WO2012071709A1 - 一种ag/mnyox/c催化剂及其制备和应用 - Google Patents

一种ag/mnyox/c催化剂及其制备和应用 Download PDF

Info

Publication number
WO2012071709A1
WO2012071709A1 PCT/CN2010/079294 CN2010079294W WO2012071709A1 WO 2012071709 A1 WO2012071709 A1 WO 2012071709A1 CN 2010079294 W CN2010079294 W CN 2010079294W WO 2012071709 A1 WO2012071709 A1 WO 2012071709A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mixture
crystal
agmn0
added
Prior art date
Application number
PCT/CN2010/079294
Other languages
English (en)
French (fr)
Inventor
孙公权
唐琪雯
姜鲁华
王素力
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US13/989,810 priority Critical patent/US8895467B2/en
Publication of WO2012071709A1 publication Critical patent/WO2012071709A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a basic oxygen reduction catalyst, and more particularly to a metal air fuel cell, a basic anion exchange membrane fuel cell and other oxygen reduction catalysts under alkaline conditions, and their preparation and use. Background technique
  • Fuel cells have become a hot research topic in the world because of their high energy conversion efficiency, pollution-free, and noise-free.
  • Fuel cell technologies include proton exchange membrane fuel cells, solid oxide fuel cells, metal air fuel cells, and basic anion exchange membrane fuel cells.
  • Proton exchange membrane fuel cells are high in cost and limited by precious metal catalyst resources; solid oxide fuel cells need to be operated under high temperature conditions; metal air battery fuel supply is rich, storage life is long, noise is low, oxygen electrode A non-noble metal oxygen reduction catalyst can be used; and a basic anion exchange membrane fuel cell has no problem of a decrease in electrode potential due to fuel permeation as compared with a proton exchange membrane fuel cell, and a non-Pt oxygen reduction catalyst can also be used.
  • Chinese patent CN1266312C discloses a catalyst composed of a composite oxide of manganese ⁇ 0 2 - ⁇ 3 ⁇ 4/ ⁇ 2 0 3 , wherein Mn0 2 is a main catalyst, Mn 3 0 4 or Mn 2 0 3 is a cocatalyst, a main catalyst Mn0 2 is obtained by decomposing the manganese nitrate solution adsorbed on the carbon support by heating, and the Mn 3 0 4 or Mn 2 0 3 powder must be added to the carrier carbon powder before pyrolysis of the manganese nitrate, and the catalyst is mainly used as an air electrode. catalyst.
  • the present invention aims to provide an oxygen reduction electrocatalyst for use in a metal air fuel cell, a basic anion exchange membrane fuel cell, and other alkaline conditions, and its preparation and application.
  • the mass of Ag and Mn y O x in the catalyst accounts for 9.2-60% by mass of the catalyst; and the molar ratio of Ag to Mn y O x in the catalyst is 1:1 to 3:1.
  • the preparation method of the Ag/Mn y O x /C catalyst comprises the following steps,
  • the solid material obtained in the above step is naturally air-dried in a dark environment to obtain a purple crystal, that is, a precursor AgMn0 4 crystal;
  • the black powder obtained in the above step (2) b is placed in a container, and the temperature is programmed to 140-900 ° C at a rate of 10-10 ° C / min in an inert gas atmosphere, and heat treatment is performed at the final temperature.
  • L-3h obtaining the target product Ag/Mn y O x /C catalyst;
  • the manganese oxide species in the Ag/Mn y O x /C catalyst varies with the heat treatment temperature: when the final temperature is 170-290 ° C, the target product is Ag / Mn02 / C catalyst;
  • the target product When the final temperature is >290 -480 °C, the target product is Ag/Mn 3 0 4 +Mn0 2 /C catalyst; when the final temperature is >480 -650 °C, the target product is Ag/ Mn 3 0 4 + MnO/C catalyst; When the final temperature is >650-900 °C, the target product is Ag/MnO/C catalyst.
  • step (2) a 23-138 mg of AgMn0 4 crystal is added per 100 ml of deionized water.
  • the ratio of the amount of the substance to which the carbon powder is added in the step (2)b to the amount of the substance of the AgMn0 4 crystal added in the step (2)a is 10.8:1 to 146.25:1.
  • the mass concentrations of AgN0 3 and KMn0 4 in the hot water of the step (1) a are 0.027-0.108 g mL 1 and 0.025-0.1 g mL, respectively.
  • the carbon carrier is: one or a mixture of two or more of XC-72R, BP2000, a block of black, carbon nanotubes, and graphite; and the inert atmosphere is one or a combination of nitrogen, argon, and helium. More than one mixture.
  • the Ag/Mn y O x /C catalyst can be used as a metal air fuel cell oxygen reduction catalyst, a basic anion exchange membrane fuel cell oxygen reduction catalyst, or other oxygen reduction catalyst under alkaline conditions.
  • the novel Ag/Mn y O x /C catalyst of the present invention has the following advantages:
  • the catalyst Under alkaline conditions, the catalyst has high catalytic activity for oxygen reduction (ORR), which is close to that of commercial Pt/C catalysts. It is more catalyzed by common commercial Ag/C catalysts and manganese oxides (Mn y O x ) alone. High activity;
  • the catalyst Under alkaline conditions, the catalyst has better stability and is superior to commercial Pt/C catalysts
  • the raw material KMn0 4 prepared by the catalyst is rich in resources and low in cost, which saves the amount of noble metal Ag and reduces the cost;
  • the preparation process of the catalyst is free of toxic substances, safe and pollution-free, and is conducive to environmental protection;
  • the catalyst is prepared by high temperature pyrolysis AgMn0 4 process, the preparation process is simple and easy, one step is It can be realized, which is beneficial to the amplification production of the catalyst and accelerates its industrialization process;
  • the catalyst has a wide range of applications, and can be used as a metal air fuel cell oxygen reduction catalyst, a basic anion exchange membrane fuel cell oxygen reduction catalyst, and other oxygen reduction catalysts under alkaline conditions.
  • Figure 1 is an XRD spectrum of a sample prepared according to Examples 1-5;
  • Figure 2 is a comparison of the ORR activity of the sample prepared according to Examples 1-5 and Comparative Example 4 in an oxygen-saturated 0.1 M NaOH electrolyte;
  • Figure 3 is a comparison of ORR activities of samples prepared according to Examples 3, 6, 7 and B 8 in an oxygen saturated 0.1 M NaOH electrolytic solution;
  • Figure 4 is a comparison of ORR activities of samples prepared according to Examples 3, 9 and 10 in an oxygen saturated 0.1 M NaOH electrolyte;
  • Fig. 5 shows the results of the rotating ring disk electrode (RRDE) test of Example 3 and Comparative Example 4.
  • Figure 6 is a comparison of the ORR activities of the samples prepared in Example 3 and Comparative Examples 1, 2, 3 in an oxygen-saturated 0.1 M NaOH electrolyte;
  • Figure 7 is a comparison of the ORR activity and blank CV of the sample prepared according to Example 3 and Comparative Example 4 before and after the stability test in an oxygen-saturated 0.1 M NaOH electrolytic solution. detailed description
  • lg KMn0 4 was added to 20 mL of boiling water, and 1.075 g of AgN0 3 crystal was gradually added under stirring, and the molar ratio of KMn0 4 to AgN 0 3 was 1:1. It was naturally cooled to room temperature, and then cooled to 2 ° C with an ice water bath to obtain a needle-like purple crystal and a purple solution. After filtration, the solid matter was washed with 200 mL of 2 ° C ice water to remove residual K+ and N0 3 -; and naturally dried to obtain a purple crystal AgMn0 4 .
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, then 60 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMnC C o.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace and subjected to a N 2 atmosphere at a rate of 5 ° C min- 1 .
  • the target product Ag/Mn0 2 /C catalyst was obtained by heating to 200 ° C and treating at this temperature for 2 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min - 1 to 300 ° C under a 1 2 atmosphere, and This The target product Ag/Mn0 2 +Mn 3 (VC catalyst) was obtained after treatment at temperature for 2 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, 60 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 400 ° C at a rate of 5 ° C min - 1 under N 2 atmosphere, and The target product Ag/Mn 3 0 4 /C catalyst was obtained after treatment at temperature for 2 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, 60 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min - 1 to 500 ° C under N 2 atmosphere, and here
  • the target product Ag/Mn 3 0 4 +MnO/C catalyst was obtained after treatment at temperature for 2 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min - 1 to 600 ° C under N 2 atmosphere, and here
  • the target product Ag/Mn 3 0 4 +MnO /C catalyst was obtained after treatment at temperature for 2 h.
  • the prepared 69.9 mg AgMn0 4 was dissolved in 50 mL of deionized water, then 40 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 400 ° C at a rate of 5 ° C min - 1 under a 1 2 atmosphere, and This The target product Ag/Mn 3 0 4 /C catalyst was obtained after treatment at temperature for 2 h.
  • the prepared 23.3 mg AgMn0 4 was dissolved in 50 mL of deionized water, then 80 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 400 ° C at a rate of 5 ° C min - 1 under N 2 atmosphere, and The target product Ag/Mn 3 0 4 /C catalyst was obtained after treatment at temperature for 2 h.
  • the prepared 11.65 mg AgMn0 4 was dissolved in 50 mL of deionized water, then 90 mg of Vulcan XC-72R carbon black was added, and the mixture was uniformly dispersed for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn (VC.
  • the obtained black powder AgMn0 4 /C was ground, weighed and placed in a quartz boat, and then transferred to a tube furnace at 5 ° C min under N 2 atmosphere - The rate of 1 was programmed to 400 °C, and treated at this temperature for 2 h to obtain the target product Ag/Mn 3 0 4 /C catalyst.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 400 ° C at a rate of 5 ° C min - 1 under N 2 atmosphere, and The target product Ag/Mn 3 0 4 /C catalyst was obtained after treatment at a temperature of 1 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 400 ° C at a rate of 5 ° C min - 1 under a 1 2 atmosphere, and This The target product Ag/Mn 3 0 4 /C catalyst was obtained after treatment at temperature for 3 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min - 1 to 700 ° C under N 2 atmosphere, and here The target product Ag/MnO/C catalyst was obtained after treatment at temperature for 3 h.
  • the prepared 46.6 mg AgMn0 4 was dissolved in 50 mL of deionized water, and then 60 mg of Vulcan XC-72R carbon black was added. The mixture was uniformly dispersed by ultrasonic for 30 min, immersed for 4 h at room temperature, and then placed in a 50 ° C water bath. The water was evaporated to dryness to give a black powder of AgMn0 4 /C.
  • the obtained black powder AgMnCVC was ground, weighed and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min - 1 to 900 ° C under N 2 atmosphere, and here The target product Ag/MnO/C catalyst was obtained after treatment at temperature for 3 h.
  • Vulcan XC-72R carbon black was ultrasonically dispersed in a 100 mL volume fraction of 20% ethanol-water mixed solution, and then 151 mg of Mn(N0 3 ) 2 aqueous solution having a mass fraction of 50% was added. The solution was immersed and stirred at room temperature for 4 h, and then the solution was removed using a rotary evaporator to obtain a black powder Mn(N0 3 ) 2 /C.
  • the black powder was ground, weighed, and placed in a quartz boat, then transferred to a tube furnace, and programmed to a temperature of 5 ° C min 1 to 400 ° C under a N 2 atmosphere, and treated at this temperature 2 h, the target product Mn 3 0 4 /C catalyst was obtained.
  • the prepared 44% Ag/C and 32% Mn 3 (VC) were mechanically mixed at a mass ratio of 1:1 to obtain Ag+Mn 3 (VC catalysts) having Ag and Mn 3 0 4 loadings of 22% and 16%, respectively.
  • the product 20 wt. Pt/C catalyst (E-TEK) was used as a comparison.
  • Figure 1 is an XRD spectrum of a sample prepared according to Examples 1-5.
  • the samples prepared in Examples 1-5 all had characteristic peaks of Ag, 38.0, 44.2, 64.4, 77.3 and 81.5.
  • the diffraction peaks of the (111), (200), (220), (311) and (222) crystal faces of Ag can be respectively assigned.
  • the manganese oxide species is produced as the heat treatment temperature increases. Change.
  • Mn x O y is mainly Mn0 2 in the embodiment 1, and ⁇ 3 0 4 in the embodiment 2, and Mn 3 0 4 is mainly in the embodiment 3.
  • the particle sizes of Ag in Examples 1-5 were calculated by the Scherrer formula to be 21.2, 20.7, 22.0, 22.3 and 25.3 nm, respectively.
  • ORR activity of the sample prepared according to Examples 1-5 and Comparative Example 4 in an oxygen-saturated 0.1 M NaOH electrolyte is a comparison of the ORR activity of the sample prepared according to Examples 1-5 and Comparative Example 4 in an oxygen-saturated 0.1 M NaOH electrolyte. It can be seen from the figure that the ORR activity sequence is: Ag/Mn x O y /C-400 > 300 > 500 > 600 > 200 for different treatment temperatures. In view of the uniform Ag content in the five examples and the similar particle size, the difference in activity of the different example samples can be attributed to the difference in manganese oxide species. Combined with the XRD results, it is found that the ORR activity of Mn 3 0 4 is the highest for different manganese oxide species.
  • Half-wave potential 3 0 4 / C catalyst product Pt / C catalyst obtained in Example 3 Ag / Mn embodiment differs 31 m V, have been compared with the reported gap Ag / C and Pt / C in the 50-100mV Significant improvement.
  • Figure 3 is a comparison of ORR activities of samples prepared according to Examples 3, 6, 7, and 8 in an oxygen saturated 0.1 M NaOH electrolyte. It can be seen from the figure that the order of ORR activity for different catalyst loadings is: 40% > 60% > 20% > 10%.
  • Figure 4 is a sample prepared according to Examples 3, 9 and 10 in an oxygen saturated 0.1 M NaOH electrolyte.
  • ORR activity comparison It can be seen from the figure that the ORR catalytic performance of the Ag/Mn 3 04/C catalyst is relatively close for different heat treatment times, and the heat treatment time of 2 h is slightly better.
  • Fig. 5 shows the results of the rotating ring disk electrode (RRDE) test of Example 3 and Comparative Example 4. Like Pt/C,
  • Figure 6 is a comparison of the ORR activities of the samples prepared in Example 3 and Comparative Examples 1, 2, 3 in an oxygen saturated 0.1 M NaOH electrolyte. As can be seen from the figure, the order of ORR activity of the four samples is: Ag/Mn 3 0 4 /C > Ag
  • Figure 7 is a comparison of the ORR activity and blank CV of the sample prepared according to Example 3 and Comparative Example 4 before and after the stability test in an oxygen-saturated 0.1 M NaOH electrolyte. It can be seen that after 3000 cycles of cyclic voltammetry scanning (100 mV s- ⁇ -OCV vs. MMO), the ORR activity and blank CV of the catalyst are slightly attenuated, but the decay rate is much lower than that of the commercial Pt/C catalyst. , indicating that the Ag/Mn 3 0 4 /C catalyst has good stability under the test conditions.

Description

一种 Ag/Mnv0JC催化剂及其制备和应用 技术领域
本发明涉及碱性氧还原催化剂, 具体的说涉及一种用于金属空气燃料电池、碱性 阴离子交换膜燃料电池及其他碱性条件下的氧还原催化剂及其制备和应用。 背景技术
随着煤炭、 石油和天然气等燃料的消耗量与日剧增及能源资源的储量日益枯竭, 寻找环境友好可持续发展的能源技术迫在眉睫。 燃料电池因其具有能量转化效率高、 无污染、 无噪音等优点, 已成为世界各国研究的热点。
燃料电池技术包括质子交换膜燃料电池、 固体氧化物燃料电池、金属空气燃料电 池以及碱性阴离子交换膜燃料电池等。质子交换膜燃料电池就目前技术而言,其成本 高且受到贵金属催化剂资源的限制; 固体氧化物燃料电池需要在高温条件下进行; 金 属空气电池燃料供应丰富、储存寿命长、 噪声低、氧电极可采用非贵金属氧还原催化 剂; 而碱性阴离子交换膜燃料电池, 与质子交换膜燃料电池相比, 不存在因燃料渗透 而导致电极电位下降的问题, 同时也可采用非 Pt氧还原催化剂。
近年来, 研究人员对非 Pt氧还原催化剂进行了研究探索。 有文献 (Phys. Chem. Chem. Phys. 9 (2007) 2654. )报道, Ag在碱性条件下具有良好的氧还原催化活性和稳 定性, 在碱性燃料电池领域已有商品 Ag/C 催化剂, 但其氧还原过电位比 Pt/C 大 50-100mv ( J. Electrochem. Soc. 152 (2005) D117 ) , 催化活性尚有待提高。 锰氧化物 MnyOx在碱性条件下同样是一种良好的氧还原催化剂, 且成本低廉。 但 ^1 ( 上发 生的氧还原多数是 2e-过程或者连续 4e-过程, 其极限电流密度较低。
文献 (J. Phys. Chem. C 114 (2010) 4324)采用柠檬酸钠做保护剂、 硼氢化钠作还 原剂水相还原 AgN03, 再加入 Vulcan XC-72R 做载体制备了 Ag/C。 中国专利 CN1396308A 公开了可作碱性燃料电池氧还原电极电催化剂的锰氧化物复合物 Mn02-Mn304-Mn203及其制备方法。中国专利 CN1266312C公开了一种由锰的复合氧 化物 Μη02-Μη3θ4/Μη203组成的催化剂, 其中 Mn02为主催化剂, Mn304或 Mn203 为助催化剂, 主催化剂 Mn02是通过加热分解吸附在碳载体上的硝酸锰溶液而获得 的, Mn304或 Mn203粉末必须在硝酸锰热解之前加入到载体碳粉中, 该催化剂主要 用作空气电极催化剂。 文献 (Carbon 42 (2004) 3097 ) 采用水合肼作还原剂, 还原加 有碳纳米管的 AgMn04溶液制备了 (Ag+Mn02)/SWNT催化剂。 综合比较上述催化 剂, 其催化活性、 稳定性、 放电极限电流密度仍不能同时令人满意, 仍需在现有技术 基础上做进一步的改进。 发明内容
针对现有技术的不足, 本发明目的在于提供一种应用于金属空气燃料电池、碱性 阴离子交换膜燃料电池及其他碱性条件下的氧还原电催化剂及其制备和应用。
为实现上述目的, 本发明采用以下具体方案来实现:
一种 Ag/MnyOx/C催化剂,其中 ^1 ( 为 Mn304、 MnO中的任意一种、或 Mn304 与 MnO的混合物、 或 Mn304与 Mn02的混合物, Mn304与 Mn02的混合物中 Mn02 质量含量 0.01-99.9%。
所述催化剂中 Ag和 MnyOx的质量之和占催化剂的质量百分比为 9.2-60% ; 催化 剂中 Ag和 MnyOx的摩尔比为 1 : 1~3: 1。
所述 Ag/MnyOx/C催化剂的制备方法, 包括以下步骤,
1) 前驱体 AgMn04晶体的制备:
a.于 70-100°C的热水中,加入 AgN03和 KMn04的混合物,搅拌使之混合均匀, 冷却至 0-5°C使 AgMn04晶体析出, 形成固液混合物, 过滤得固体物质, 采用 0-5°C 的去离子水对固体物质进行洗涤;
b . 将上述步骤得到的固体物质于黑暗环境中自然风干得到紫色晶体, 即前驱体 AgMn04晶体;
2) Ag/MnyOx/C催化剂的制备:
a. 将前驱体 AgMn04晶体溶解于去离子水中形成溶液;
b . 按所需比例于上述步骤 (2)a所得的溶液中加入碳载体, 搅拌至碳载体分散均 匀, 然后干燥得到黑色粉末;
c.将上述步骤 (2)b得到的黑色粉末置于容器中,在惰性气体气氛中,以 l-10°C/min 的速率程序升温至 140-900°C, 并在此最终温度下热处理 l-3h, 得到目标产物 Ag/MnyOx/C催化剂;
其中, Ag/MnyOx/C催化剂中的氧化锰物种随着热处理温度的不同而发生变化: 当最终温度为 170 -290°C时, 目标产物为 Ag/ Mn02/C催化剂;
当最终温度为〉290 -480°C时, 目标产物为 Ag/ Mn304+Mn02/C催化剂; 当最终温度为〉480 -650°C时, 目标产物为 Ag/ Mn304+MnO/C催化剂; 当最终温度为〉650 -900°C时, 目标产物为 Ag/ MnO/C催化剂。
所述步骤 (2)a中每 100ml去离子水对应加入 23-138mg AgMn04晶体。
所述步骤 (2)b中加入碳粉的物质的量与步骤 (2)a中加入的 AgMn04晶体的物质的 量的比为 10.8:1-146.25: 1。
所述步骤 (1) a的热水中 AgN03与 KMn04的质量浓度分别为 0.027-0.108 g mL 1 禾口 0.025-0.1 g mL—
所述步骤 (2) b所得的溶液中加入碳载体后于 50°C-80°C蒸干水分,得到黑色粉末。 所述碳载体为: XC-72R、 BP2000、 乙块黑、 碳纳米管、 石墨中的一种或两种以 上的混合物; 所述惰性气氛为氮气、 氩气、 氦气中的一种或一种以上的混合物。
所述 Ag/MnyOx/C催化剂可用作金属空气燃料电池氧还原催化剂、 碱性阴离子交 换膜燃料电池氧还原催化剂、 或其他碱性条件下氧还原催化剂。
与现有技术相比, 本发明所述新型 Ag/MnyOx/C催化剂具有以下优点:
1 . 碱性条件下, 该催化剂的氧还原反应 (ORR) 催化活性高, 接近于商品 Pt/C 催化剂, 比常用的商品 Ag/C催化剂及单独的锰氧化物 (MnyOx) 的催化活性高;
2. 碱性条件下, 该催化剂的稳定性较好, 优于商品 Pt/C催化剂;
3. 该催化剂制备所需原材料 KMn04资源丰富且成本低廉, 节省了贵金属 Ag的 用量, 降低了成本;
4. 该催化剂的制备过程无有毒物质参与, 安全无污染、 有利于环境保护;
5. 该催化剂采用高温热解 AgMn04工艺制备而成, 制备过程简单易行, 一步即 可实现, 有利于该催化剂的放大生产, 加快其工业化进程;
6. 该催化剂应用范围广, 可用作金属空气燃料电池氧还原催化剂、 碱性阴离子 交换膜燃料电池氧还原催化剂、 以及其他碱性条件下氧还原催化剂。 附图说明
图 1为根据实施例 1-5制备得到的样品的 XRD谱图;
图 2为根据实施例 1-5制备得到的样品和比较例 4的在氧气饱和的 0.1 M NaOH 电解液中的 ORR活性比较;
图 3为根据实施例 3、 6、 7禾 B 8制备得到的样品在氧气饱和的 0.1 M NaOH电解 液中的 ORR活性比较;
图 4为根据实施例 3、 9和 10制备得到的样品在氧气饱和的 0.1 M NaOH电解液 中的 ORR活性比较;
图 5为实施例 3和比较例 4的旋转环盘电极 (RRDE)测试结果。
图 6为实施例 3和比较例 1, 2, 3制备得到的样品在氧气饱和的 0.1 M NaOH电 解液中的 ORR活性比较;
图 7为根据实施例 3制备得到的样品和比较例 4在氧气饱和的 0.1 M NaOH电解 液中稳定性测试前后的 ORR活性及空白 CV比较。 具体实施方式
下面结合实施例对本发明作详细的描述。当然本发明并不仅限于这些具体的实施 例。
实施例 1 :
首先将 lg KMn04添加到 20 mL沸水中,在搅拌条件下逐渐添加 1.075 g AgN03 晶体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温,再用冰水浴冷却至 2 °C, 得到针状紫色结晶及紫色溶液。 过滤, 固体物质用 200 mL 2 °C冰水洗涤以除去残留 的 K+和 N03—; 自然风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中, 再加入 60 mg Vulcan XC-72R碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅 中将水蒸干得到黑色粉末 AgMnC C o将所得到的黑色粉末 AgMnCVC研磨、称重并 置于石英舟中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 200 °C, 并在此温度下处理 2 h即得到目标产品 Ag/Mn02/C催化剂。
实施例 2:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 1^2气氛下以 5 °C min- 1的速率程序升温至 300 °C, 并在此 温度下处理 2 h即得到目标产品 Ag/Mn02+Mn3(VC催化剂。
实施例 3:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6mg AgMn04溶于 50 mL去离子水中, 再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 400 °C, 并在此 温度下处理 2 h即得到目标产品 Ag/Mn304/C催化剂。
实施例 4:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6mg AgMn04溶于 50 mL去离子水中, 再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 500 °C, 并在此 温度下处理 2 h即得到目标产品 Ag/ Mn304+MnO/C催化剂。
实施例 5:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 600 °C, 并在此 温度下处理 2 h即得到目标产品 Ag/ Mn304+MnO /C催化剂。
实施例 6:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 69.9 mg AgMn04溶于 50 mL去离子水中,再加入 40 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 1^2气氛下以 5 °C min- 1的速率程序升温至 400°C, 并在此 温度下处理 2 h即得到目标产品 Ag/ Mn304/C催化剂。
实施例 7:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 23.3 mg AgMn04溶于 50 mL去离子水中,再加入 80 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 400 °C, 并在此 温度下处理 2 h即得到目标产品 Ag/ Mn304/C催化剂。
实施例 8:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 11.65 mg AgMn04溶于 50 mL去离子水中, 再加入 90 mg Vulcan XC-72R碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将 水蒸干得到黑色粉末 AgMn(VC。 将所得到的黑色粉末 AgMn04/C研磨、 称重并置于 石英舟中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 400 °C, 并在此温度下处理 2 h即得到目标产品 Ag/ Mn304/C催化剂。
实施例 9:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075 g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 400 °C, 并在此 温度下处理 1 h即得到目标产品 Ag/ Mn304/C催化剂。
实施例 10:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 1^2气氛下以 5 °C min- 1的速率程序升温至 400 °C, 并在此 温度下处理 3 h即得到目标产品 Ag/ Mn304/C催化剂。
实施例 11:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 700 °C, 并在此 温度下处理 3 h即得到目标产品 Ag/ MnO/C催化剂。
实施例 12:
首先将 lg KMn04添加到 20 mL沸水中, 在搅拌条件下逐渐添加 1.075g AgN03晶 体, KMn04和 AgN03的摩尔比为 1 : 1。 自然冷却至室温, 再用冰水浴冷却, 得到针 状紫色结晶及紫色溶液。 过滤, 200 mL 2 °C冰水洗涤以除去残留的 K+和 N03—; 自然 风干即得到紫色晶体 AgMn04
将所制备的 46.6 mg AgMn04溶于 50 mL去离子水中,再加入 60 mg Vulcan XC-72R 碳黑, 超声 30 min分散均匀, 室温下浸渍搅拌 4 h, 然后置于 50 °C水浴锅中将水蒸干 得到黑色粉末 AgMn04/C。 将所得到的黑色粉末 AgMnCVC研磨、 称重并置于石英舟 中, 然后转移至管式炉, 并在 N2气氛下以 5 °C min- 1的速率程序升温至 900 °C, 并在此 温度下处理 3 h即得到目标产品 Ag/ MnO/C催化剂。
比较例 1: Ag/C
首先将 599 mg柠檬酸钠和 69.3 mg AgN03溶于 50 mL去离子水中,在搅拌的情况下 逐滴添加浓度为 7.4 mM的 NaBH4水溶液。 然后加入事先超声分散均匀的 Vulcan XC-72R 156 mg (Ag的质量百分比为 22%)。 沉降 8 h后, 将上述溶液过滤、 洗涤, 并 于 70 °C真空条件下干燥 8 h即可得到目标产品 Ag/C。
比较例 2: Mn304/C
首先将 168 mg Vulcan XC-72R碳黑超声分散于 100 mL体积分数为 20%的乙醇-水 混合溶液中,然后加入质量分数为 50%的 Mn(N03)2水溶液 151 mg。将上述溶液于室温 下浸渍搅拌 4 h, 然后使用旋转蒸发仪将溶液除去, 得到黑色粉末 Mn(N03)2/C。 将上 述黑色粉末研磨、称重,并置于石英舟中,然后转移至管式炉,在 N2气氛下以 5 °C min 1 的速率程序升温至 400 °C, 并在此温度下处理 2 h即得到目标产品 Mn304/C催化剂。
比较例 3: Ag/C与 Mn304/C机械混合物
将制备的 44% Ag/C与 32% Mn3(VC按质量比 1 : 1机械混合得到 Ag和 Mn304载量 分别为 22% 和 16% 的 Ag+Mn3(VC催化剂。
比较例 4:
将商品 20 wt. Pt/C催化剂 (E-TEK公司)作为对比。
图 1为根据实施例 1-5制备得到的样品的 XRD谱图。 由图可以看出, 实施例 1-5所 制备的样品中均有 Ag的特征峰, 38.0, 44.2, 64.4, 77.3和 81.5。可分别归属于 Ag的 (111), (200), (220), (311)和 (222)晶面的衍射峰。 而氧化锰物种随着热处理温度的升高而发 生变化。 对照图 1下方的 PCPDF标准卡片可以看出: MnxOy在实施例 1中主要为 Mn02, 实施例 2中为 ΜηΟ^ΒΜη304的混合物, 实施例 3中主要为 Mn304, 而实施例 4和 5中则转 化为为 ΜηΟ。 由 Scherrer公式计算得到实施例 1-5中 Ag的粒径分别为 21.2, 20.7, 22.0, 22.3和 25.3 nm。
图 2为根据实施例 1-5制备得到的样品和比较例 4的在氧气饱和的 0.1 M NaOH电解 液中的 ORR活性比较。 由图可以看出, 对于不同的处理温度, ORR活性顺序为: Ag/MnxOy/C-400 > 300 > 500 > 600 > 200。鉴于 5个实施例中的 Ag含量一致,粒径相近, 可以将不同实施例样品的活性差别归因于氧化锰物种的差别。结合 XRD结果,可知对 于不同氧化锰物种 Mn304的 ORR活性最高。 实施例 3所得到的 Ag/Mn304/C催化剂与商 品 Pt/C催化剂的半波电位相差 31 m V,与文献报道 Ag/C和 Pt/C的 50-100mV的差距相比 已有明显的提高。
图 3为根据实施例 3、 6、 7和 8制备得到的样品在氧气饱和的 0.1 M NaOH电解液中 的 ORR活性比较。 由图可以看出, 对于不同的催化剂载量, 其 ORR活性顺序为: 40% > 60% > 20% > 10%。
图 4为根据实施例 3、 9和 10制备得到的样品在氧气饱和的 0.1 M NaOH电解液中的
ORR活性比较。 由图可以看出, 对于不同的热处理时间, Ag/Mn304/C催化剂的 ORR 催化性能比较接近, 其中 2 h的热处理时间稍好。
图 5为实施例 3和比较例 4的旋转环盘电极 (RRDE)测试结果。 同 Pt/C—样,
Ag/Mn304/C催化剂的环电流很小 (最大 0.02mA cm-2) , 即生成的 H202量很小, 可忽略 不计。 由此可知, Ag/Mn304/C催化剂催化 02还原生成水的选择性很高。 在扩散控制 区 E=-0.6V处, H202产率仅为 0.98%, ORR电子转移数为 3.98。
图 6为实施例 3和比较例 1, 2, 3制备所得到的样品在氧气饱和的 0.1 M NaOH电解 液中的 ORR活性比较。由图可以看出, 四个样品的 ORR活性顺序为: Ag/Mn304/C >Ag
+ Mn304/C > Ag/C > Mn3(VC。一步合成法制备的 Ag/Mn3(VC催化剂的 ORR催化性能 优于机械混合的 Ag + Mn304/C ( Ag和 Mn304的载量均相同)催化剂, 说明该方法制备 的催化剂中 Ag和 Mn304之间存在某种相互作用, 使其性能改善。
图 7为根据实施例 3制备得到的样品和比较例 4在氧气饱和的 0.1 M NaOH电解液 中稳定性测试前后的 ORR活性及空白 CV比较。 可以看出, 经过 3000圈的循环伏安扫 描(lOO mV s- ^ -O C V vs. MMO )后, 催化剂的 ORR活性和空白 CV稍有衰减, 但 其衰减速率远远低于商品 Pt/C催化剂,说明在测试条件下 Ag/Mn304/C催化剂具有较好 的稳定性。

Claims

1. 一种 Ag/MnyOx/C催化剂, 其特征在于: Μη3 ^Μη304、 ΜηΟ中的任意一种、 或 Mn304与 ΜηΟ的混合物、 或 Mn304与 Mn02的混合物, Mn304与 Mn02的混合物中 Mn02质量含量 0.01-99.9%。
2. 如权利要求 1所述 Ag/MnyOx/C催化剂, 其特征在于: 催化剂中 Ag和 ^11^( 的 质量之和占催化剂的质量百分比为 9.2-60%;催化剂中 Ag和 MnyOx的摩尔比为 1:1~3:1。
3. 一种权利要求 1所述催化剂的制备方法, 其特征在于: 包括以下步骤, 1) 前驱体 AgMn04晶体的制备:
a. 于 70-100°C的热水中加入 AgN03和 KMn04的混合物, 搅拌使之混合均匀, 冷 却至 0-5°C使 AgMn04晶体析出, 形成固液混合物, 过滤得固体物质, 采用 0-5°C的去 离子水对固体物质进行洗涤;
b. 将上述步骤得到的固体物质于黑暗环境中自然风干得到紫色晶体, 即前驱体 AgMn04晶体;
2) Ag/MnyOx/C催化剂的制备:
a. 将前驱体 AgMnO^ 体溶解于去离子水中形成溶液;
b. 按所需比例于上述步骤 (2)a所得的溶液中加入碳载体, 搅拌至碳载体分散均 匀, 然后干燥得到黑色粉末;
c将上述步骤 (2)b得到的黑色粉末置于容器中,在惰性气体气氛中,以 l-10°C/min 的速率程序升温至 140-900°C, 并在此最终温度下热处理 l-3h, 得到目标产物 Ag/MnyOx/C催化剂;
其中, Ag/MnyOx/C催化剂中的氧化锰物种随着热处理温度的不同而发生变化: 当最终温度为 170 -290°C时, 目标产物为 Ag/ Mn02/C催化剂;
当最终温度为〉290 -480°C时, 目标产物为 Ag/ Mn304+Mn02/C催化剂; 当最终温度为〉480 -650°C时, 目标产物为 Ag/ Mn304+MnO/C催化剂; 当最终温度为〉650 -900°C时, 目标产物为 Ag/ MnO/C催化剂。
4. 如权利要求 3所述催化剂的制备方法, 其特征在于: 所述步骤 (2)a中每 100ml 去离子水对应加入 23-138mg AgMn04晶体。
5. 如权利要求 3所述催化剂的制备方法, 其特征在于: 所述步骤 (2)b中加入碳粉 的物质的量与步骤 (2)a中加入的 AgMn04晶体的物质的量的比为 10.8:1-146.25:1。
6. 如权利要求 3所述催化剂的制备方法, 其特征在于: 所述步骤 (1) a的热水中 AgN03与 KMn04的质量浓度分别为 0.027-0.108 g mL—1和 0.025-0.1 g mL—
7. 如权利要求 3所述催化剂的制备方法, 其特征在于: 所述步骤 (2) b所得的溶液 中加入碳载体后于 50°C-80°C蒸干水分, 得到黑色粉末。
8. 如权利要求 3所述催化剂的制备方法, 其特征在于: 所述碳载体为: XC-72R、
BP2000、 乙块黑、 碳纳米管、 石墨中的一种或两种以上的混合物; 所述惰性气氛为 氮气、 氩气、 氦气中的一种或一种以上的混合物。
9.一种权利要求 1所述 Ag/MnyOx/C催化剂的应用,其特征在于:所述 Ag/MnyOx/C 催化剂可用作金属空气燃料电池氧还原催化剂、碱性阴离子交换膜燃料电池氧还原催 化剂、 或其他碱性条件下氧还原催化剂。
PCT/CN2010/079294 2010-11-29 2010-11-30 一种ag/mnyox/c催化剂及其制备和应用 WO2012071709A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/989,810 US8895467B2 (en) 2010-11-29 2010-11-30 Ag/MnyOx/C catalyst, preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010563788.9 2010-11-29
CN2010105637889A CN102476054B (zh) 2010-11-29 2010-11-29 一种Ag/MnyOx/C催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
WO2012071709A1 true WO2012071709A1 (zh) 2012-06-07

Family

ID=46088909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079294 WO2012071709A1 (zh) 2010-11-29 2010-11-30 一种ag/mnyox/c催化剂及其制备和应用

Country Status (3)

Country Link
US (1) US8895467B2 (zh)
CN (1) CN102476054B (zh)
WO (1) WO2012071709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122364A (zh) * 2021-11-29 2022-03-01 安徽科技学院 一种AgMn2O4@Na0.55Mn2O4复合纳米片的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691438B (zh) * 2013-11-21 2016-01-20 江苏大学 一种Ag-一氧化锰纳米棒的可控制备方法
CN103706389A (zh) * 2013-12-31 2014-04-09 南京工业大学 一种双催化活性的锂空气电池催化剂的制备方法
CN104014367B (zh) * 2014-06-11 2016-08-17 国家纳米科学中心 一种碳基非金属氧还原催化剂、制备方法及其用途
CN104505521B (zh) * 2014-12-10 2016-08-17 中国第一汽车股份有限公司 一种用于空气电池的阴极催化剂及其制作方法
CN104900890B (zh) * 2015-05-22 2017-10-31 清华大学 用于锌空气电池的纳米复合空气电极催化剂及其制备方法
CN105363448B (zh) * 2015-11-30 2018-02-23 北京化工大学 一种炭/银/二氧化锰三相复合催化剂及其制备方法
CN106887602B (zh) * 2015-12-16 2019-07-02 中国科学院大连化学物理研究所 一种Ag-CuO/C催化剂及其制备和应用
CN108622939B (zh) * 2018-06-14 2020-08-21 北京航空航天大学 α-二氧化锰纳米管、银纳米粒子负载α-二氧化锰纳米管及制备方法和应用
CN109378483B (zh) * 2018-10-09 2021-06-18 大连理工大学 一种镁空气电池催化层材料、制备工艺及应用
CN111769297B (zh) * 2020-07-17 2022-08-16 郑州佛光发电设备股份有限公司 铝空气电池阴极催化剂及其制备方法
CN114682282B (zh) * 2020-12-31 2023-06-16 北京单原子催化科技有限公司 一种CN@Ma-Mb负载型单原子催化剂的制备方法及其应用
CN112881585B (zh) * 2021-01-12 2023-03-31 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法
CN114361473A (zh) * 2021-11-30 2022-04-15 安徽元琛环保科技股份有限公司 一种Ag/C/MnO2催化剂的制备方法、制得的催化剂及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396308A (zh) * 2002-06-17 2003-02-12 重庆大学 空气电极催化剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE494889A (zh) * 1949-03-31
JPS59171468A (ja) * 1983-03-18 1984-09-27 Matsushita Electric Ind Co Ltd 空気極及びその触媒の製造法
US5780384A (en) * 1997-01-03 1998-07-14 Megtec Systems, Inc. Hydrated manganese dioxide oxidation catalysts and process of producing same
US6632557B1 (en) * 1999-10-26 2003-10-14 The Gillette Company Cathodes for metal air electrochemical cells
US7041414B2 (en) * 2002-09-10 2006-05-09 The University Of Chicago Silver manganese oxide electrodes for lithium batteries
CN100499240C (zh) * 2007-12-14 2009-06-10 哈尔滨工程大学 以气体扩散电极为阴极的单室微生物燃料电池
US20130071761A1 (en) * 2011-09-16 2013-03-21 Khalil Amine Catalytic cathode for lithium-air batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396308A (zh) * 2002-06-17 2003-02-12 重庆大学 空气电极催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, GUOQING ET AL.: "A New Air Electrode on Carbon Nanotubes and Ag-Mn02 for Metal Air Electrochemical Cells.", CARBON, vol. 42, no. 15, September 2004 (2004-09-01), pages 3097 - 3012 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122364A (zh) * 2021-11-29 2022-03-01 安徽科技学院 一种AgMn2O4@Na0.55Mn2O4复合纳米片的制备方法
CN114122364B (zh) * 2021-11-29 2023-04-25 安徽科技学院 一种AgMn2O4@Na0.55Mn2O4复合纳米片的制备方法

Also Published As

Publication number Publication date
CN102476054B (zh) 2013-12-04
US20130252806A1 (en) 2013-09-26
CN102476054A (zh) 2012-05-30
US8895467B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
WO2012071709A1 (zh) 一种ag/mnyox/c催化剂及其制备和应用
Jiang et al. Ru@ RuO2 core‐shell nanorods: a highly active and stable bifunctional catalyst for oxygen evolution and hydrogen evolution reactions
CN111129513B (zh) 一种氮掺杂碳担载粒径均一的低铂金属球形纳米颗粒电催化剂的制备方法及应用
CN111883792B (zh) 一种过渡金属锰、氮掺杂炭氧还原电催化剂及其制备方法和应用
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
CN110961130A (zh) 一种高效全解水的非贵金属Ni-C复合纳米催化剂及其制备方法
CN112619710A (zh) 一种三嗪基共价网络负载金属单原子的复合材料及其制备方法和应用
CN111785980A (zh) 一种直接甲酸燃料电池阳极用生物质基催化剂及其制备方法
CN113437314A (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN110931805A (zh) 一种铂合金催化剂、其制备方法及在燃料电池阴极催化剂的应用
CN110277565B (zh) 燃料电池用铂铟催化剂及其制备方法和应用
CN114300693A (zh) 一种碳载体活化提高燃料电池碳载铂基催化剂稳定性的方法
CN112481654B (zh) 一种二维碲化镍支撑钯单原子的催化剂及其制备方法和应用
CN110055556A (zh) 析氢反应催化剂及其制备方法和应用
CN111729680A (zh) 一种具有异质结构的高效双功能氧电催化剂及其制备和应用
CN115570143B (zh) 一种低铂高熵合金纳米颗粒及其制备方法与应用
CN115395026B (zh) 一种Fe单原子负载的N掺杂碳气凝胶电催化剂及其制备方法和应用
CN107369839B (zh) 氧化钌-硅藻土复合负载燃料电池催化剂的制备方法
CN114725328B (zh) 氮掺杂生物质衍生多孔碳负载Fe3O4/Fe复合材料及其制备方法和应用
CN115954493A (zh) 一种提高负载型铂基催化剂活性和稳定性的方法
CN113013426B (zh) 一种铌单原子催化剂、其制备方法及其应用
CN115133050A (zh) 一种铂钴合金催化剂、制备方法及其应用
CN110137518B (zh) 一种自负载Fe-N-C氧还原催化剂及其制备方法
MX2013015000A (es) Catalizadores libres de metales nobles adecuados para la reduccion electroquimica de oxigeno.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13989810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860327

Country of ref document: EP

Kind code of ref document: A1