CN112473721A - 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用 - Google Patents

一种PdAg/NH2-MCM-41催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112473721A
CN112473721A CN202011390849.6A CN202011390849A CN112473721A CN 112473721 A CN112473721 A CN 112473721A CN 202011390849 A CN202011390849 A CN 202011390849A CN 112473721 A CN112473721 A CN 112473721A
Authority
CN
China
Prior art keywords
mcm
catalyst
pdag
suspension
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011390849.6A
Other languages
English (en)
Inventor
徐东彦
姚育超
赵玺
戴萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202011390849.6A priority Critical patent/CN112473721A/zh
Publication of CN112473721A publication Critical patent/CN112473721A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种PdAg/NH2‑MCM‑41催化剂及其制备方法和应用,属于催化剂技术领域。本发明通过使用3‑氨丙基三乙氧基硅烷对MCM‑41分子筛进行改性,使载体富含‑NH2基团,再通过钯、银前驱体在官能团上的吸附沉积和MCM‑41的限域作用制得PdAg合金纳米颗粒高度分散的PdAg/NH2‑MCM‑41催化剂。本发明催化剂制备过程无需添加任何稳定剂,借助‑NH2的吸附作用和MCM‑41分子筛的限域作用协同来锚定金属纳米颗粒,从而制备超高分散和粒径可控的PdAg合金催化剂。本发明催化剂制备工艺简单,用于甲酸脱氢反应具有优异的催化活性和稳定性。

Description

一种PdAg/NH2-MCM-41催化剂及其制备方法和应用
技术领域
本发明属于能源催化材料和制氢技术领域,具体涉及一种PdAg/NH2-MCM-41催化剂及其制备方法和应用。
背景技术
随着对化石能源使用带来的环境问题的日益重视,对新型可再生清洁能源的需求越老越迫切。氢气是当前替代传统化石能源的最佳能源载体,尤其适用于质子交换膜燃料电池。由于能量转化效率高、运行噪声低、可实现零排放等优点,近十年来质子交换膜燃料电池发展迅速,有望在移动设备、机动车、居民家庭等领域实现应用。因此,氢能与燃料电池结合具有重要现实意义。
传统的储氢技术,主要是加压和低温液化,在储存效率、安全性等方面仍然存在不足。化学储氢技术是利用储氢介质在一定条件下能与氢气反应生成稳定化合物,再通过改变条件实现放氢的技术,主要包括有机液体储氢、液氨储氢、配位氢化物储氢、无机物储氢与甲醇储氢。相较于甲醇、水合肼和氨硼烷等储氢介质,甲酸具有能量密度高、无毒性和在室温下稳定的特点,是一种安全、方便的氢气储存材料。但由于甲酸脱氢反应过程中会发生脱水副反应,产生的CO易使催化剂中毒而失去活性。因此,开发高选择性、高活性的催化剂是实现甲酸分解制氢应用的关键,尤其是在室温下可以有效催化甲酸制氢的催化剂具有非常大的挑战。
在甲酸/甲酸钠溶液体系中,金属Pd是目前使用最多的非均相催化剂活性组分。这主要是由于Pd具有优异的催化性能并且对甲酸释氢反应具有较高的选择性。纯Pd催化剂在制备过程中容易发生团聚,且在反应过程中容易被甲酸脱氢副产物CO所中毒。为此,采用各种载体制备高分散纳米金属Pd颗粒成为催化剂开发的主要课题之一。Pd基催化剂通常采用的载体包括金属氧化物、非金属氧化物、金属有机骨架以及碳基材料等。
中国发明专利201910224638.6公开了一种用于催化甲酸分解制氢的Pd纳米复合催化剂及其制备方法,将氧化石墨烯与无机纳米材料通过长时间搅拌在化学键的作用下复合,再对氧化石墨烯外表面进行氨基修饰,随后加入Pd的盐溶液,通过硼氢化钠还原将单分散的Pd纳米簇稳定在载体表面,得到Pd纳米复合催化剂可用于高效催化甲酸分解制氢。
中国发明专利201810427699.8公开了一种钯基催化剂Pd/CTF催化甲酸制氢的方法,包括离子热共聚法合成共价三嗪聚合多孔材料(CTF);沉淀沉积法负载贵金属Pd制得催化剂Pd/CTF;将Pd/CTF加入甲酸溶液中,298~328K条件下催化甲酸产生氢气。
然而,从甲酸分解制氢的实用化角度出发,使用价廉易合成的分子筛作为催化剂载体更具优势。MCM-41分子筛是具有均一孔径的长程有序介孔材料,具有极高的BET比表面积、大吸附容量、均一的中孔结构等特点,在多相催化领域具有相当大的潜在应用价值。将MCM-41载体材料进行改性,有望进一步改善负载金属催化剂的性能。
发明内容
针对以上技术问题,本发明提出利用3-氨丙基三乙氧基硅烷预处理具有较高比表面积和孔道可控的MCM-41载体,使载体上富含-NH2基团,再通过钯、银前驱体在官能团上的吸附沉积和载体的限域作用制得PdAg纳米颗粒高度分散的PdAg/NH2-MCM-41催化剂。本发明催化剂制备过程无需添加任何稳定剂,借助-NH2功能化的MCM-41分子筛来锚定金属纳米颗粒,从而制备超高分散和粒径可控的PdAg合金催化剂。本发明催化剂制备工艺简单,用于甲酸脱氢反应具有优异的催化活性和稳定性。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明提供了一种PdAg/NH2-MCM-41催化剂的制备方法,所述制备方法包括以下步骤:
(1)以正硅酸乙酯为硅源,十六烷基溴化氨为模板剂,通过水热晶化法制备MCM-41分子筛,将制备好的MCM-41超声分散于去离子水中,制成MCM-41悬浊液;
(2)将3-氨丙基三乙氧基硅烷加入到所述MCM-41悬浊液中,超声震荡并搅拌10~30min,得到NH2-MCM-41载体悬浊液;
(3)室温下,将0.01~0.1mol/L的Na2PdCl4水溶液与0.01~0.1mol/L的AgNO3水溶液混合,加入到所述NH2-MCM-41悬浊液中,超声40~60min;
(4)在搅拌条件下,继续向所述NH2-MCM-41悬浊液中滴加0.5~1.0mol/L的硼氢化钠水溶液,搅拌1~2h,经洗涤、离心得到PdAg/NH2-MCM-41催化剂。
进一步的,所述步骤(1)中的水热晶化温度为120~150℃,晶化时间为40~80h。
进一步的,所述步骤(2)中3-氨丙基三乙氧基硅烷与MCM-41载体的质量比为2:1~4:1。
进一步的,所述步骤(2)中Na2PdCl4和AgNO3的摩尔比为4:1~1:1。
进一步的,所述步骤(4)中硼氢化钠与Na2PdCl4和AgNO3总量的摩尔比为2:1~4:1。
进一步的,所述步骤(4)在冰水浴条件下进行。
本发明还提供了利用所述的制备方法制得的PdAg/NH2-MCM-41催化剂,其特征在于:所述催化剂中PdAg合金的粒径为2.0~4.5nm。
本发明还提供了所述的催化剂在甲酸脱氢中的应用,所述催化剂的反应温度为290~300K,活性为640~994h-1
与现有技术相比,本发明的优点和有益效果为:
本发明提出了一种甲酸脱氢反应PdAg/NH2-MCM-41催化剂及其制备方法和应用,利用3-氨丙基三乙氧基硅烷预处理具有较高比表面积和孔道可控的MCM-41载体,使载体上富含-NH2基团,能够有效促进金属离子的分散;同时,分子筛规则的孔道结构可以起到对金属纳米颗粒的限域作用。因此,本发明无需添加任何稳定剂即可在MCM-41上组装分散良好、尺寸可控的金属合金纳米颗粒。该催化剂制备工艺简单,在室温下对甲酸脱氢反应有优异的催化活性和100%的氢气选择性,有利于促进甲酸脱氢反应的实际应用。
附图说明
图1是本发明实施例1所制得的MCM-41分子筛的XRD图。
图2是本发明实施例1制得的Pd4Ag1/NH2-MCM-41和对比例1制得的Pd4Ag1/MCM-41催化剂催化甲酸产氢活性对比情况。
图3是本发明实施例1~3所制得的不同Pd与Ag摩尔比的PdAg/NH2-MCM-41催化剂催化甲酸产氢活性。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步详细的说明。
实施例1
(1)称取2.027g十六烷基溴化氨和0.2775g氢氧化钠溶于50mL去离子水中,在30℃水浴条件下搅拌30min,超声处理2h,然后边搅拌边逐滴加入正硅酸乙酯(TEOS)-乙醇混合溶液(正硅酸乙酯体积为6.2mL,乙醇为3mL),形成凝胶后降至室温,搅拌2h后移入内衬聚四氟乙烯反应釜中,在150℃下晶化48h;晶化后的溶液经过滤、洗涤至中性后,于80℃下恒温干燥6h;干燥后的粉体置于马弗炉中程序升温1h至600℃,恒温焙烧6h,得到MCM-41分子筛;将50mg的MCM-41分子筛加入到10mL去离子水中超声30min得到MCM-41悬浊液。
(2)向MCM-41悬浊液中加入200μL的3-氨丙基三乙氧基硅烷试剂,超声并搅拌20min,得到改性后的NH2-MCM-41载体悬浊液。
(3)将0.8mL浓度为0.1mol/L的Na2PdCl4溶液和0.2mL浓度为0.1mol/L的AgNO3溶液加入到NH2-MCM-41悬浊液中,超声60min使钯、银离子充分在载体表面吸附。
(4)在冰水浴条件下,继续滴加3mL浓度为200mmol/L的硼氢化钠溶液,搅拌2h;最后,将所得溶液离心并用去离子水洗涤3次得到Pd4Ag1/NH2-MCM-41催化剂。
图1为实施例1制备的MCM-41的XRD图,可以看出制备的分子筛具有高度有序二维六方介孔结构。
将Pd4Ag1/NH2-MCM-41催化剂用于催化甲酸制氢反应。将所述的催化剂加入5mL甲酸/甲酸钠混合溶液中,甲酸和甲酸钠的浓度分别为5mmol/L和3.5mmol/L,反应温度为298K,结果见图3。随着反应时间的增加,产生的气体(H2+CO2)体积快速增加,反应7min后产生的气体体积为230mL,活性为994h-1
对比实验1
按实施例1的方法制备MCM-41分子筛,将50mg的MCM-41分子筛加入到5mL去离子水中超声30min得到MCM-41悬浊液;将0.8mL浓度为0.1mol/L的Na2PdCl4溶液和0.2mL浓度为0.1mol/L的AgNO3溶液加入到MCM-41悬浊液中,超声60min使钯、银离子充分在载体表面吸附;滴加3mL浓度为200mmol/L的硼氢化钠溶液,在冰水浴条件下搅拌2h;最后,将所得溶液离心并用去离子水洗涤3次得到Pd4Ag1/MCM-41催化剂。
以上述方法制得的Pd4Ag1/MCM-41催化剂按实施例1的方法催化甲酸制氢反应,见图2所示,在相同反应条件下,反应较慢,反应7min后气体体积仅为53mL,TOF为92h-1,效率远低于实施例1制备的Pd4Ag1/NH2-MCM-41催化剂。
实施例2
(1)按实施例1的方法制备MCM-41分子筛,将50mg的MCM-41分子筛加入到10mL去离子水中超声30min得到MCM-41悬浊液。
(2)向MCM-41悬浊液中加入200μL的3-氨丙基三乙氧基硅烷试剂,超声并搅拌20min,得到改性后的NH2-MCM-41载体悬浊液。
(3)将0.6mL浓度为0.1mol/L的Na2PdCl4溶液和0.1mL浓度为0.1mol/L的AgNO3溶液加入到NH2-MCM-41悬浊液中,超声60min使钯、银离子充分在载体表面吸附。
(4)在冰水浴条件下,继续滴加3mL浓度为200mmol/L的硼氢化钠溶液,搅拌2h;最后,将所得溶液离心并用去离子水洗涤3次得到Pd3Ag2/NH2-MCM-41催化剂。
按实施例1的方法催化甲酸制氢反应,如图3所示,在相同反应条件下,活性为713h-1
实施例3
(1)按实施例1的方法制备MCM-41分子筛,将50mg的MCM-41分子筛加入到10mL去离子水中超声30min得到MCM-41悬浊液。
(2)向MCM-41悬浊液中加入200μL的3-氨丙基三乙氧基硅烷试剂,超声并搅拌20min,得到改性后的NH2-MCM-41载体悬浊液。
(3)将0.5mL浓度为0.1mol/L的Na2PdCl4溶液和0.5mL浓度为0.1mol/L的AgNO3溶液加入到NH2-MCM-41悬浊液中,超声60min使钯、银离子充分在载体表面吸附。
(4)在冰水浴条件下,继续滴加3mL浓度为200mmol/L的硼氢化钠溶液,搅拌2h;最后,将所得溶液离心并用去离子水洗涤3次得到Pd1Ag1/NH2-MCM-41催化剂。
按实施例1的方法催化甲酸制氢反应,如图3所示,在相同反应条件下,活性为648h-1
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (8)

1.一种PdAg/NH2-MCM-41催化剂的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以正硅酸乙酯为硅源,十六烷基溴化氨为模板剂,通过水热晶化法合成MCM-41分子筛,将MCM-41超声分散于去离子水中,制成MCM-41悬浊液;
(2)将3-氨丙基三乙氧基硅烷加入到所述MCM-41悬浊液中,超声震荡并搅拌10~30min,得到NH2-MCM-41悬浊液;
(3)室温下,将0.01~0.1mol/L的Na2PdCl4水溶液与0.01~0.1mol/L的AgNO3水溶液混合,加入到所述NH2-MCM-41悬浊液中,超声30~60min;
(4)在搅拌条件下,继续向所述NH2-MCM-41悬浊液中滴加0.5~1.0mol/L的硼氢化钠水溶液,搅拌1~2h,经洗涤、离心得到PdAg/NH2-MCM-41催化剂。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中的水热晶化温度为120~150℃,晶化时间为40~80h。
3.根据权利要求1所述制备方法,其特征在于:所述步骤(2)中3-氨丙基三乙氧基硅烷与MCM-41载体的质量比为2:1~4:1。
4.根据权利要求1所述制备方法,其特征在于:所述步骤(2)中Na2PdCl4和AgNO3的摩尔比为4:1~1:1。
5.根据权利要求1所述制备方法,其特征在于:所述步骤(4)中硼氢化钠与Na2PdCl4和AgNO3总量的摩尔比为2:1~4:1。
6.根据权利要求1所述制备方法,其特征在于:所述步骤(4)在冰水浴条件下进行。
7.权利要求1~6中任一所述的制备方法制得的PdAg/NH2-MCM-41催化剂,其特征在于:所述催化剂中PdAg合金的粒径为2.0~4.5nm。
8.权利要求7所述的催化剂在甲酸制氢中的应用,其特征在于:所述催化剂的反应温度为290K,活性为640~994h-1
CN202011390849.6A 2020-12-02 2020-12-02 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用 Withdrawn CN112473721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011390849.6A CN112473721A (zh) 2020-12-02 2020-12-02 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011390849.6A CN112473721A (zh) 2020-12-02 2020-12-02 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112473721A true CN112473721A (zh) 2021-03-12

Family

ID=74938938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011390849.6A Withdrawn CN112473721A (zh) 2020-12-02 2020-12-02 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112473721A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328817A (zh) * 2023-02-14 2023-06-27 大连理工大学 一种金纳米团簇催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944124A (zh) * 2017-04-06 2017-07-14 江西师范大学 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法
KR20180031233A (ko) * 2016-09-19 2018-03-28 한국과학기술연구원 개미산의 탈수소화 반응용 촉매 및 이의 제조방법
CN110586158A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN110586157A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdAgB/NH2-N-rGO-TiO2催化剂及其制备方法和应用
CN111215122A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种钯基甲烷催化燃烧催化剂及制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031233A (ko) * 2016-09-19 2018-03-28 한국과학기술연구원 개미산의 탈수소화 반응용 촉매 및 이의 제조방법
CN106944124A (zh) * 2017-04-06 2017-07-14 江西师范大学 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法
CN111215122A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种钯基甲烷催化燃烧催化剂及制备和应用
CN110586158A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN110586157A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdAgB/NH2-N-rGO-TiO2催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTIN MARTIS ET.: "Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
聂文丹: "甲酸分解制氢用介孔硅载超细Pd基纳米催化剂研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328817A (zh) * 2023-02-14 2023-06-27 大连理工大学 一种金纳米团簇催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110433838B (zh) 一种负载过渡金属的整体式氮掺杂介孔碳原子级活性位点催化剂的制备方法
CN101612581B (zh) 用于富氢气体中co净化的介孔-大孔整体式催化剂及制备
CN108816289B (zh) 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN110586158A (zh) 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN113422073A (zh) 钴修饰的碳载超细铂纳米合金催化剂的制备方法
CN107224981B (zh) 一种氨硼烷水解释氢的PdNi合金纳米催化剂及其制备方法
CN113385219B (zh) 多级孔分子筛封装铂镍双金属纳米催化材料及其制法和应用
CN108704654B (zh) 一种掺氮碳镶嵌非贵金属催化剂及其制备方法和应用
CN111437864B (zh) 一种高分散Cu/NC纳米簇催化剂及其制备方法
CN110404535B (zh) 一种负载型钯催化剂及制备方法与应用
CN107670694B (zh) 一种金属负载型催化剂及其制备方法和应用
CN113042086B (zh) 一种氨基功能化碳纳米管负载NiAuPd纳米催化剂的原位制备方法及应用
CN112371173B (zh) 一种应用于间硝基苯磺酸加氢的铂炭催化剂及其制备方法
CN106475122B (zh) 一种低温制备三维梯级孔结构的Ni2P催化剂的方法
Bai et al. Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid
Jiang et al. Hierarchically porous CoP@ CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane
Cheng et al. Defect-dominated carbon deposited Pd nanoparticles enhanced catalytic performance of formic acid dehydrogenation
CN112473721A (zh) 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用
CN114160162B (zh) 一种Au/Co(OH)2层状金属氢氧化物空心结构光催化剂及其制备方法
CN116832847A (zh) 一种负载单原子金属的复合光催化剂及其制备方法和应用
CN110586157A (zh) 一种PdAgB/NH2-N-rGO-TiO2催化剂及其制备方法和应用
Zheng et al. In-situ platinum nanoparticles loaded dialdehyde modified sisal fiber-based activated carbon fiber paper for formaldehyde oxidation
CN114164446B (zh) 一种金属有机框架衍生的Cu掺杂CeO2负载PdCu合金催化剂及其制备方法
Song et al. Boron-doping-induced modulation of structural parameters of pristine commercial carbon black for promoting Ru-catalyzed OH bond activation toward hydrogen evolution
CN113351224B (zh) 一种中空多面体结构多孔碳负载Ru纳米粒子材料及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210312