CN115138359B - 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用 - Google Patents

一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用 Download PDF

Info

Publication number
CN115138359B
CN115138359B CN202110338458.8A CN202110338458A CN115138359B CN 115138359 B CN115138359 B CN 115138359B CN 202110338458 A CN202110338458 A CN 202110338458A CN 115138359 B CN115138359 B CN 115138359B
Authority
CN
China
Prior art keywords
catalyst
aqueous solution
hours
roasting
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110338458.8A
Other languages
English (en)
Other versions
CN115138359A (zh
Inventor
陈维苗
宋宪根
丁云杰
宁丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110338458.8A priority Critical patent/CN115138359B/zh
Publication of CN115138359A publication Critical patent/CN115138359A/zh
Application granted granted Critical
Publication of CN115138359B publication Critical patent/CN115138359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种负载型单原子协同纳米颗粒双金属催化剂及其制备方法。其中催化剂由主活性组分、助剂和载体组成。载体为氧化硅、氧化铝、氧化钛、纳米硅胶或分子筛;主活性组分为贵金属Rh或Pd,以单原子形式存在,而助剂为Fe,Co,Ni,Ru,Mn,Cu金属或金属氧化物的一种,以粒径为2‑8nm的颗粒形式存在,单原子贵金属与助剂颗粒紧密接触,均匀分散于载体表面。在固定床反应器中,在适当的温度、压力和本催化剂的作用下进行CO加氢制取乙醇反应,表现出较高的乙醇选择性;该催化剂在反应前催化剂进行还原活化。

Description

一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用
技术领域
本发明属于催化剂技术领域,具体涉及一种负载型单原子协同纳米颗粒双金属催化剂的制备,及其用于CO加氢制乙醇反应。
背景技术
随着粮食供应的日趋紧张和石油资源的日益枯竭,由煤、天然气或生物质出发经合成气制取乙醇具有重要的意义。在现有技术中,以Rh基催化剂的效率最为突出,也最有可能实现工业化。然而现有催化体系仍存在活性不够高,且Rh资源有限、价格昂贵。因此,必须极大提高Rh催化效率和降低Rh用量,才能极大推动该过程的工业化进程。
单原子金属催化剂具有金属单原子级分散和单催化活性位特点,其金属原子利用效率近100%,相较于其他纳米或亚纳米催化剂而言,具有非常高的催化效率。因此,为了最大限度地发挥贵金属的催化效率,降低催化剂成本,制备单原子催化剂成为研究者的首选。
我们深入分析后认为,在Rh基催化剂上进行CO加氢反应,起CO插入作用的应是数目极少的单原子Rh,而绝大部分Rh与助剂结合,起着CO解离与加氢作用,而这部分催化作用则完全可由其他廉价的过渡金属代替。因此,本申请将单原子与适当的金属纳米颗粒结合起来,协同催化含有复杂基元步骤的CO加氢制乙醇反应的进行。
此外,相较于单金属活性位点催化剂,双金属活性位点催化剂更具吸引力,它不仅具有单点催化的本质特性,还具有双催化活性位点,往往表现出更佳的催化活性,可以实现不同反应的在相邻位点上的串联催化。其过程既可以表现为双活性位点协同催化,也可以表现为双活性位点接力催化。在双金属活性位点催化剂中,其不同的金属活性位点之间既能表现出协同催化,又可以表现为串联催化。
但是目前,负载型单原子协同纳米颗粒双金属催化剂的制备非常少。但有类似的负载型双金属单原子催化剂制备的报道。深圳市国创新能源研究院报道了一种利用电化学方法(CN 108682870 B),制备了金属有机骨架掺氮缺陷碳负载的Pt基双金属单原子催化剂。天津大学报道了一种原子层积技术制备Ru-Pt/TiO2催化剂(CN 108993487 B),其催化剂在合成氨反应中寿命更长,有较强的抗中毒能力,大大降低了反应活化能,催化效率大幅度提升。李亚栋院士等利用高分子聚合物聚合-热解-挥发(PPE)方法制备了聚酞菁负载的ZnFe催化剂,在电化学中表现出了优异的催化活性(Angew.Chem.Int.Ed.2018,57,8614–8618)。上海应用技术大学报道一种利用聚乙烯醇制备氧化石墨烯负载的CuNi双金属单原子催化剂(CN110479342A)。以上这些方法步骤复杂、条件苛刻、所需仪器昂贵,金属负载量很低,或某一方法只对特定金属有效,这些缺陷要求需要发展一种操作简单,对多种金属都有作用的制备超高分散负载型双金属单原子催化剂的方法。
发明内容
本申请在于提供一种负载型单原子协同纳米颗粒的双金属催化剂的制备及其用于CO加氢制乙醇反应,表现出高的乙醇选择性,且制备过程简单,普适性强,可批量生产的负载型单原子-纳米双金属催化剂。
本发明的技术方案为:
一种负载型单原子-纳米双金属催化剂,其特征在于,该催化剂由载体、主活性组分贵金属和助剂金属组成,其中,主活性组分呈原子分散状态,助剂组分以纳米颗粒形式存在,二者紧密接触,高度分散于载体之上。为实现上述目的,催化剂中的贵金属为Rh,Pd等贵金属,优选Rh,它在载体中的含量为0.05~0.5%(重量,下同),优选占比为0.1~0.4%,进一步优选占比为0.1~0.2%;助剂金属为Fe,Co,Ni,Ru,Mn,Cu等金属,优选Fe,Ru,它在载体中的含量百分占比1~15%,优选占比为2~10%,进一步优选占比为2~6%,从而控制所形成助剂颗粒的粒径为2-6nm;载体为氧化钛,氧化铝,硅胶,纳米硅胶,分子筛等材料,其中分子筛优选NaY分子筛。
本发明提供制备上述催化剂的方法之一如下:
通过沉积沉淀法或浸渍法将贵金属前驱体负载于载体之上,经干燥和焙烧,制得负载型单原子金属催化剂;其中焙烧温度300-500℃,焙烧时间2-5h。再利用浸渍法将助剂金属盐负载到该单原子催化剂上,经30-150℃干燥2-10h,400-600℃焙烧2-5h,最终制得负载型的单原子-纳米颗粒双金属催化剂。
本发明提供制备上述催化剂的方法之二如下:
利用共浸渍法将将贵金属和助剂金属负载于载体上,再通过30-150℃干燥2-10h、300-500℃焙烧2-5h,制得负载型的单原子-纳米双金属催化剂。
本发明提供制备上述催化剂的方法之三如下:
利用共浸渍法将将贵金属和助剂金属负载于载体上,再通过30-150℃干燥2-10h、200-800℃焙烧2-10h,以及400-800℃高温还原1-8h制得负载型的单原子合金催化剂。
本发明提供制备上述催化剂的方法之四如下:
将贵金属前驱体和载体分子筛合成的原料混合在一起,采用一步水热法合成掺杂单原子金属的分子筛催化剂,然后通过浸渍法担载助剂金属,再经30-150℃干燥2-10h,200-800℃焙烧2-10h,制得单原子-纳米颗粒双金属催化剂。
催化剂使用前进行还原活化。还原条件为:还原气体为含氢混合气,氢体积含量为10~100%,混合气中其它气体为氮气或氩气中的一种或二种,温度为200~900℃,压力为0.1~1MPa,空速为500~5000h-1,时间为1~12h。
本发明所涉及的CO加氢反应采用常规的固定床反应器。反应温度220~320℃、反应压力1~5.0MPa、气体空速2000-15000h-1
本申请专利的有益效果包括但不限于:
与现有的技术相比,本发明提供了一种负载型单原子协同纳米颗粒双金属催化剂及其制备方法。该制备工艺新颖、操作简单,条件温和,普适性强,可批量生产高载量,高分散,稳定性强的负载型单原子协同纳米颗粒双金属催化剂。用于CO加氢反应中,表现出较高的乙醇选择性。
附图说明
图1为实施例2催化剂的HDDAF-STEM照片;
图2为实施例6催化剂F的HDDAF-STEM照片。
图3为实施例14催化剂的HDDAF-STEM照片。
具体实施方式
下面结合实施例详述本申请,但不限制本发明要保护的内容。如无特殊说明,本申请所用原料和试剂均来自商业购买,未经处理直接使用,所用仪器设备采用厂家推荐的方案和参数。
实施例1
将0.8ml RhCl3水溶液(0.015g-Rh/ml)和100ml水放于滴液漏斗中,制成溶液A。称取4.0g氧化钛置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M NaOH水溶液调节体系pH至8.5,再缓慢滴入溶液A。30min滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水(50-80℃均可)洗涤2次(2-3次均可)。然后在80℃干燥过夜,400℃焙烧4h。将上述样品室温等体积浸渍于溶有一定量Fe(NO3)3的水中,110℃烘干后,350℃焙烧4h,即得催化剂,其中Rh和Fe含量分别为0.2wt%和2wt%。催化剂标记为A。电镜和CO吸附红外等表征(下同)结果显示,催化剂中Rh以单原子形式存在,Fe物种为粒径1-3nm的颗粒。
CO加氢反应在固定床不锈钢反应器(内径10mm)中进行,催化剂用量1.0ml。反应前催化剂于350℃用5L/h的纯H2还原1h。然后将反应器降至280℃,切换为合成气(H2/CO=2,摩尔比),流量5L/h,升压至5.0Mpa。反应稳定后,用水吸收反应4h所产生的产物,放样分析,未吸收的气相产物在线分析,据此计算CO转化率和产物选择性。
反应结果见表1
实施例2
将0.8ml RhCl3水溶液(0.015g-Rh/ml)和100ml水放于滴液漏斗中,制成溶液A。称取4.0g氧化钛置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M(NH4)2CO3水溶液调节体系pH至8.5,再30min内滴入溶液A。滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水洗涤3次。然后在80℃干燥过夜,600℃焙烧4h。将上述样品等体积浸渍于Fe(NO3)3水溶液中,110℃烘干后,450℃焙烧4h,即得催化剂B,其中Rh和Fe含量分别为0.2wt%和4wt%。图1给出了该催化剂的HDDAF-STEM照片。可以看出,催化剂中助剂以2-4nm的颗粒形式存在(大虚线圈(点状虚线)所示,下图2和图3与此相同),而Rh以单原子形式存在(小虚线圈(划线段的虚线)所示,下图2和图3与此相同),二者之间距离足够近,有利于反应过程中中间体之间相互迁移,共同促进目标产物的生成。
催化剂的评价过程同实施例1,反应结果见表1。
实施例3
将120ml RhCl3与RuCl3混合水溶液放于滴液漏斗中,制成溶液A。称取4.0g纳米硅胶置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M NaOH水溶液调节体系pH至8.5。在30min内缓慢滴入溶液A。滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水洗涤3次。然后在80℃干燥过夜,400℃焙烧4h。所得催化剂标记为C,其中Rh和Ru质量含量分别为0.2%和2%。表征结果显示,催化剂组分以单原子Rh和粒径2-4nm的Ru物种形式存在。
催化剂的评价过程同实施例1,反应结果见表1。
实施例4
将0.8ml RhCl3水溶液(0.015g-Rh/ml)和100ml水放于滴液漏斗中,制成溶液A。称取4.0克氧化钛置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M NaOH水溶液调节体系pH至8.5,再40min内缓慢滴入溶液A。滴完后,继续搅拌3h,陈化1h,过滤,用70℃热水洗涤2次。然后在80℃干燥过夜,400℃焙烧4h。将上述样品等体积浸渍于含一定量Ni(NO3)2的水溶液中,110℃烘干后,350℃焙烧4h,即得催化剂D,其中Rh和Ni含量分别为0.2wt%和2wt%。表征结果显示,催化剂中组分以单原子Rh和粒径2-4nm的Ni物种的形式存在。
催化剂的评价过程同实施例1,反应结果见表1。
实施例5
将120ml RhCl3与Fe(NO3)3混合水溶液放于滴液漏斗中,制成溶液A。称取4.0g氧化钛置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M(NH4)2CO3水溶液调节体系pH至8.5。在30min内滴入溶液A。滴完后,继续搅拌3h,陈化1h,过滤,用50℃热水洗涤3次。然后在80℃干燥过夜,400℃焙烧4h。所得催化剂标记为E,其中Rh和Fe质量含量分别为0.2%和2%。表征结果显示,催化剂组分以单原子Rh和粒径2-4nm的Fe物种形式存在。
催化剂的评价过程同实施例1,反应结果见表1。
实施例6
将2.0克纳米硅胶置于装有400ml去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1M(NH4)2CO3水溶液调节体系pH至8.5。在30min内滴入60ml RhCl3溶液。滴完后,继续搅拌3h,陈化1h,过滤,用80℃热水洗涤2次。然后在80℃干燥过夜,400℃焙烧4h。所得催化剂标记为F,其中Rh和Fe质量含量分别为0.4%和2%。图2为该催化剂F的HDDAF-STEM照片。可以看到,催化剂组分以单原子Rh和粒径1-3nm的Fe物种形式存在。
催化剂的评价同实施例1,反应结果见表1。
实施例7
将商用氧化铝600℃焙烧4h,然后称取2.0g等体积浸渍于4ml含一定量RhCl3与Fe(NO3)3的混合水溶液中,80℃干燥12h,600℃焙烧4h。所得催化剂标记为G,其中Rh与Fe质量含量分别为0.05%和2%。表征结果显示,经氢气高温还原后的催化剂活性组分为Rh1Fe单原子合金。
催化剂的评价同实施例1,只是使用前600℃氢气还原1h,反应结果见表1。
实施例8
将商用硅胶800℃焙烧4h,然后称取2.0g等体积浸渍于6ml含一定量RhCl3与Ni(NO3)2的混合水溶液中,80℃干燥12h,600℃焙烧4h。所得催化剂标记为H,其中Rh与Fe质量含量分别为0.05%和2%。表征结果显示,经氢气高温还原后的催化剂组分以Rh1Ni单原子合金形式存在。
催化剂的评价同实施例1,只是使用前700℃还原1h,反应结果见表1。
实施例9
将商用氧化铝600℃焙烧4h,然后称取2.0g焙烧后的氧化铝等体积浸渍于4ml含有一定量RhCl3与Co(NO3)2的混合水溶液中,80℃干燥12h,600℃焙烧4h。所得催化剂标记为I,其中Rh与Co质量含量分别为0.2%和2%。表征结果显示,经氢气高温还原后,催化剂中主要出现Rh1Co单原子合金。
催化剂的评价同实施例1,只是使用前800℃氢气还原1h,反应结果见表1。
实施例10
将商用硅胶600℃焙烧4h,然后称取2.0g焙烧过的硅胶等体积浸渍于4ml含一定量RhCl3与RuCl3的混合水溶液中,80℃干燥12h,600℃焙烧4h。所得催化剂标记为J,其中Rh与Ru质量含量分别为0.5%和1%。表征结果显示,经高温氢气还原后的催化剂组分以Rh1Ru单原子合金形式存在。
催化剂的评价同实施例1,只是使用前700℃氢气还原1h,反应结果见表1。
实施例11
NaOH,NaAlO2和H2O混合均匀并搅拌澄清,滴加40wt%硅溶胶后,持续搅拌4h,室温陈化3天,得到最终导向剂组成为3.36Na2O:1.0Al2O3:8.4SiO2:250H2O.再加入RhCl3和EDA(二乙胺),最终组成为3.36Na2O:1.0Al2O3:8.4SiO2:250H2O:0.005RhCl3:1.0EDA,继续搅拌4h,室温老化4h,再转移至聚四氟内衬的不锈钢釜内,于100℃晶化12h。所得固体过滤,用水和乙醇洗涤各3次,在80℃真空干燥过夜。得到的Rh-EDA@NaY于400℃焙烧2h,氢气流中150℃还原1h,记得Rh@NaY。
将6.0g制得的质量含量0.2%Rh@NaY置于200ml 1.5M NH4Cl水溶液中于80℃搅拌6h,干燥后重复2次,最后400℃焙烧2h,分别等体积浸渍2%Mn,烘干后,480℃焙烧6h,所得样品标记为K。表征结果显示,催化剂中Rh以单原子形式存在。
催化剂的评价同实施例1,只是反应温度为265℃,反应结果见表1。
实施例12
按实施例11中第一段的方法,制得质量含量0.2%Pd@NaY。将6.0g制得的0.2%Pd@NaY置于200ml 1.5M NH4Cl水溶液中于80℃搅拌6h,干燥后重复2次,最后400℃焙烧2h,浸渍5%Fe,110℃烘干后,480℃焙烧6h,所得样品标记为L。表征结果显示,催化剂中Rh以单原子形式存在。
催化剂的评价同实施例1,只是反应温度为265℃,反应结果见表1。
实施例13
将6.0g实施例12中制得的0.2%Pd@NaY置于200ml 1.5M NH4Cl水溶液中于80℃搅拌6h,干燥后重复2次,最后480℃焙烧2h,等体积浸渍3%Cu(Cu(NO3)2水溶液为前驱体),烘干后,500℃焙烧4h,所得样品标记为M。表征结果显示,催化剂中Rh以单原子形式存在。
催化剂的评价同实施例1,只是反应温度为265℃,反应结果见表1。
实施例14
将2.0g实施例11中制得的0.2%Rh@NaY等体积浸渍5%Fe(Fe(NO3)3水溶液为前驱体),110℃烘干后,480℃焙烧6h,所得样品分别标记为N。图3为该催化剂的HDDAF-STEM照片,可以观察到纳米粒子和单原子金属的存在。
催化剂的评价同实施例1,只是反应温度为240℃,反应结果见表1。
比较例1
将2.0g购买的商用硅胶经600℃焙烧4h后制得的硅胶等体积浸渍质量浓度1%Rh和5%Fe(RhCl3和Fe(NO3)3混合水溶液为前驱体),110℃烘干后,480℃焙烧6h,所得样品分别标记为O。表征结果显示,催化剂粒径为1-3nm的纳米颗粒。
催化剂的评价同比较例1,反应结果见表1。
比较例2
将2.0g制得的NaY(过程同实施例11中第一段,只是原料中没有Rh)等体积浸渍质量浓度5%Fe和0.2%Rh(RhCl3和Fe(NO3)3混合水溶液为前驱体),110℃烘干后,480℃焙烧6h,所得样品分别标记为P。
催化剂的评价同比较例1,反应结果见表1。
由表1可见,采用浸渍法或沉积沉淀法一步或分步,通过调节贵金属和助剂含量,可以制得单贵金属原子-助剂纳米颗粒的双金属催化剂(如图1-3所示),在CO加氢反应中,表现出高的乙醇选择性,如催化剂B和F。也可通过选择合适的载体与助剂,采用高温还原法制得,如催化剂I。或通过直接合成NaY分子筛镶嵌的单原子Rh,再通过浸渍法负载上助剂,如催化剂N。这些催化剂都表现出较高的乙醇选择性。
通过对比例可见,浸渍法负载上较高含量Rh和Fe后,由于出现Rh纳米颗粒,使得CO加氢反应产物中乙醇选择性较低;同理,NaY浸渍上Rh和Fe助剂之后,由于没有单原子Rh的存在,催化剂上生成了大量的烃类(催化剂P),催化剂性能不及原位合成的Rh@NaY对应催化剂的性能(催化剂O)。这表明单原子Rh与助剂的存在缺一不可。
表1各催化剂上CO加氢反应结果
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (4)

1.一种负载型单原子协同纳米双金属催化剂在CO加氢制乙醇反应中的应用,其特征在于,
使用前对催化剂进行还原活化;还原条件为:还原气体为含氢混合气,氢体积含量为40-80%,混合气中其它气体为氮气或氩气中的一种或二种,温度为200~900℃,压力为0.1~1MPa,空速为500~5000 h-1,时间为1~12 h;
所述催化剂的制备方法为:
将0.8 mLRhCl3水溶液和100 mL水放于滴液漏斗中, RhCl3水溶液的浓度为0.015 g-Rh/mL,制成溶液A,称取4.0 g氧化钛置于装有400 mL去离子水的烧杯中,置于80℃水浴中,电磁搅拌15 min后,用0.1 M NaOH水溶液调节体系pH至8.5,再缓慢滴入溶液A,30 min滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水洗涤2次,然后在80℃干燥过夜,400℃焙烧4h,将上述样品室温等体积浸渍于溶有一定量Fe(NO3)3的水中,110℃烘干后,350℃焙烧4h,即得催化剂A,其中Rh和Fe含量分别为0.2wt%和2 wt%;
或将0.8 mLRhCl3水溶液和100 mL水放于滴液漏斗中,RhCl3水溶液的浓度为0.015 g-Rh/mL,制成溶液A,称取4.0 g氧化钛置于装有400 mL去离子水的烧杯中,置于80 ℃水浴中,电磁搅拌15 min后,用0.1 M (NH4)2CO3水溶液调节体系pH至8.5,再30 min内滴入溶液A,滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水洗涤3次,然后在80℃干燥过夜,600℃焙烧4h,将上述样品等体积浸渍于Fe(NO3)3水溶液中,110℃烘干后,450℃焙烧4h,即得催化剂B,其中Rh和Fe含量分别为0.2 wt%和4 wt%;
或将120 mLRhCl3与RuCl3混合水溶液放于滴液漏斗中,制成溶液A,称取4.0 g纳米硅胶置于装有400 mL去离子水的烧杯中,置于80 ℃水浴中,电磁搅拌15 min后,用0.1 M NaOH水溶液调节体系pH至8.5,在30 min内缓慢滴入溶液A,滴完后,继续搅拌3h,陈化1h,过滤,用60℃热水洗涤3次,然后在80℃干燥过夜,400 ℃焙烧4h,所得催化剂标记为C,其中Rh和Ru质量含量分别为0.2%和2%;
或,将0.8 mLRhCl3水溶液,RhCl3水溶液的浓度为0.015 g-Rh/mL;和100mL水放于滴液漏斗中,制成溶液A;称取4.0克氧化钛置于装有400mL去离子水的烧杯中,置于80 ℃水浴中,电磁搅拌15min后,用0.1 M NaOH水溶液调节体系pH至8.5,再40min 内缓慢滴入溶液A,滴完后,继续搅拌3h,陈化1h,过滤,用70℃热水洗涤2次,然后在80℃干燥过夜,400 ℃焙烧4h,将上述样品等体积浸渍于含一定量Ni(NO3)2的水溶液中,110℃烘干后,350℃焙烧4h,即得催化剂D,其中Rh和Ni含量分别为0.2 wt%和2 wt%;
或,将120 mLRhCl3与Fe(NO3)3混合水溶液放于滴液漏斗中,制成溶液A,称取4.0 g氧化钛置于装有400mL去离子水的烧杯中,置于80℃水浴中,电磁搅拌15min后,用0.1 M (NH4)2CO3水溶液调节体系pH至8.5,在30min内滴入溶液A,滴完后,继续搅拌3h,陈化1h,过滤,用50℃热水洗涤3次,然后在80℃干燥过夜,400℃焙烧4h,所得催化剂标记为E,其中Rh和Fe质量含量分别为0.2%和2%;
或,将2.0克纳米硅胶置于装有400mL去离子水的烧杯中,置于80 ℃水浴中,电磁搅拌15min后,用0.1 M (NH4)2CO3水溶液调节体系pH至8.5,在30min内滴入60mLRhCl3溶液,滴完后,继续搅拌3h,陈化1h,过滤,用80℃热水洗涤2次,然后在80℃干燥过夜,400℃焙烧4h,所得催化剂标记为F,其中Rh和Fe质量含量分别为0.4%和2%;
或,NaOH, NaAlO2和H2O 混合均匀并搅拌澄清,滴加40 wt%硅溶胶后,持续搅拌4 h,室温陈化3天,得到最终导向剂组成为3.36 Na2O:1.0 Al2O3:8.4 SiO2:250 H2O. 再加入RhCl3和EDA,最终组成为3.36 Na2O:1.0 Al2O3:8.4 SiO2:250 H2O:0.005 RhCl3:1.0 EDA,继续搅拌4h,室温老化4h,再转移至聚四氟内衬的不锈钢釜内,于100℃晶化12h,所得固体过滤,用水和乙醇洗涤各3次,在80 ℃ 真空干燥过夜,得到的Rh-EDA@NaY于400℃焙烧2h,氢气流中150℃还原1h,即得Rh @NaY;
将6.0g制得的质量含量0.2%Rh@NaY置于200mL1.5M NH4Cl水溶液中于80℃搅拌6 h,干燥后重复2次,最后400℃焙烧2h,等体积浸渍2%Mn,烘干后,480 ℃焙烧6 h,得样品1,
或,NaOH, NaAlO2和H2O 混合均匀并搅拌澄清,滴加40 wt%硅溶胶后,持续搅拌4 h,室温陈化3天,得到最终导向剂组成为3.36 Na2O:1.0 Al2O3:8.4 SiO2:250 H2O. 再加入RhCl3和EDA,最终组成为3.36 Na2O:1.0 Al2O3:8.4 SiO2:250 H2O:0.005 RhCl3:1.0 EDA,继续搅拌4h,室温老化4h,再转移至聚四氟内衬的不锈钢釜内,于100℃晶化12h,所得固体过滤,用水和乙醇洗涤各3次,在80℃ 真空干燥过夜,得到的Rh-EDA@NaY于400℃焙烧2h,氢气流中150℃还原1h,即得Rh @NaY;
将2.0g制得的0.2%Rh@NaY等体积浸渍5%Fe,Fe(NO3)3水溶液为前驱体,110℃烘干后,480℃焙烧6h,得样品4。
2.根据权利要求1所述的应用,其特征在于:
使用前对催化剂进行还原活化;还原条件为:还原气体为含氢混合气,氢体积含量为40-80%,混合气中其它气体为氮气或氩气中的一种或二种,温度为400-600℃,压力为0.1-0.5MPa,空速为1000-2000 h-1,时间为2-4 h。
3.根据权利要求1所述的应用,其特征在于:
所涉及的CO加氢反应采用固定床反应器;反应温度220~320℃、反应压力1~8.0MPa、气体空速2000-15000 h-1
4.根据权利要求3所述的应用,其特征在于:
所涉及的CO加氢反应采用固定床反应器;反应温度240-270 ℃、反应压力4-6MPa、气体空速4000-8000 h-1
CN202110338458.8A 2021-03-30 2021-03-30 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用 Active CN115138359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110338458.8A CN115138359B (zh) 2021-03-30 2021-03-30 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110338458.8A CN115138359B (zh) 2021-03-30 2021-03-30 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用

Publications (2)

Publication Number Publication Date
CN115138359A CN115138359A (zh) 2022-10-04
CN115138359B true CN115138359B (zh) 2024-05-10

Family

ID=83404559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110338458.8A Active CN115138359B (zh) 2021-03-30 2021-03-30 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用

Country Status (1)

Country Link
CN (1) CN115138359B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115672374B (zh) * 2022-10-31 2024-02-23 中国科学技术大学 具有级联催化活性的金属单原子/金属纳米颗粒的纳米复合物及其制备与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399488A (zh) * 2014-10-29 2015-03-11 华东理工大学 合成乙醇的贵金属改性催化剂及其制备方法
CN104588006A (zh) * 2013-10-31 2015-05-06 中国科学院大连化学物理研究所 一种用于炔烃选择加氢的含钯的合金单原子催化剂
CN107096539A (zh) * 2017-03-31 2017-08-29 中国海洋石油总公司 一种合成气制低碳醇催化剂及其制备方法、应用
CN108620092A (zh) * 2018-05-16 2018-10-09 天津大学 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188585B1 (ko) * 2019-01-18 2020-12-09 한국과학기술연구원 금속 단일 원자 촉매 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588006A (zh) * 2013-10-31 2015-05-06 中国科学院大连化学物理研究所 一种用于炔烃选择加氢的含钯的合金单原子催化剂
CN104399488A (zh) * 2014-10-29 2015-03-11 华东理工大学 合成乙醇的贵金属改性催化剂及其制备方法
CN107096539A (zh) * 2017-03-31 2017-08-29 中国海洋石油总公司 一种合成气制低碳醇催化剂及其制备方法、应用
CN108620092A (zh) * 2018-05-16 2018-10-09 天津大学 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CO加氢制C2含氧化合物Rh基催化剂中常见助剂的作用";陈维苗等;《物理化学学报》;第31卷(第1期);1-10 *
"Rh-Decorated Cu Alloy Catalyst for Improved C2 Oxygenate Formation from Syngas";Yong-Hui Zhao等;《J. Phys. Chem. C》;第115卷;18247-18256 *

Also Published As

Publication number Publication date
CN115138359A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN112044434B (zh) 一种单原子贵金属/过渡金属氧化物复合材料及其制备方法和用途
CN111229215B (zh) 一种基于碳量子点诱导的金属高分散负载型催化剂及其制备方法和应用
CN111185237B (zh) 一种选择性加氢催化剂及其制备方法和应用
CN112871150A (zh) 一种基于环糊精超分子化学可控制备碳载金属单原子催化剂及其制备方法和应用方法
CN111644197A (zh) 低温甲烷转化制芳烃的催化体系、制备方法及应用
CN115138359B (zh) 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用
CN113694921B (zh) 纳米金刚石/石墨烯复合载体负载原子级分散铱团簇催化剂及其制备方法和应用
CN103191744A (zh) 一种改性蛭石负载镍催化剂及其制备方法
CN113058613B (zh) 一种用于甲烷干气重整反应锆-锰-锌复合氧化物担载镍基催化剂及其制备和应用
CN112191252B (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN111298826B (zh) 一种小晶粒的Ni@Silicalite-1封装催化剂及其合成方法和用途
CN102441391B (zh) 一种钴基费托合成催化剂的制备方法
CN114345336B (zh) 一种过渡金属钼改性的钯银-氧化铝催化剂及其制备方法与应用
CN109107583B (zh) 一种丁炔二醇半加氢双金属催化剂及其制备方法与应用
CN116173983A (zh) 一种加氢催化剂及其制备方法和应用、一种吸氢复合材料
CN108126701B (zh) 一种合成气催化转化催化剂及其制备方法
CN114308061B (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN115957786A (zh) 一种纳米核壳钴基催化剂及其制备和应用
CN108295867A (zh) 一种低温处理的重质烃费托合成催化剂及其制备方法和应用
CN112206789A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法和应用
CN115212885B (zh) 一种用于合成气直接制取低碳醇的硅酸钴衍生的钴基催化剂及制备方法和预处理方法
CN113713805B (zh) 一种Pt系催化剂的制备方法及其应用
CN112108139B (zh) 一种硝基苯液相加氢合成苯胺用催化剂及其制备方法
CN117138784B (zh) 高载量高分散Cu基催化剂及其合成方法与应用
CN114534754B (zh) 一种α-MoC1-x负载Pt-Cu双金属水煤气变换催化剂制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant