有性限制了其广泛应用。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明提供了一种氮掺杂介孔空心碳纳米球负载金属催化剂,包括氮掺杂的介孔空心碳纳米球以及负载其上的金属离子。
第二方面,本发明提供了一种氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,包括如下步骤:
在溶剂体系中,以二氧化硅微球为模板剂,以间苯二酚-甲醛共聚物为碳源,通过沉积沉淀法制备固体实心微球,固体实心微球经过热处理和刻蚀后制得介孔空心碳纳米球;
将活性金属源浸渍附着于介孔空心碳纳米球表面,以氨气为氮源,经过热处理,制备得到氮掺杂介孔空心碳纳米球负载金属催化剂。
第三方面,本发明提供了所述制备方法制备得到的氮掺杂介孔空心碳纳米球负载金属催化剂。
第四方面,本发明提供了所述氮掺杂介孔空心碳纳米球负载金属催化剂在电催化氧还原中的应用;尤其在电催化氧还原制备过氧化氢中的应用。
以上本发明的一种或多种实施方式取得的有益效果如下:
与贵金属相比,过渡金属和碳材料价格便宜且含量丰富,是用作电催化氧还原反应的理想催化剂。因此,以原位合成的二氧化硅小球为模板剂,以间苯二酚-甲醛共聚物为碳源,以氨气为氮源,以金属盐为活性金属源,通过沉积沉淀法制备介孔空心碳纳米球,然后通过等体积浸渍法在介孔空心碳纳米球表面负载活性过渡金属,制得氮掺杂介孔空心碳纳米球负载过渡金属催化剂具有重要的实用价值。
提出的催化剂所应用于的电催化阴极氧气还原产过氧化氢的反应与常用的蒽醌法和直接合成法相比,具有环境友好、不易爆炸、有效避免远距离运输以及原位合成的稀过氧化氢可直接用于污水处理及杀菌消毒等优势。
提出的催化剂所应用于的电催化阴极氧气还原产过氧化氢的反应在常温常压下进行,电解质为高氯酸溶液或磷酸盐溶液,合成的过氧化氢可以稳定存在。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例3所制备的4%Co-N-C催化剂的HRTEM图片。
图2为本发明催化剂所用载体介孔空心碳纳米球的氮气吸脱附等温线。
图3为实施例1所制备的0.5%Co-N-C催化剂电催化氧还原制过氧化氢反应测试例的活性(a)、选择性(b)及稳定性(c)结果。
图4为实施例2所制备的1%Co-N-C催化剂电催化氧还原制过氧化氢反应对比测试例的活性(a)及选择性(b)结果。
图5为实施例3所制备的4%Co-N-C催化剂电催化氧还原制过氧化氢反应对比测试例的活性(a)及选择性(b)结果。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
第一方面,本发明提供了一种氮掺杂介孔空心碳纳米球负载金属催化剂,包括氮掺杂的介孔空心碳纳米球以及负载其上的金属离子。
第二方面,本发明提供了一种氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,包括如下步骤:
在溶剂体系中,以二氧化硅微球(性价比高,水解条件温和,更易调控介孔尺寸)为模板剂,以间苯二酚-甲醛共聚物为碳源,通过沉积沉淀法制备固体实心微球,将固体实心微球经过热处理和刻蚀制得介孔空心碳纳米球;
将活性金属源浸渍附着于介孔空心碳纳米球表面,以氨气为氮源(氨气是一种常见的掺氮方式),经过热处理,制备得到氮掺杂介孔空心碳纳米球负载金属催化剂。
在一些实施例中,所述二氧化硅微球为原位合成的二氧化硅微球。
进一步的,所述二氧化硅微球的粒径为200-500nm。
进一步的,二氧化硅微球的制备方法为:将四丙氧基硅烷和正硅酸乙酯加入到混合均匀的乙醇、水和氨水(制造适宜硅源水解的碱性条件)溶液中,搅拌,反应,制得二氧化硅微球。
更进一步的,氨水调节反应溶液的pH值为8-10。
更进一步的,四丙氧基硅烷和正硅酸乙酯在乙醇和氨水溶液中反应的时间为10-20min。
更进一步的,四丙氧基硅烷和正硅酸乙酯在乙醇-氨水的混合溶液中反应,原位合成二氧化硅微球后,向其中加入间苯二酚和甲醛溶液,继续反应,制得碳源低聚物包覆的固体微球。
在一些实施例中,还包括对所述碳源低聚物包覆的固体微球进行离心洗涤、干燥的步骤。
进一步的,离心洗涤的次数为3-10次,离心洗涤的溶液为水溶液和乙醇溶液。
进一步的,干燥温度为50-80℃(温度适宜乙醇挥发即可),干燥时间为6-12h。
在一些实施例中,还包括对所述碳源低聚物包覆的固体微球进行热处理过程:在惰性气体气氛中,在600-900℃,热处理3-6h。
在一些实施例中,所述刻蚀为采用酸或碱进行刻蚀。
进一步的,所述酸为氢氟酸,所述碱为氢氧化钠。
进一步的,酸或碱刻蚀的时间为12-48h。
更进一步的,所述氢氟酸溶液的浓度为5-10wt%;所述氢氧化钠溶液的浓度为10-15wt%。
在一些实施例中,还包括对刻蚀得到的介孔空心碳纳米球进行冷冻干燥(去除水分)的步骤。
进一步的,冷冻干燥的时间为12-24h。
在一些实施例中,所述活性金属源为Fe、Co、Ni等的可溶性盐。
进一步的,所述可溶性盐为Fe、Co、Ni等的氯盐、硝酸盐或醋酸盐。
进一步的,活性金属源采用等体积浸渍法浸渍附着于介孔空心碳纳米球上。
更进一步的,所述介孔空心碳纳米球上的金属负载量为0.1%-8%。
在一些实施例中,还包括对制备得到的介孔空心碳纳米球负载金属源进行冷冻干燥和热处理(冷冻干燥是为了去除水分,热处理是为了利用氨气掺氮,更好地锚定金属)的步骤。
进一步的,冷冻干燥的时间为12-24h。
进一步的,热处理气氛为惰性气体和氨气的混合气,混合比例为2-4:1。
进一步的,所述热处理的温度为600-900℃,热处理的时间为1-4h。
第三方面,本发明提供了所述制备方法制备得到的氮掺杂介孔空心碳纳米球负载金属催化剂。
第四方面,本发明提供了所述氮掺杂介孔空心碳纳米球负载金属催化剂在电催化氧还原中的应用;尤其在电催化氧还原制备过氧化氢中的应用。
实施例1
1)将1.15ml四丙氧基硅烷和1.8ml正硅酸乙酯在剧烈搅拌下加入到由70ml乙醇、10ml水和3ml氨水组成的混合溶液中,15min后,将0.4g间苯二酚和0.56ml甲醛溶液加入上述溶液中,搅拌反应24h。然后通过离心收集沉淀,并用水和乙醇洗涤三次,在60℃下干燥过夜。最后,置于管式炉在氮气中700℃焙烧5h,降至室温后取出,研磨成粉末,在5wt%氢氟酸中反应48h以刻蚀掉二氧化硅,离心洗涤至中性,冷冻干燥24h得到介孔空心碳纳米球。将介孔空心碳纳米球等体积浸没于CoCl2·6H2O配成的溶液中,静置过夜,使介孔空心碳纳米球吸附氯化钴溶液,吸附后的产物经过冷冻干燥24h及在750℃焙烧1h(N2 100ml/min+NH350ml/min,20℃/min)得氮掺杂介孔空心碳纳米球负载Co催化剂,金属钴负载量为0.5wt%,记为0.5%Co-N-C。
2)用IVIUM的旋转环盘电极及CHI 760E电化学工作站考察催化剂的催化性能。将5mg催化剂分散在1ml水、异丙醇和Nafion混合溶液中,超声分散均匀后,取5μL的溶液均匀滴到旋转环盘电极上,自然晾干。然后在电解池中加入0.1M的高氯酸溶液,先通入氮气,用电化学工作站进行CV和LSV扫描,然后再通入氧气并进行CV和LSV扫描,电极转速为1600rpm,环电极电位相对于可逆氢电极为1.2V,通过i-t曲线测试催化剂稳定性。
根据图2可知本发明的载体空心碳纳米球比表面积高于1000m2/g,孔径属于介孔。根据图3(a)可知本实施例的催化剂具有较高的氧还原起始电位和半波电位,较大的极限扩散电流;根据图3(b)可知本实施例的催化剂在高电位下拥有较高的过氧化氢选择性和较低的电子转移数;根据图3(c)可知本实施例的催化剂具有优异的电催化氧还原稳定性。
实施例2
1)将1.5ml四丙氧基硅烷和1.55ml正硅酸乙酯在剧烈搅拌下加入到由70ml乙醇、10ml水和3ml氨水组成的混合溶液中,15min后,将0.4g间苯二酚和0.56ml甲醛溶液加入上述溶液中,搅拌反应24h。然后通过离心收集沉淀,并用水和乙醇洗涤三次,在60℃下干燥过夜。最后,置于管式炉在氮气中700℃焙烧5h,降至室温后取出,研磨成粉末,在5wt%氢氟酸中反应48h以刻蚀掉二氧化硅,离心洗涤至中性,冷冻干燥24h得到介孔空心碳纳米球。将介孔空心碳纳米球等体积浸没于CoCl2·6H2O配成的溶液中,静置过夜,使介孔空心碳纳米球吸附氯化钴溶液,吸附后的产物经过冷冻干燥24h及在750℃焙烧1h(N2 100ml/min+NH350ml/min,20℃/min)得氮掺杂介孔空心碳纳米球负载Co催化剂,金属钴负载量为1wt%,记为1%Co-N-C。
2)用IVIUM的旋转环盘电极及CHI 760E电化学工作站考察催化剂的催化性能。将5mg催化剂分散在1ml水、异丙醇和Nafion混合溶液中,超声分散均匀后,取5μL的溶液均匀滴到旋转环盘电极上,自然晾干。然后在电解池中加入0.1M的高氯酸溶液,先通入氮气,用电化学工作站进行CV和LSV扫描,然后再通入氧气至饱和并进行CV和LSV扫描,电极转速为1600rpm,环电极电位相对于可逆氢电极为1.2V。
根据图4(a)可知本实施例的催化剂具有较高的氧还原起始电位和半波电位,较大的极限扩散电流;根据图4(b)可知本实施例的催化剂在高电位下拥有较高的过氧化氢选择性和较低的电子转移数。
实施例3
1)将1.5ml四丙氧基硅烷和1.55ml正硅酸乙酯在剧烈搅拌下加入到由70ml乙醇、10ml水和3ml氨水混合的溶液中,15min后,将0.4g间苯二酚和0.56ml甲醛溶液加入上述溶液中,搅拌反应24h。然后通过离心收集沉淀,并用水和乙醇洗涤三次,在60℃下干燥过夜。最后,置于管式炉在氮气中700℃焙烧5h,降至室温后取出,研磨成粉末,在5wt%氢氟酸中反应48h以刻蚀掉二氧化硅,离心洗涤至中性,冷冻干燥24h得到介孔空心碳纳米球。将介孔空心碳纳米球等体积浸没于CoCl2·6H2O配成的溶液中,静置过夜,使介孔空心碳纳米球吸附氯化钴溶液,吸附后的产物经过冷冻干燥24h及在750℃焙烧1h(N2 100ml/min+NH3 50ml/min,20℃/min)得氮掺杂介孔空心碳纳米球负载Co催化剂,金属钴负载量为4wt%,记为4%Co-N-C。
2)用IVIUM的旋转环盘电极及CHI 760E电化学工作站考察催化剂的催化性能。将5mg催化剂分散在1ml水、异丙醇和Nafion混合溶液中,超声分散均匀后,取5μL的溶液均匀滴到旋转环盘电极上,自然晾干。然后在电解池中加入0.1M的高氯酸溶液,先通入氮气,用电化学工作站进行CV和LSV扫描,然后再通入氧气至饱和并进行CV和LSV扫描,电极转速为1600rpm,环电极电位相对于可逆氢电极为1.2V。
根据图1(a)可知本实施例的催化剂为空心壳球形结构,直径约200nm,壳厚约12nm,且负载金属含量为4%时,Co颗粒无法用HRTEM观察到,说明本实施例的4%Co-N-C催化剂负载金属Co尺寸小于2nm,可能为单原子或团簇;根据图5(a)可知本实施例的催化剂具有较高的氧还原起始电位和半波电位,较大的极限扩散电流;根据图5(b)可知本实施例的催化剂在高电位下拥有较高的过氧化氢选择性和较低的电子转移数。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种氮掺杂介孔空心碳纳米球负载金属催化剂,其特征在于:包括氮掺杂的介孔空心碳纳米球以及负载其上的金属离子。
2.一种氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:包括如下步骤:
在溶剂体系中,以二氧化硅微球为模板剂,以间苯二酚-甲醛共聚物为碳源,通过沉积沉淀法制备固体实心微球,固体实心微球经过热处理和刻蚀后制得介孔空心碳纳米球;
将活性金属源浸渍附着于介孔空心碳纳米球表面,并以氨为氮源,经过热处理,制备得到氮掺杂介孔空心碳纳米球负载金属催化剂。
3.根据权利要求2所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:所述二氧化硅微球为原位合成的二氧化硅微球;
进一步的,所述二氧化硅微球的粒径为200-500nm;
进一步的,二氧化硅微球的制备方法为:将四丙氧基硅烷和正硅酸乙酯加入到混合均匀的乙醇、水和氨水溶液中,搅拌,反应,制得二氧化硅微球;
更进一步的,氨水调节反应溶液的pH值为8-10;
更进一步的,四丙氧基硅烷和正硅酸乙酯在乙醇和氨水溶液中反应的时间为10-20min;
更进一步的,四丙氧基硅烷和正硅酸乙酯在乙醇-氨水的混合溶液中反应,原位合成二氧化硅微球后,向其中加入间苯二酚和甲醛溶液,继续反应,制得碳源低聚物包覆的固体微球。
4.根据权利要求3所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:还包括对所述碳源低聚物包覆的固体微球进行离心洗涤、干燥的步骤;
进一步的,离心洗涤的次数为3-10次,离心洗涤的溶液为水溶液和乙醇溶液;
进一步的,干燥温度为50-80℃,干燥时间为6-12h。
5.根据权利要求3所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:还包括对所述碳源低聚物包覆的固体微球进行热处理过程:在惰性气体气氛中,在600-900℃,热处理3-6h。
6.根据权利要求2所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:所述刻蚀为采用酸或碱进行刻蚀;
进一步的,所述酸为氢氟酸,所述碱为氢氧化钠;
进一步的,酸或碱刻蚀的时间为12-48h;
更进一步的,所述氢氟酸溶液的浓度为5-10wt%;所述氢氧化钠溶液的浓度为10-15wt%;
在一些实施例中,还包括对刻蚀得到的介孔空心碳纳米球进行冷冻干燥的步骤;
进一步的,冷冻干燥的时间为12-24h。
7.根据权利要求2所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:所述活性金属源为Fe、Co或Ni的可溶性盐;
进一步的,所述可溶性盐为Fe、Co或Ni的氯盐、硝酸盐或醋酸盐;
进一步的,活性金属源采用等体积浸渍法浸渍附着于介孔空心碳纳米球上;
更进一步的,所述介孔空心碳纳米球上的金属负载量为0.1%-8%。
8.根据权利要求2所述的氮掺杂介孔空心碳纳米球负载金属催化剂的制备方法,其特征在于:还包括对制备得到的介孔空心碳纳米球负载金属催化剂进行冷冻干燥和热处理的步骤;
进一步的,冷冻干燥的时间为12-24h;
进一步的,热处理气氛为惰性气体和氨气的混合气,惰性气体和氨气的体积比为2-4:1;
进一步的,所述热处理的温度为600-900℃,热处理的时间为1-4h。
9.权利要求2-8任一所述制备方法制备得到的氮掺杂介孔空心碳纳米球负载金属催化剂。
10.权利要求1或9所述氮掺杂介孔空心碳纳米球负载金属催化剂在电催化氧还原中的应用;尤其在电催化氧还原制备过氧化氢中的应用。
CN202111242475.8A 2021-10-25 2021-10-25 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用 Active CN113774410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111242475.8A CN113774410B (zh) 2021-10-25 2021-10-25 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111242475.8A CN113774410B (zh) 2021-10-25 2021-10-25 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113774410A true CN113774410A (zh) 2021-12-10
CN113774410B CN113774410B (zh) 2022-09-13

Family

ID=78956746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111242475.8A Active CN113774410B (zh) 2021-10-25 2021-10-25 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113774410B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134707A (zh) * 2021-12-29 2022-03-04 安徽竞秀纺织有限公司 一种抗菌纱线的制备工艺方法
CN114453000A (zh) * 2022-02-28 2022-05-10 陕西科技大学 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN114908372A (zh) * 2022-03-31 2022-08-16 福州大学 一种介孔炭球包裹的锆负载型催化剂的制备方法及其应用
CN115044938A (zh) * 2022-06-15 2022-09-13 景德镇陶瓷大学 一种双模板诱导高活性Co/SiO2/NC-CNTs电催化析氧材料的制备方法和产品
CN115852388A (zh) * 2022-11-12 2023-03-28 中国石油大学(华东) 一种用于pem电解槽阴极的氮掺杂中空介孔碳球负载纳米铂电催化析氢材料、制备及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475074A (zh) * 2014-10-29 2015-04-01 东南大学 硼掺杂中空碳球的制备及在直接甲醇燃料电池阴极中的应用
CN106784871A (zh) * 2016-11-23 2017-05-31 中国科学院新疆理化技术研究所 一种氮掺杂碳表面负载单核金属催化剂的制备方法及用途
CN107039191A (zh) * 2017-05-09 2017-08-11 同济大学 一种氮功能化中空介孔碳纳米球的制备方法
CN107591527A (zh) * 2017-08-31 2018-01-16 扬州大学 原位生长花瓣状二硫化钼的空心介孔碳球的制备方法
CN110052270A (zh) * 2019-04-30 2019-07-26 天津大学 一种介孔碳球负载镍铁合金纳米颗粒催化剂及其制备方法与应用
CN111384407A (zh) * 2020-02-25 2020-07-07 电子科技大学 一种金属单原子分散的有序介孔碳球的制备方法
CN113066998A (zh) * 2021-03-26 2021-07-02 广州费舍尔人工智能技术有限公司 一种氮掺杂空心碳球负载氟化钴酸铜电极催化剂
CN113106491A (zh) * 2021-04-30 2021-07-13 佛山仙湖实验室 一种氮掺杂介孔中空碳球负载铂-氧化钴复合电催化材料的制备方法及其产品和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475074A (zh) * 2014-10-29 2015-04-01 东南大学 硼掺杂中空碳球的制备及在直接甲醇燃料电池阴极中的应用
CN106784871A (zh) * 2016-11-23 2017-05-31 中国科学院新疆理化技术研究所 一种氮掺杂碳表面负载单核金属催化剂的制备方法及用途
CN107039191A (zh) * 2017-05-09 2017-08-11 同济大学 一种氮功能化中空介孔碳纳米球的制备方法
CN107591527A (zh) * 2017-08-31 2018-01-16 扬州大学 原位生长花瓣状二硫化钼的空心介孔碳球的制备方法
CN110052270A (zh) * 2019-04-30 2019-07-26 天津大学 一种介孔碳球负载镍铁合金纳米颗粒催化剂及其制备方法与应用
CN111384407A (zh) * 2020-02-25 2020-07-07 电子科技大学 一种金属单原子分散的有序介孔碳球的制备方法
CN113066998A (zh) * 2021-03-26 2021-07-02 广州费舍尔人工智能技术有限公司 一种氮掺杂空心碳球负载氟化钴酸铜电极催化剂
CN113106491A (zh) * 2021-04-30 2021-07-13 佛山仙湖实验室 一种氮掺杂介孔中空碳球负载铂-氧化钴复合电催化材料的制备方法及其产品和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINYUAN LIU等,: ""In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction"", 《APPLIED CATALYSIS B:ENVIROMENTAL》 *
JINYUAN LIU等: ""Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions"", 《,JINYUAN LIU等》 *
MBBONGISENI W等,: ""Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer-Tropsch catalysts"", 《CATALYSIS TODAY》 *
YEZHOU HU等,: ""Efficient Electrochemical Production of H2O2 on Hollow N-Doped Carbon Nanospheres with Abundant Micropores"", 《APPLIED MATERIALS & INTERFACES》 *
YONGYU PANG等,: ""Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolyte"", 《ACS CATALYSIS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134707A (zh) * 2021-12-29 2022-03-04 安徽竞秀纺织有限公司 一种抗菌纱线的制备工艺方法
CN114453000A (zh) * 2022-02-28 2022-05-10 陕西科技大学 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN114908372A (zh) * 2022-03-31 2022-08-16 福州大学 一种介孔炭球包裹的锆负载型催化剂的制备方法及其应用
CN114908372B (zh) * 2022-03-31 2023-11-17 福州大学 一种介孔炭球包裹的锆负载型催化剂的制备方法及其应用
CN115044938A (zh) * 2022-06-15 2022-09-13 景德镇陶瓷大学 一种双模板诱导高活性Co/SiO2/NC-CNTs电催化析氧材料的制备方法和产品
CN115044938B (zh) * 2022-06-15 2023-12-08 景德镇陶瓷大学 一种双模板诱导高活性Co/SiO2/NC-CNTs电催化析氧材料的制备方法和产品
CN115852388A (zh) * 2022-11-12 2023-03-28 中国石油大学(华东) 一种用于pem电解槽阴极的氮掺杂中空介孔碳球负载纳米铂电催化析氢材料、制备及应用
CN115852388B (zh) * 2022-11-12 2024-02-20 中国石油大学(华东) 一种用于pem电解槽阴极的氮掺杂中空介孔碳球负载纳米铂电催化析氢材料、制备及应用

Also Published As

Publication number Publication date
CN113774410B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN113774410B (zh) 氮掺杂介孔空心碳纳米球负载金属催化剂及其制备方法与应用
Zhu et al. Aqueous electrocatalytic N 2 reduction for ambient NH 3 synthesis: recent advances in catalyst development and performance improvement
Li et al. Multiscale porous Fe–N–C networks as highly efficient catalysts for the oxygen reduction reaction
WO2012071709A1 (zh) 一种ag/mnyox/c催化剂及其制备和应用
CN110201715B (zh) 铁掺杂聚合物衍生的非贵金属co2还原复合催化剂、其制备方法及其应用
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
CN113373475A (zh) 基于反应物富集的铂单原子氢氧化反应电催化剂及其制备方法
CN110586158A (zh) 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN107308967B (zh) 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法
CN113707889A (zh) 碳载铂纳米催化剂及其制备方法、催化剂层、质子交换膜燃料电池
CN111450859A (zh) 一种La掺杂(BiO)2CO3光催化剂及其制备方法
CN110540196A (zh) 一种硼氮共掺杂多孔石墨烯及其制备方法与应用
CN111916774B (zh) 一种负载Pd@Pd4S的中空碳纳米球及其制备方法与应用
CN110314685A (zh) 一种用于甲苯低温催化氧化的核壳结构催化剂制备方法
CN109921044B (zh) 燃料电池阳极催化剂及其制备方法和质子交换膜燃料电池
CN109833835B (zh) 一种内凹型空心铂钯纳米晶体的制备方法、内凹型空心铂钯纳米晶体及其应用
Gao et al. Iron–nitrogen co-doped hollow carbon sphere with mesoporous structure for enhanced oxygen reduction reaction
CN114797941A (zh) 一种m-n-c单原子催化剂的制备方法及应用
CN115072698A (zh) 杂原子掺杂孔径可控的二维碳材料及其制备方法
CN110137518B (zh) 一种自负载Fe-N-C氧还原催化剂及其制备方法
CN109926046B (zh) 一种氢碘酸分解制氢用催化剂及其制备方法
CN113684499A (zh) 一种高金属负载效率的镍氮共掺杂炭基催化剂的制备方法及其应用
CN110606480A (zh) 一种氮掺杂多孔石墨烯及其制备方法
CN112473721A (zh) 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用
CN111129521A (zh) 一种碳基氧还原反应电催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant