CN113617383B - 一种含铂和改性金属的l分子筛的制备方法 - Google Patents

一种含铂和改性金属的l分子筛的制备方法 Download PDF

Info

Publication number
CN113617383B
CN113617383B CN202010388789.8A CN202010388789A CN113617383B CN 113617383 B CN113617383 B CN 113617383B CN 202010388789 A CN202010388789 A CN 202010388789A CN 113617383 B CN113617383 B CN 113617383B
Authority
CN
China
Prior art keywords
molecular sieve
metal
platinum
impregnating solution
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010388789.8A
Other languages
English (en)
Other versions
CN113617383A (zh
Inventor
丁璟
王嘉欣
臧高山
张玉红
王涛
于宁
周昕瞳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN202010388789.8A priority Critical patent/CN113617383B/zh
Publication of CN113617383A publication Critical patent/CN113617383A/zh
Application granted granted Critical
Publication of CN113617383B publication Critical patent/CN113617383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/62Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L
    • C07C2529/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L containing iron group metals, noble metals or copper
    • C07C2529/62Noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种含铂和改性金属的L分子筛的制备方法,包括如下步骤:(1)配制含有铂化合物和改性金属化合物的水溶液,向其中加入C5~C7的烷烃和表面活性剂制成浸渍液,所述的改性金属选自IA族金属、IIA族金属或镧系金属,所述的表面活性剂选自十六烷基三甲基溴化铵、硬脂酸钾或烷基酚聚氧乙烯醚,(2)用(1)步制备的浸渍液浸渍L分子筛,将浸渍后L分子筛干燥、焙烧。该法可使金属在L分子筛上具有更好的分散性,从而提高其芳构化反应活性、选择性和稳定性。

Description

一种含铂和改性金属的L分子筛的制备方法
技术领域
本发明涉及一种改性L分子筛的制备方法,具体地说,是一种含有铂和改性金属的L分子筛的制备方法。
背景技术
Pt/L型分子筛催化剂是一种具有特殊孔道结构的碱性单功能催化剂,与传统双功能重整催化剂相比,Pt/L型分子筛催化剂对正构链烷烃具有更好的反应活性、芳构化选择性和使用寿命。
US4650565公开了一种石脑油脱氢环化方法,使用包括大孔沸石和Ⅷ族金属的单功能催化剂,将石脑油进行脱氢环化生成芳烃,再用A型分子筛通过吸附将产物中正构烷烃和单支链异构烷烃与芳烃分离,用气体将正构烷烃和单支链异构烷烃从吸附剂中脱除,再循环回反应器重新利用。所述催化剂中优选含8~15wt%的Ba、0.6~1.0wt%的Pt,所述大孔沸石为X、Y或L沸石,优选L沸石。
CN1312736A公开了一种含铂、卤素和Ⅰb族金属的L型沸石催化剂。该法将L沸石与硅粘结剂混合成型,再制备含铂和卤素的水溶液浸渍引入铂、卤素,然后再用含Ⅰb族金属的水溶液浸渍引入Ⅰb族金属得到催化剂,其中Ⅰb族金属的含量为0.001~3重量%、Pt含量为0.1~5重量%、卤素含量为0.1~5重量%,所述的Ⅰb族金属优选Au。
CN106391098A公开了一种石脑油重整催化剂,所述催化剂为负载Pt的KL分子筛,可选地,还含有碳,其中含0.1~2份的Pt、0~5.0份的碳和93~99.9份的KL分子筛载体。所述催化剂通过使用铂盐溶液和单糖溶液分步浸渍或共浸渍KL分子筛载体,向其中引入铂和碳的前体,然后焙烧制得。
CN109364988A公开了一种以原子层沉积法制备的KL分子筛负载单原子Pt与PtxFe团簇结构沸石催化剂,将L分子筛分散于石英载片中,转移至反应腔室,先用铁源化合物进行脉冲沉积铁,再用铂源化合物进行脉冲沉积铂,在L分子筛上获得PtxFe团簇结构。该法对沉积形成PtxFe团簇结构的设备要求较高,较难在工业生产中实施。
发明内容
本发明的目的是提供一种含铂和改性金属的L分子筛的制备方法,该法可使金属在L分子筛上具有更好的分散性,从而提高其芳构化反应活性、选择性和稳定性。
本发明提供的一种含铂和改性金属的L分子筛的制备方法,包括如下步骤:
(1)配制含有铂化合物和改性金属化合物的水溶液,向其中加入C5~C7的烷烃和表面活性剂制成浸渍液,所述的改性金属选自IA族金属、IIA族金属或镧系金属,所述的表面活性剂选自十六烷基三甲基溴化铵、硬脂酸钾或烷基酚聚氧乙烯醚,
(2)用(1)步制备的浸渍液浸渍L分子筛,将浸渍后L分子筛干燥、焙烧。
本发明方法在含表面活性剂的C5~C7的烷烃中,加入含铂和改性金属的水溶液对L分子筛进行浸渍,可使获得的改性L分子筛中的铂分散度提高,从而提高其烷烃芳构化反应性能。
附图说明
图1为本发明实例1制备的含铂和铯的L分子筛的透射电镜(TEM)图。
图2为本发明实例8制备的含铂和钡的L分子筛的透射电镜图。
图3为对比例1制备的含铂L分子筛的透射电镜图。
图4为对比例2采用常规方法制备的含铂和铯的L分子筛的透射电镜图。
图5为对比例3制备的含铂和钡的L分子筛的透射电镜图。
具体实施方式
本发明方法在含表面活性剂的C5~C7的烷烃中加入含有铂化合物和改性金属化合物的水溶液,制成含C5~C7的烷烃和水的双溶剂浸渍液,然后再用于浸渍L分子筛,浸渍液中的C5~C7的烷烃和表面活性剂可促使含铂和改性金属的水溶液在L分子筛孔道内部均匀地扩散,经焙烧后可使L分子筛中的金属粒子的粒径尺寸减小,另外,改性金属可增强Pt晶粒和载体间的相互作用,抑制Pt晶粒长大,因而得到金属分散度提高、尤其是铂分散度提高的改性L分子筛,从而提高其芳构化反应性能,延长使用寿命。
本发明有两种方法,第一种为上述使用一步浸渍的方法制备改性L分子筛,第二种为采用分步加入非极性浸渍液和极性浸渍液的方法制备改性L分子筛,具体地,该制备方法包括如下步骤:
(1)在C5~C7的烷烃中加入表面活性剂得到非极性浸渍液,配制含有铂化合物和改性金属化合物的水溶液为极性浸渍液,所述的改性金属选自IA族金属、IIA族金属或镧系金属,所述的表面活性剂选自十六烷基三甲基溴化铵、硬脂酸钾或烷基酚聚氧乙烯醚,
(2)将L分子筛于非极性浸渍液中静置0.2~0.8小时,再加入极性浸渍液进行浸渍,将浸渍后L分子筛干燥、焙烧。
本发明方法中所述的IA族金属优选K、Rb和Cs中的一种或几种,IIA族金属优选Ca和/或Ba,镧系金属优选La、Ce和Tm中的一种或几种。
本发明方法制备的含铂和改性金属的L分子筛中的铂含量优选0.1~3质量%、更优选0.6~1.2质量%,改性金属含量优选0.1~3质量%、更优选0.5~1.0质量%。
本发明方法所述的烷基酚聚氧乙烯醚优选壬基酚聚氧乙烯醚。所述壬基酚聚氧乙烯醚中含有的环氧乙烷的个数优选8~10。
本发明方法配制浸渍液所述的铂化合物优选二氯四氨合铂或四氨合硝酸铂,改性金属化合物优选为其氯化物或硝酸盐。
本发明所述第一种方法中,(1)步所述的浸渍液中表面活性剂的浓度优选0.05~1mol/L、更优选0.08~0.5mol/L,水与C5~C7的烷烃的质量比优选0.05~0.2。
本发明所述第二种方法中,(1)步所述非极性浸渍液中表面活性剂的浓度优选0.05~1mol/L、更优选0.08~0.5mol/L,(2)步浸渍时,极性浸渍液中的水与非极性浸渍液中的C5~C7的烷烃的质量比优选0.05~0.2、更优选0.08~0.2。
本发明方法中,(2)步为用浸渍液浸渍L分子筛,所述的浸渍液在第二种方法中指在非极性浸渍液中加入极性浸渍液后所得液体的总和。(2)步用浸渍液浸渍L分子筛的时间优选3~10小时、更优选3~8小时;浸渍温度优选20~50℃、更优选30~40℃。浸渍时所用浸渍液与L分子筛的液/固比优选1~3ml/g、更优选1~2.5ml/g。
本发明方法中,将(2)步浸渍后L分子筛干燥的温度优选90~130℃、干燥时间优选2~18小时、更优选5~15小时,焙烧温度优选300~450℃、焙烧时间优选1~10小时、更优选1~6小时。
本发明方法制备的改性L分子筛适用C6~C7链烷烃的芳构化反应,芳构化反应温度优选400~550℃、更优选420~510℃,反应压力为0.1~5.0MPa、更优选0.2~3.0MPa,原料进料体积空速0.2~10.0h-1、0.5~5.0h-1,氢/烃体积比为400~1200、更优选500~800。所述的C6~C17链烷烃可为富含C6~C7链烷烃的轻石脑油。
下面通过实例进一步说明本发明,但本发明并不限于此。
实例和对比例中所述L分子筛中的Pt金属分散度(R)采用动态化学吸附氢氧滴定分析方法测定:称取0.05g粒径为0.425~0.850mm的催化剂装入样品管中,以流速为30mL/min的氩气为载气,以10℃/min的速率升温到300℃,吹扫30min脱除催化剂表面吸附的杂质,然后降温至50℃,向Ar气通入H2,使H2含量为10体积%,以10℃/min的速率升温至350℃原位还原3h,降温至30℃,停止通入氢气,用氩气吹扫60min。进行O2脉冲吸附,持续60min,然后进行H2脉冲吸附直至峰高不变,重复上述O2脉冲吸附和H2脉冲吸附,直至达到氢气的饱和吸附量(VT),按下式计算Pt金属分散度R:
其中VT为上述操作测得的氢气的饱和吸附量(mL),V为22.4(L/mol),M为Pt的摩尔质量195(g/mol),m为催化剂质量(g),w%为催化剂中含有的Pt的质量百分数。
实例和对比例中所用L分子筛由下述方法制备,
取20.92g KOH溶于143.58g去离子水中,向溶液中投入10g Al(OH)3,搅拌均匀,向混合物中加入131.64g硅溶胶,继续搅拌0.5h,得到均匀的混合物,其中各物料摩尔比为2.85K2O˙Al2O3˙8.55SiO2˙210H2O。将混合物移入不锈钢反应釜,130℃水热晶化64h,晶化产物经离心分离,所得固体物经水洗,于120℃干燥12h,得到L分子筛,其组成为:0.89K2O˙Al2O3˙5.52SiO2
实例1
(1)制备浸渍液
将0.162g的二氯四氨合铂和0.0875克的氯化铯溶于1.64mL去离子水中,充分搅拌溶解后,加入20mL(13.2g)正己烷和1.3g的含10个环氧乙烷的壬基酚聚氧乙烯醚(TX-10),搅拌均匀,制成浸渍液,浸渍液中壬基酚聚氧乙烯醚的浓度为0.1mol/L。
(2)制备改性L分子筛
取L分子筛10g,向其中缓慢倒入(1)步制备的浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将浸渍后所得L分子筛于120℃干燥12小时,350℃空气中焙烧2小时,制得含铂和铯的L分子筛a,其金属组分含量和铂分散度见表1,透射电镜图见图1。
实例2
(1)制备浸渍液
将0.162g的二氯四氨合铂和0.122g的氯化镧溶于1.64mL去离子水中,充分搅拌溶解后,加入20mL(13.7g)正庚烷和0.787g的十六烷基三甲基溴化铵(CTAB),搅拌均匀,制成浸渍液,浸渍液中十六烷基三甲基溴化铵的浓度为0.1mol/L。
(2)制备改性L分子筛
取L分子筛10g,向其中缓慢倒入(1)步制备的浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将浸渍后所得L分子筛于120℃干燥12小时,350℃空气中焙烧2小时,制得含铂和镧的L分子筛b,其金属组分含量和铂分散度见表1。
实例3
(1)制备浸渍液
取20mL正己烷,滴入1.2g的壬基酚聚氧乙烯醚(TX-10),得到非极性浸渍液,其中壬基酚聚氧乙烯醚的浓度为0.1mol/L;将0.137g的二氯四氨合铂和0.0875g的氯化铯溶于1.64mL去离子水中,充分搅拌溶解,得到极性浸渍液。
(2)制备改性L分子筛
取L分子筛10g,向其中加入非极性浸渍液,静置30min,再向其中加入极性浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将浸渍后所得L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂和铯的L分子筛c,其金属组分含量和铂分散度见表1。
实例4
(1)制备浸渍液
取20mL正己烷,滴入1.2g的壬基酚聚氧乙烯醚(TX-10),得到非极性浸渍液,其中壬基酚聚氧乙烯醚的浓度为0.1mol/L;将0.202g的二氯四氨合铂和0.145g的硝酸铥溶于1.64mL去离子水中,充分搅拌溶解,得到极性浸渍液。
(2)制备改性L分子筛
取L分子筛10g,向其中加入非极性浸渍液,静置30min,再向其中加入极性浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将浸渍后所得L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂和铥的L分子筛d,其金属组分含量和铂分散度见表1。
实例5
按照实例3的方法制备改性L分子筛,不同的是将0.137g的二氯四氨合铂和0.122g的氯化镧溶于1.64mL去离子水中制成极性浸渍液,浸渍后所得L分子筛经干燥、焙烧后得含铂和镧的L分子筛e,其金属组分含量和铂分散度见表1。
实例6
按照实例3的方法制备改性L分子筛,不同的是将0.137g的二氯四氨合铂和0.162g的硝酸钡溶于1.64mL去离子水中制成极性浸渍液,浸渍后所得L分子筛经干燥、焙烧后得含铂和钡的L分子筛f,其金属组分含量和铂分散度见表1。
实例7
按照实例3的方法制备改性L分子筛,不同的是将0.137g的二氯四氨合铂和0.145g的硝酸铥溶于1.64mL去离子水中制成极性浸渍液,浸渍后所得L分子筛经干燥、焙烧后得含铂和铥的L分子筛g,其金属组分含量和铂分散度见表1。
实例8
(1)制备浸渍液
取20mL正庚烷,滴入0.646g的硬脂酸钾,得到非极性浸渍液,其中硬脂酸钾的浓度为0.1mol/L;将0.154g的二氯四氨合铂和0.162g的硝酸钡溶于1.64mL去离子水中,充分搅拌溶解,得到极性浸渍液。
(2)制备改性L分子筛
取L分子筛10g,向其中加入非极性浸渍液,静置30min,再向其中加入极性浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将所得浸渍后L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂和钡的L分子筛h,其金属组分含量和铂分散度见表1,透射电镜图见图2。
对比例1
采用常规浸渍方法制备含铂L分子筛。
取0.162g的二氯四氨合铂加入20mL去离子水中,充分搅拌溶解后制得浸渍液。取L分子筛10g,向其中加入上述浸渍液于35℃浸渍6小时,浸渍的液/固比为2ml/g。蒸干溶剂,将浸渍后所得L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂的L分子筛m,其铂含量和铂分散度见表1,透射电镜图见图3。
对比例2
将0.137g的二氯四氨合铂和0.0875g的氯化铯溶于20mL去离子水中,充分搅拌溶解制成浸渍液。取L分子筛10g,向其中加入上述浸渍液于35℃浸渍6小时,浸渍的液/固比为2ml/g。蒸干溶剂,将所得浸渍后L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂和铯的L分子筛n,其金属组分含量和铂分散度见表1,透射电镜图见图4。
对比例3
将0.202g的二氯四氨合铂和0.162g的硝酸钡溶于1.64mL去离子水中,充分搅拌溶解制成浸渍液。
取L分子筛10g,向其中加入20mL正己烷,静置30min,再加入上述浸渍液于35℃浸渍6小时,浸渍的液/固比为2.16ml/g。蒸干溶剂,将所得浸渍后L分子筛于120℃干燥12小时、350℃焙烧2小时,制得含铂和钡的L分子筛k,其金属组分含量和铂分散度见表1,透射电镜图见图5。
实例9~19
以下实例考察改性L分子筛作为芳构化反应催化剂的性能。
将改性L分子筛于500℃用氢气还原3小时,以正己烷为原料,在500℃、0.5MPa、进料体积空速3小时-1、氢/烃体积比为600的条件下与所述还原后的改性L分子筛接触进行反应,各实例所用改性L分子筛及反应3小时和20小时的结果见表2。
由改性L分子筛的透射电镜图1可知,与对比例制备的改性L分子筛相比,本发明方法制备的改性L分子筛没有大量金属聚集,铂金属团簇较少、分散性好。
由表2可知,与对比例制备的改性L分子筛相比,本发明方法制备的改性L分子筛具有较高的正己烷转化率和苯收率,且连续反应20小时的苯收率较反应3小时的苯收率下降不多,说明本发明方法制备的L分子筛具有较高的芳构化反应活性、选择性及反应性能稳定性。
表1
表2

Claims (8)

1.一种含铂和改性金属的L分子筛的制备方法,包括如下步骤:
(1)配制含有铂化合物和改性金属化合物的水溶液,向其中加入C5~C7的烷烃和表面活性剂制成浸渍液,所述的改性金属选自IA族金属、IIA族金属或镧系金属,所述的表面活性剂选自十六烷基三甲基溴化铵、硬脂酸钾或烷基酚聚氧乙烯醚,
(2)用(1)步制备的浸渍液浸渍L分子筛,将浸渍后L分子筛干燥、焙烧,
所述含铂和改性金属的L分子筛中的铂含量为0.1~3质量%,改性金属含量为0.1~3质量%,(1)步所述的浸渍液中表面活性剂的浓度为0.05~1mol/L,水与C5~C7的烷烃的质量比为0.05~0.2。
2.一种含铂和改性金属的L分子筛的制备方法,包括如下步骤:
(1)在C5~C7的烷烃中加入表面活性剂得到非极性浸渍液,配制含有铂化合物和改性金属化合物的水溶液为极性浸渍液,所述的改性金属选自IA族金属、IIA族金属或镧系金属,所述的表面活性剂选自十六烷基三甲基溴化铵、硬脂酸钾或烷基酚聚氧乙烯醚,
(2)将L分子筛于非极性浸渍液中静置0.2~0.8小时,再加入极性浸渍液进行浸渍,将浸渍后L分子筛干燥、焙烧,
所述含铂和改性金属的L分子筛中的铂含量为0.1~3质量%,改性金属含量为0.1~3质量%,(1)步所述非极性浸渍液中表面活性剂的浓度为0.05~1mol/L,(2)步浸渍时,极性浸渍液中的水与非极性浸渍液中的C5~C7的烷烃的质量比为0.05~0.2。
3.按照权利要求1或2所述的方法,其特征在于所述IA族金属为K、Rb和Cs中的一种或几种,IIA族金属为Ca和/或Ba,镧系金属为La、Ce和Tm中的一种或几种。
4.按照权利要求1或2所述的方法,其特征在于所述烷基酚聚氧乙烯醚为壬基酚聚氧乙烯醚。
5.按照权利要求4所述的方法,其特征在于所述壬基酚聚氧乙烯醚中含有的环氧乙烷的个数为8~10。
6.按照权利要求1或2所述的方法,其特征在于所述的铂化合物为二氯四氨合铂或四氨合硝酸铂,改性金属化合物为其氯化物或硝酸盐。
7.按照权利要求1或2所述的方法,其特征在于(2)步用浸渍液浸渍L分子筛的时间为3~10小时。
8.按照权利要求1或2所述的方法,其特征在于(2)步浸渍时的液/固比为0.5~5ml/g。
CN202010388789.8A 2020-05-09 2020-05-09 一种含铂和改性金属的l分子筛的制备方法 Active CN113617383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010388789.8A CN113617383B (zh) 2020-05-09 2020-05-09 一种含铂和改性金属的l分子筛的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010388789.8A CN113617383B (zh) 2020-05-09 2020-05-09 一种含铂和改性金属的l分子筛的制备方法

Publications (2)

Publication Number Publication Date
CN113617383A CN113617383A (zh) 2021-11-09
CN113617383B true CN113617383B (zh) 2024-02-09

Family

ID=78377588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010388789.8A Active CN113617383B (zh) 2020-05-09 2020-05-09 一种含铂和改性金属的l分子筛的制备方法

Country Status (1)

Country Link
CN (1) CN113617383B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699894A (en) * 1985-04-17 1987-10-13 Chevron Research Company Highly active and highly selective aromatization catalyst
CN86107521A (zh) * 1984-11-05 1988-05-11 环球油品公司 用于烃转化的催化复合物
CN106391098A (zh) * 2016-08-31 2017-02-15 中科合成油技术有限公司 一种石脑油重整催化剂及其制备方法
CN107473238A (zh) * 2016-06-08 2017-12-15 中国石油化工股份有限公司 一种kl分子筛及其制备方法和应用
CN108993584A (zh) * 2018-06-26 2018-12-14 中海油天津化工研究设计院有限公司 一种重整抽余油芳构化催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107521A (zh) * 1984-11-05 1988-05-11 环球油品公司 用于烃转化的催化复合物
US4699894A (en) * 1985-04-17 1987-10-13 Chevron Research Company Highly active and highly selective aromatization catalyst
CN107473238A (zh) * 2016-06-08 2017-12-15 中国石油化工股份有限公司 一种kl分子筛及其制备方法和应用
CN106391098A (zh) * 2016-08-31 2017-02-15 中科合成油技术有限公司 一种石脑油重整催化剂及其制备方法
CN108993584A (zh) * 2018-06-26 2018-12-14 中海油天津化工研究设计院有限公司 一种重整抽余油芳构化催化剂及其制备方法

Also Published As

Publication number Publication date
CN113617383A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN110586086B (zh) 精确调控氧化铝中五配位铝离子数目的Pd/介孔氧化铝催化剂及其制备与应用
CN101468313A (zh) 一种重整催化剂的制备方法
EP0044118A2 (en) A method of preparing a catalyst
CN113559922A (zh) 一种苯加氢制备环己基苯用双金属催化剂及其制备方法和应用
CN113751052A (zh) 一种丙烷脱氢制备丙烯的催化剂及其制备方法和应用
CN113617383B (zh) 一种含铂和改性金属的l分子筛的制备方法
CN113333016B (zh) 一种纳米级kl分子筛负载金属催化剂、制备方法和应用
CN113181930B (zh) 一种负载型PdAgCu三金属纳米催化剂的制备方法及应用
CN112007691A (zh) 一种铂-钯双金属催化剂及其制备方法与应用
CN116173983A (zh) 一种加氢催化剂及其制备方法和应用、一种吸氢复合材料
CN112007639A (zh) 一种低积炭速率的脱氢催化剂的制备方法
CN115138359B (zh) 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用
CN112675871B (zh) 一种碳二馏分前脱乙烷前加氢催化剂的制备方法
CN113019434A (zh) 一种低温氢气脱氧用包覆型催化剂及其制备方法和应用
CN109529911B (zh) 一种丙烷无氧脱氢用铂锡基介孔催化剂及其制备和应用
CN112138704A (zh) 二次煅烧球磨法制备异丁烷脱氢催化剂的方法和由该方法得到的异丁烷脱氢催化剂及应用
CN112679306B (zh) 一种采用粗氢为氢源的碳二后加氢工艺的选择加氢方法
CN111822039A (zh) 一种含稀土加氢裂化催化剂的制备方法
CN117046507B (zh) Fau-y型沸石负载多元过渡金属催化剂及制备与应用
CN103418412B (zh) 一种催化重整催化剂及其制备方法
CN112934231B (zh) 一种碳二馏分前脱丙烷前加氢的催化剂
CN114471670B (zh) 一种用于加氢裂化的催化剂及其制备方法和应用
CN112844408B (zh) 一种碳二馏分前脱丙烷前加氢催化剂的制备方法
CN1280882A (zh) 一种纳米晶氧化物负载镍催化剂及其制备方法
CN117945833A (zh) 乙炔前加氢反应的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant