CN113594252A - 一种超结结构的氧化镓功率晶体管及其制备方法 - Google Patents

一种超结结构的氧化镓功率晶体管及其制备方法 Download PDF

Info

Publication number
CN113594252A
CN113594252A CN202110858315.XA CN202110858315A CN113594252A CN 113594252 A CN113594252 A CN 113594252A CN 202110858315 A CN202110858315 A CN 202110858315A CN 113594252 A CN113594252 A CN 113594252A
Authority
CN
China
Prior art keywords
super
junction
gallium oxide
layer
power transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110858315.XA
Other languages
English (en)
Other versions
CN113594252B (zh
Inventor
徐童龄
卢星
邓郁馨
王钢
陈梓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110858315.XA priority Critical patent/CN113594252B/zh
Publication of CN113594252A publication Critical patent/CN113594252A/zh
Application granted granted Critical
Publication of CN113594252B publication Critical patent/CN113594252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors

Abstract

本发明公开了一种超结结构的氧化镓功率晶体管及其制备方法,针对现有技术中如何解决器件反向耐压和导通电阻之间的矛盾提出本方案。主要特点在氧化镓漂移层上端面铺设超结P型掺杂层,使得超结P型掺杂层与氧化镓漂移层构成超结结构。优点在于,通过在氧化镓功率晶体管引入p型氧化物半导体形成异质pn结的超结结构,利用超结的耗尽作用改善关态时器件漂移区的电场分布,从而实现漂移区的全耗尽,大幅度提升器件反向耐压;另一方面,可以通过比例的增加氧化镓漂移层和超结P型掺杂层的掺杂浓度,在保持高反向耐压的同时显著降低器件导通电阻。此外,该方法巧妙的规避了氧化镓材料难以实现p型掺杂的局限,制备工艺简单可靠。

Description

一种超结结构的氧化镓功率晶体管及其制备方法
技术领域
本发明涉及一种超结结构的氧化镓功率晶体管及其制备方法。
背景技术
半导体功率器件主要被装备于各种设备的电源和驱动负载中进行电能处理,在电力传输、工业控制、交通运输、卫星通讯以及国防等诸多领域发挥着不可替代的作用。随着电力电子技术的快速发展,人们对半导体功率器件的要求越来越苛刻,要同时具备高反向耐压和低导通电阻,而传统硅基功率器件的潜力已经几乎被挖掘殆尽了。氧化镓是新一代的半导体,具有超宽的禁带宽度和高击穿场强,而且可通过低成本的熔融生长法制得大尺寸单晶衬底,是制备高耐压大功率晶体管的优选材料。
目前报道的氧化镓功率晶体管主要包括MOSFET和JFET两种,参见文献Z.Hu,etal.,Enhancement-mode Ga2O3 Vertical Transistors with Breakdown Voltage>1kV,IEEE Electron Device Letters 39(6),869-872,2018;以及CN110148625A,如图1所示,存在提高器件反向耐压必须以牺牲导通电阻为代价的弊端,制约了器件性能的进一步优化。现有器件受其本身结构限制,反向耐压和导通电阻二者之间始终存在矛盾,提高反向耐压需要增加器件的漂移层厚度并降低漂移层掺杂浓度,而实现低导通电阻则要求漂移层具有较高的掺杂浓度和较薄的厚度。因此,如何解决器件反向耐压和导通电阻之间的矛盾,是提升氧化镓功率晶体管性能和实用化的关键。
发明内容
本发明目的在于提供一种超结结构的氧化镓功率晶体管及其制备方法,以解决上述现有技术存在的问题。
本发明所述一种超结结构的氧化镓功率晶体管,包括从下往上层叠设置的漏电极、导电衬底、氧化镓漂移层;所述的氧化镓漂移层上部具有若干互相平行的肋条;肋条上端面还依次层叠氧化镓接触层和源电极;所述的氧化镓漂移层上端面铺设有超结P型掺杂层,所述超结P型掺杂层靠近肋条的边缘向上延伸至肋条上部;肋条高度高于超结P型掺杂层边缘的延伸高度;肋条上部突出超结P型掺杂层的侧壁设置栅叠层;所述的超结P型掺杂层与氧化镓漂移层构成超结结构。所述超结P型掺杂层的材料是p型氧化物半导体,是非晶或多晶结构。
所述的超结P型掺杂层厚度为10nm~1μm。所述的超结P型掺杂层厚度为10nm~200nm。
所述的肋条高度为1μm~5mm。所述的肋条高度为1mm~5mm。
所述的超结P型掺杂层空穴浓度为1×1016/cm3~1×1018/cm3。所述的超结P型掺杂层空穴浓度为1×1016/cm3~0.99×1017/cm3
所述的栅叠层包括栅电极,还包括设置在栅电极与肋条之间的栅介质层或第二p型氧化物半导体层。
所述的所述的第二p型氧化物半导体层空穴浓度为1×1017/cm3~1×1020/cm3,且第二p型氧化物半导体层的空穴浓度大于超结P型掺杂层。
本发明所述一种超结结构的氧化镓功率晶体管制备方法,在氧化镓漂移层上端面铺设超结P型掺杂层,且肋条露出超结P型掺杂层外,使得超结P型掺杂层与氧化镓漂移层构成超结结构;得到所述超结结构的氧化镓功率晶体管。
本发明所述超结结构的氧化镓功率晶体管及其制备方法,其优点在于,通过在氧化镓功率晶体管引入p型氧化物半导体形成异质pn结的超结结构,利用超结的耗尽作用改善关态时器件漂移区的电场分布,从而实现漂移区的全耗尽,大幅度提升器件反向耐压;另一方面,可以通过比例的增加氧化镓漂移层和超结P型掺杂层的掺杂浓度,在保持高反向耐压的同时显著降低器件导通电阻。此外,该方法巧妙的规避了氧化镓材料难以实现p型掺杂的局限,制备工艺简单可靠。
附图说明
图1是现有技术中的氧化镓功率晶体管结构示意图;
图2是现有技术中的氧化镓功率晶体管栅叠层的工作原理示意图。
图3是本发明所述氧化镓功率晶体管实施例一的结构示意图;
图4是本发明所述氧化镓功率晶体管横向拓展的结构示意图;
图5是本发明所述氧化镓功率晶体管栅叠层的工作原理示意图;
图6是本发明所述氧化镓功率晶体管超结结构的工作原理示意图。
图7是含有超结结构的氧化镓功率晶体管与无超结结构器件的漂移区电场分布仿真结果曲线图。
图8是本发明所述氧化镓功率晶体管实施例二的结构示意图。
附图标记:
101-漏电极;
102-导电衬底;
103-氧化镓漂移层;
104-氧化镓接触层;
105-源电极;
106-第一p型氧化物半导体层;
107-栅电极;
108-第二p型氧化物半导体层;
109-介质钝化层;
110-栅介质层;
111-超结P型掺杂层;
A-栅叠层的作用区域、B-超结P型掺杂层的作用区域。
具体实施方式
如图3所示,本发明所述超结结构的氧化镓功率晶体管包括从下往上层叠设置的漏电极101、导电衬底102、氧化镓漂移层103。所述的氧化镓漂移层103上部具有若干互相平行的肋条。肋条之间设有超结P型掺杂层111覆盖氧化镓漂移层上端面。肋条上端面还依次层叠氧化镓接触层104和源电极105。肋条上部突出所述超结P型掺杂层111向上延伸的边缘,且在突出位置设置栅叠层。设置介质钝化层109封闭器件中源电极105以外的部位。所述的超结P型掺杂层与氧化镓漂移层构成超结结构。
肋条的数量可以根据器件实际需要无限增加,横向拓展结构如图4所示。
所述的氧化镓漂移层103为单晶结构,掺杂浓度为5×1014cm-3至1×1018cm-3,厚度为2μm至5mm。
所述的超结P型掺杂层111为非晶或多晶结构,其厚度为10nm~1μm。在一些实施例中,所述的超结P型掺杂层111厚度可以选择为10nm~100nm或100nm~200nm或200nm~300nm或300nm~1μm。
所述的肋条高度为1μm~5mm。在一些实施例中,所述的肋条高度可以选择为5.1μm~5mm。
所述的超结P型掺杂层111空穴浓度为1×1016/cm3~1×1018/cm3。在一些实施例中,所述的超结P型掺杂层111空穴浓度为1×1016/cm3~0.99×1017/cm3
在结构上,本发明所述氧化镓功率晶体管的结构虽然与图1所示结构相近似,但是工作原理有本质区别。图1中肋条外的栅叠层由栅电极107和第一p型氧化物半导体层组成,在栅电极的电压作用下控制器件沟道的开闭,如图2所示,其中器件沟道即肋条处。而本发明中栅叠层位于超结P型掺杂层111向上延伸边缘的上方或部分重叠,同样作用于沟道中实现开闭功能,如图5所示。而所述超结P型掺杂层111位于栅叠层下方,与氧化镓漂移层103组成超结结构。无需外加电压即可自然耗尽器件漂移区在超结结构附近的自由电荷,使该些区域形成类似本征层的结构,如图6所示。超结P型掺杂层111的掺杂浓度直接影响耗尽效果,具体浓度由所在器件的工作需求决定。类本征层的出现可以极大改善关态时器件漂移区的电场分布,解决器件反向耐压和导通电阻之间的矛盾。主要体现在氧化镓漂移层103掺杂浓度与反向耐压的变化敏感度变得更低,可以提高掺杂浓度以大大降低导通电阻。
所述的栅叠层至少有两种实施方式:
实施例一,所述的栅叠层包括栅电极,还包括设置在栅电极与肋条之间的栅介质层110,如图3所示,此结构中器件类型为MOSFET。通过仿真对比,如图7所示,具有异质PN结超结结构的器件在氧化镓漂移层103中的电场强度峰值降低一倍,且耗尽深度明显增加。
实施例二,所述的栅叠层包括栅电极,还包括设置在栅电极与肋条之间的第二p型氧化物半导体层108,如图8所示,此结构中器件类型为JFET。所述的第二p型氧化物半导体层108和栅电极107之间为肖特基接触或欧姆接触。所述的第二p型氧化物半导体层108空穴浓度为1×1017/cm3~1×1020/cm3,且第二p型氧化物半导体层108的空穴浓度大于超结P型掺杂层111。本实施例的电场强度峰值和耗尽深度与实施例一近似。
本发明所述一种超结结构的氧化镓功率晶体管制备方法包括以下具体步骤:
(1)在导电衬底102上依次外延生长氧化镓漂移层103和氧化镓接触层104,得到氧化镓基晶圆片。
(2)对所述氧化镓基晶圆片进行选择性刻蚀,深度延伸至氧化镓漂移层103中,使氧化镓漂移层103上部具有若干凸起的肋条,形成三维鳍式沟道结构。
(3)通过物理沉积或化学沉积等方法在所述三维鳍式沟道结构两侧沉积超结P型掺杂层111以形成异质PN结超结结构,且控制超结P型掺杂层111的高度低于肋条。
(4)根据器件类型需求,在所述三维鳍式沟道结构两侧高于超结P型掺杂层111的位置沉积高掺杂的第二p型氧化物半导体层108或者栅介质层110。
(5)在第二p型氧化物半导体层108或者栅介质层110远离三维鳍式沟道结构的外侧沉积栅电极107构成栅叠层。
(6)在氧化镓接触层104的上方沉积源电极105形成样品。
(7)在所述样品上表面沉积介质钝化层109,刻蚀接触孔暴露出源电极105。
(8)通过刻蚀或研磨减薄所述导电衬底102,并在其下表面沉积漏电极101。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

1.一种超结结构的氧化镓功率晶体管,包括从下往上层叠设置的漏电极(101)、导电衬底(102)、氧化镓漂移层(103);所述的氧化镓漂移层(103)上部具有若干互相平行的肋条;肋条上端面还依次层叠氧化镓接触层(104)和源电极(105);
其特征在于,所述的氧化镓漂移层(103)上端面铺设有超结P型掺杂层(111),所述超结P型掺杂层(111)靠近肋条的边缘向上延伸至肋条上部;肋条高度高于超结P型掺杂层(111)边缘的延伸高度;肋条上部突出超结P型掺杂层(111)的侧壁设置栅叠层;
所述的超结P型掺杂层(111)与氧化镓漂移层(103)构成超结结构。
2.根据权利要求1所述超结结构的氧化镓功率晶体管,其特征在于,所述的超结P型掺杂层(111)厚度为10nm~1μm。
3.根据权利要求2所述超结结构的氧化镓功率晶体管,其特征在于,所述的超结P型掺杂层(111)厚度为10nm~200nm。
4.根据权利要求1所述超结结构的氧化镓功率晶体管,其特征在于,所述的肋条高度为1μm~5mm。
5.根据权利要求4所述超结结构的氧化镓功率晶体管,其特征在于,所述的肋条高度为1mm~5mm。
6.根据权利要求1所述超结结构的氧化镓功率晶体管,其特征在于,所述的超结P型掺杂层(111)空穴浓度为1×1016/cm3~1×1018/cm3
7.根据权利要求6所述超结结构的氧化镓功率晶体管,其特征在于,所述的超结P型掺杂层(111)空穴浓度为1×1016/cm3~0.99×1017/cm3
8.根据权利要求1所述超结结构的氧化镓功率晶体管,其特征在于,所述的栅叠层包括栅电极(107),还包括设置在栅电极(107)与肋条之间的栅介质层(110)或第二p型氧化物半导体层(108)。
9.根据权利要求8所述超结结构的氧化镓功率晶体管制备方法,其特征在于,所述的所述的第二p型氧化物半导体层(108)空穴浓度为1×1017/cm3~1×1020/cm3,且第二p型氧化物半导体层(108)的空穴浓度大于超结P型掺杂层(111)。
10.一种超结结构的氧化镓功率晶体管制备方法,其特征在于,在氧化镓漂移层(103)上端面铺设超结P型掺杂层(111),且肋条露出超结P型掺杂层(111)外,使得超结P型掺杂层(111)与氧化镓漂移层(103)构成超结结构;得到如权利要求1至9任一所述超结结构的氧化镓功率晶体管。
CN202110858315.XA 2021-07-28 2021-07-28 一种超结结构的氧化镓功率晶体管及其制备方法 Active CN113594252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110858315.XA CN113594252B (zh) 2021-07-28 2021-07-28 一种超结结构的氧化镓功率晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110858315.XA CN113594252B (zh) 2021-07-28 2021-07-28 一种超结结构的氧化镓功率晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN113594252A true CN113594252A (zh) 2021-11-02
CN113594252B CN113594252B (zh) 2022-04-15

Family

ID=78251125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110858315.XA Active CN113594252B (zh) 2021-07-28 2021-07-28 一种超结结构的氧化镓功率晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN113594252B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203797A (zh) * 2021-11-29 2022-03-18 西安电子科技大学 基于异质结的超结氧化镓晶体管及其制作方法与应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) * 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
US6545340B1 (en) * 1998-09-22 2003-04-08 Qinetiq Limited Semiconductor device
US20130093015A1 (en) * 2010-03-01 2013-04-18 X-Fab Semiconductor Foundries Ag High voltage mos transistor
US20130181255A1 (en) * 2010-10-06 2013-07-18 Sumitomo Electric Industries, Ltd. Semiconductor device and method for producing the same
US20150035002A1 (en) * 2013-07-31 2015-02-05 Infineon Technologies Austria Ag Super Junction Semiconductor Device and Manufacturing Method
CN104900696A (zh) * 2014-03-04 2015-09-09 中芯国际集成电路制造(上海)有限公司 垂直纳米线mos晶体管及其形成方法
CN108493234A (zh) * 2018-05-10 2018-09-04 广东省半导体产业技术研究院 一种鳍式沟道的氧化镓基垂直场效应晶体管及其制备方法
US20190334036A1 (en) * 2018-04-27 2019-10-31 Hyundai Motor Company Semiconductor device and method of manufacturing the same
CN110571274A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓晶体管及其制备方法
CN111446287A (zh) * 2020-03-05 2020-07-24 深圳大学 一种mosfet器件及其制备方法
CN111509034A (zh) * 2020-04-20 2020-08-07 派恩杰半导体(杭州)有限公司 一种具有相同栅源掺杂的场效应晶体管、元胞结构及制备方法
US20210013314A1 (en) * 2018-03-28 2021-01-14 Cornell University Vertical gallium oxide (ga2o3) power fets

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) * 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
US6545340B1 (en) * 1998-09-22 2003-04-08 Qinetiq Limited Semiconductor device
US20130093015A1 (en) * 2010-03-01 2013-04-18 X-Fab Semiconductor Foundries Ag High voltage mos transistor
US20130181255A1 (en) * 2010-10-06 2013-07-18 Sumitomo Electric Industries, Ltd. Semiconductor device and method for producing the same
US20150035002A1 (en) * 2013-07-31 2015-02-05 Infineon Technologies Austria Ag Super Junction Semiconductor Device and Manufacturing Method
CN104900696A (zh) * 2014-03-04 2015-09-09 中芯国际集成电路制造(上海)有限公司 垂直纳米线mos晶体管及其形成方法
US20210013314A1 (en) * 2018-03-28 2021-01-14 Cornell University Vertical gallium oxide (ga2o3) power fets
US20190334036A1 (en) * 2018-04-27 2019-10-31 Hyundai Motor Company Semiconductor device and method of manufacturing the same
CN108493234A (zh) * 2018-05-10 2018-09-04 广东省半导体产业技术研究院 一种鳍式沟道的氧化镓基垂直场效应晶体管及其制备方法
CN110571274A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓晶体管及其制备方法
CN111446287A (zh) * 2020-03-05 2020-07-24 深圳大学 一种mosfet器件及其制备方法
CN111509034A (zh) * 2020-04-20 2020-08-07 派恩杰半导体(杭州)有限公司 一种具有相同栅源掺杂的场效应晶体管、元胞结构及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203797A (zh) * 2021-11-29 2022-03-18 西安电子科技大学 基于异质结的超结氧化镓晶体管及其制作方法与应用

Also Published As

Publication number Publication date
CN113594252B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN110148625B (zh) 一种氧化镓垂直结型场效应晶体管及其制备方法
CN111668312A (zh) 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺
CN105428412A (zh) AlGaN/GaN异质结场效应晶体管及其制备方法
CN111048590B (zh) 一种具有内嵌沟道二极管的双沟槽SiC MOSFET结构及其制备方法
CN104218087A (zh) 半导体器件及其制造方法
CN114744037A (zh) 变掺杂浓度结构的屏蔽栅沟槽型场效应晶体管及制备方法
US6127695A (en) Lateral field effect transistor of SiC, a method for production thereof and a use of such a transistor
CN115377200A (zh) 一种半导体器件及其制备方法
CN117080269A (zh) 一种碳化硅mosfet器件及其制备方法
CN108598163A (zh) 一种GaN异质结纵向功率器件
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
CN113594252B (zh) 一种超结结构的氧化镓功率晶体管及其制备方法
CN103681315A (zh) 埋层的形成方法
CN103038886A (zh) 反向偏压下栅极-源极泄漏降低的自对准半导体装置及制作方法
CN109166929A (zh) 一种具有P型GaN帽层的GaN基肖特基势垒二极管
CN210897283U (zh) 一种半导体器件
CN116544232A (zh) 一种单片集成续流二极管的垂直型iii族氮化物晶体管及其制备方法
CN111446287A (zh) 一种mosfet器件及其制备方法
KR20010102278A (ko) 게이트 항복을 방지한 실리콘 탄화물 횡형 금속 산화물반도체 전계 효과 트랜지스터
CN112164725B (zh) 一种高阈值的功率半导体器件及其制造方法
CN114843337A (zh) 双栅结构氮化镓高电子迁移率晶体管及其制作方法
CN102983172A (zh) GaAs基垂直结构MOS器件及其制作方法
CN113972263A (zh) 一种增强型AlGaN/GaN HEMT器件及其制备方法
CN112466955A (zh) 一种具有体内导电沟道的薄层soi-ldmos器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant