CN1135378C - 显示屏检查方法 - Google Patents

显示屏检查方法 Download PDF

Info

Publication number
CN1135378C
CN1135378C CNB971171114A CN97117111A CN1135378C CN 1135378 C CN1135378 C CN 1135378C CN B971171114 A CNB971171114 A CN B971171114A CN 97117111 A CN97117111 A CN 97117111A CN 1135378 C CN1135378 C CN 1135378C
Authority
CN
China
Prior art keywords
workspace
pixel
density data
data
display screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB971171114A
Other languages
English (en)
Other versions
CN1174394A (zh
Inventor
汤川典昭
石井彰一
植田秀司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1174394A publication Critical patent/CN1174394A/zh
Application granted granted Critical
Publication of CN1135378C publication Critical patent/CN1135378C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30121CRT, LCD or plasma display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S345/00Computer graphics processing and selective visual display systems
    • Y10S345/904Display with fail/safe testing feature

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Image Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一个显示屏检查方法,它将一个显示装置的显示屏作为检查对象并对显示屏的缺陷作出判定。该方法包括:在存在于该灰度图像中的检查对象的显示工作区与显示非工作区之间进行灰度图象的各个像素的图像数据分离,该灰度图像是通过摄取检查时象的一个图像获得的,选择性提取仅适合显示工作区的图像数据并压缩该图像数据以为检查缺陷用,以及检查选择性提取的图像数据有无任何缺陷。

Description

显示屏检查方法
本发明涉及一种检查显示屏的方法。更具体地说,本发明涉及一种显示屏检查方法,用以自动地判定流水线中关于检查显示装置中的点缺陷以及诸如此类缺陷的检查结果的一致性,显示装置用于电子设备以及其它领域,比如液晶面板,荫罩,CRT面板、和等离子体显示装置。
作为一种用来阅读显示于显示装置上的屏幕的方法,已提供的一种主要的方法是采用CCD面传感器,它们是二维传感器。
通常,二维传感器中纵横排列的像素与显示装置中纵横排列的像素是相关的(在下文中,除非有其它定义,显示装置的像素将被称作“显示像素”,而传感器的像素将被称作“传感器像素”),这里像素分布是许多传感器像素与一个显示像素有关。
这可以通过举一个由640×640个像素组成的液晶面板显示装置的例子来说明。一个液晶面板包括像素的显示工作区和显示非工作区。在对这些显示工作区进行的动态工作检查中,可把点缺陷分为暗点和亮点;暗点是一组将在液晶面板的显示状态下不进行显示的显示像素(尽管它们原有成为显示工作区的意向);而亮点是一组将在状态下进行显示的显示像素(尽管它们原有成为显示非工作区的意向)。例如,在为此所作的自动检查中,当三个传感器像素被指定为一个显示像素时,在行方向上就需要将近2000个像素。
作为该传统方法的一个例子,已被采用的一种方法是,其中图像在CCD表面上的聚焦位置由于预先移动CCD面传感器的透镜系统而改变,从而就不会产生显示装置的显示工作区和显示非工作区之间的对比度差。在下文中,把图像在CCD表面聚焦的状态称为“聚焦状态”,而把图像不能聚焦的状态称为“散焦状态”。
现在假设有如图10A所示的一个显示像素100。假设如图10A所示的一个暗点缺陷101出现在该显示像素100上。图10B表示了十个显示工作区上散焦状态下的密度分布数据,这十个显示工作区位于显示像素100的一个一维基准线102上,显示工作区103和显示非工作区104属于它们中的一部分。而且,暗点缺陷101出现在该密度分布数据中。图10C表示了显示像素100的散焦状态下的密度分布数据,其中在本底密度106中存在一个暗点缺陷区105(暗点缺陷101的散焦状态)。该本底密度106是显示工作区103和显示非工作区104的散焦状态部分。该传统方法作为一个很有效的方法常被用来检查大量的点缺陷。显示工作区与显示非工作区之间在这种情况下的对比度差在这里是指已接收光线的传感器像素的对比度差。
但是,前述传统方法具有以下问题。
如上所述形成数焦状态会导致点缺陷区和正常区之间的对比度差减小,这样该方法就对少量的点缺陷缺乏足够的检查能力。换言之,在显示装置的显示工作区和显示非工作区之间的对比度差消失前形成散焦状态会造成少量点缺陷的对比度差消失。因此,传统的方法具有不能检查少量点缺陷的缺点。
有些情况下,必须对显示装置的一个显示工作区的位置是否正常作出判定。但是,如前所述,散焦状态的形成会使判定显示工作区的准确位置应当在哪里变得困难。
其它情况下,必须对显示装置的一个显示工作区的大小是否正常作出判定。但是,如前所述,数焦状态的形成会使判定显示工作区的正常尺寸应当是怎样的变得困难。
为解决上述问题,本发明的目的在于提供一种显示屏检查方法,该方法不再需要形成散焦状态,并能快速地检查显示屏的工作区而无需任何复杂的处理算法。
为达到这些和其它方面的目的,根据本发明的第一方面,提供一种显示屏检查方法,它将显示装置的显示屏作为检查对象并对该显示屏的缺陷作出判定,该方法包括:
对存在于该灰度图像中的检查对象的显示工作区与显示非工作区之间的灰度图像的各个像素的图像数据进行分离,该灰度图像是通过摄取检查对象的一个图像获得的;
只选择性提取准确的显示工作区的图像数据并压缩该图像数据以为检查缺陷用;以及
针对任何缺陷检查该选择性地提取的图像数据。
根据本发明的第二方面,提供一种根据第一方面的显示屏检查方法,其中在选择性提取时,每一个显示工作区的位置都是由下面这样一个像素给定的,即该像素表示灰度图像密度数据中的一个密度数据峰值,由该峰值数据及其周围的像素的密度数据计算出的结果值被当作该显示工作区的典型密度数据,并且基于显示工作区的位置和该典型密度数据这二者,就可以有选择性地提取准确的显示工作区的图像数据。
根据本发明的第三方面,提供一种根据第二方面的显示屏检查方法,其中在选择性地提取时,为获得该显示工作区的位置和该典型密度数据,即使密度数据的峰值并不存在,也从该显示工作区应当出现的位置之前与之后的显示工作区的密度数据中选择性提取该位置的密度数据。
根据本发明的第四方面,提供一种根据第一到第三方面中的任何一个方面的显示屏检查方法,其中在选择性提取时,每一个显示工作区的位置都是由下面这样一个像素给定的,即该像素表示灰色图像密度数据中的一个密度数据峰值,并且把由该峰值密度数据及其周围的像素的密度数据计算出的结果值当作该显示工作区的典型密度数据,而且
其中在检查时,通过检查这样一个区来检查任何峰值区的移动,该区在该峰值之前与之后具有与密度数据峰值的位置数据不同的显示工作区的位置数据间隔。
根据本发明的第五方面,提供一种根据第一到第四方面中任何一个方面的显示屏检查方法,其中在选择性地提取时,每一个显示工作区的位置都是由这样一个像素给定的,该像素表示灰度图像密度数据的一个密度数据峰值,把由该峰值密度数据及其周围的像素的密度数据计算出的结果值当作该显示工作区的典型密度数据,而且
其中在检查时,通过对一些超过一个参考密度的多个密度数据计数,来判定是否存显示工作区的面积大小缺陷,所述参考密度是由峰值周围像素的密度数据中的典型密度数据计算出的。
采用了本发明的上述结构,就会产生以下有效的作用。
在分离过程中,通过摄取检查对象的一个图象获得灰度图像,根据该灰度图像的各个像素的密度数据,将存在于灰度图像中的检查对象的显示工作区和显示非工作区相互。在选择性提取过程中,仅选择性提取合适的显示工作区的图像数据,并且将检查缺陷用的图像数据压缩。接着,在检查过程中,使选择性提取的图像数据经受缺陷检查过程。因此,就能在聚焦状态下开始检查而无需形成散焦状态,从而可以通过摄像装置(比如说传感器像素)来接收光线,而不会丢失少量点缺陷的密度数据。
此外,按常规,就会有这样的情况,即在进行显示屏检查过程中,图像处理存储空间被分在显示工作区和显示非工作区,并且对整个空间的密度数据都要完成这一处理过程。但是,就本发明的显示屏检查方法来说,因为选择性提取的仅是相应于显示装置中显示像素的显示工作区的密度数据,所以在实际检查过程中所要处理的密度数据量就会减小到非常小的一个值。因此,当然就会取得大大减少处理时间的效果。
还有,根据本发明,可以判定显示装置的显示工作区的位置是否正常,或者显示装置的显示工作区的大小是否正常。
以下结合优选实施例、参照其附图进行的描述将使本发明的这些以及其它方式和特点变得清楚。
图1是一个显示屏检查设备的原理图,该设备用来实施本发明的第一个实施例中采用的显示屏检查方法;
图2是用于本发明的第一个实施例的设备的处理电路方框图;
图3A和3B表示了显示像素和传感器像素之间的相对位置关系;
图4表示了传感器像素的一维密度数据;
图5表示了传感器像素中无峰值存在时的一维密度数据;
图6表示了具有峰值密度的传感器像素之前和之后的密度分布;
图7表示了传感器像素捕获的显示像素的像素间隔,用以说明根据本发明的第二个实施例的显示屏检查方法;
图8表示了分在二维扩展显示像素的传感器像素,用以说明根据本发明的第三个实施例的显示屏检查方法;
图9表示了当它们叠加在一起时压缩之前和之后的图像;
图10A表示了一个显示像素;而图10B和10C分别表示了聚焦状态下和散焦状态下的密度数据的分布。
在描述本发明的过程之前,应注意到在所有的附图中,相同的参考数字代表相同的部分。
以下,将结合附图对本发明的实施例进行描述。
在根据本发明的第一个实施例的显示屏检查方法中,把一个液晶显示(LCD)用作显示装置的一个例子,而把CCD面传感器用作摄像装置的一个例子。
显示装置、CCD面传感器和图像存储器具有一个展开的正交二维空间。但是,用二维展开空间来作解释会徒增复杂性,妨碍理解,而用二维空间中任一维来理解都会容易地推广到对二维空间的理解。所以,这里用一维来作解释。而且,由于显示装置和CCD面传感器是由高精度的光刻法制造的,所以可以假设显示像素的间距和CCD面传感器的传感器像素的间距甚至在对象改变的情况下,它们的预定设计数据仍将保持。就此,还可以假设因光学系统而产生的部分失真或模糊或类似情况的影响可以忽略。
这里,把显示装置发出的光的强度称作“光强”。用任意单位表示的光强、经显示装置的各个像素发射的每单位面积的光强、显示像素的整个范围内集中的光强、以及在传感器像素的受光表面形成的像素图像的每单位面积的光强,全都表示为“光强”。
图1是根据本发明第一个实施例的显示屏检查装置的原理图。显示装置1是检查对象,它被置于检查台2上,通过一个已知的方法检测显示装置1的对准标记,从而使显示装置1和检查台2之间达到正确对准。通过这个对准过程,具有摄像装置的检查摄像机3和显示装置1之间的位置关系通常保持恒定。特别是,任何二维旋转移动总是能通过该对准来解决。此外,甚至存在任何旋转移动,也能经图像旋转过程通过确定检查对象的周围显示区(周围的显示像素)的位置准确地调整检验对象的旋转角。
把来自检查摄像机3中摄像装置的传感器像素的图像数据与传感器像素按一一对应的关系关联起来,并传送到计算机4的图像存储器5中。无需说明,在计算机4中存有阅读该图像存储器5的图像数据的程序和对缺陷进行规定处理的程序,例如,在一个典型的点缺陷处理的检查中,图像处理的算法作为程序存储在计算机4中,该算法在待检查的点的图像数据与该点周围的图像数据之间作出比较,如果存在一个像素,其图像数据的密度水平极低于其周围像素的那些数据的密度水平,那么该像素被判定为暗点,而如果存在一个像素,其图像数据的密度水平极高于其周围的那些像素地数据的密度水平,那么该像素被判定为亮点。还有,在线缺陷处理的检查中,任何区中的亮点或暗点若在行或列的方向上连续,则该区被判定为亮线或暗线。
图2表示了一个为实现本发明的上述实施例的处理电路方框图。该处理电路位于图1所示设备的计算机4中。首先,把由摄像装置检查摄像机3得到的图像数据通过一个图像输入电路401存入到计算机中。然后,通过一个将在下文描述的压缩处理电路402从所存储的图像数据中提取所需的图像数据,并使其经受一个压缩过程。最后,被压缩的图像数据由预先存储到计算机4中的程序进行处理,以便用一个检查处理电路403来启动图像处理算法。
图3A和3B示出了一个显示像素图像的光强分布50与显示像素图像区60的位置关系。图中,还示出了一个传感器像素区70与它们的位置关系。就此,图3A和3B给出了两个例子。即,图3A表示了传感器像素区70的中心位于光强分布50的峰值位置的情况,图3B表示了传感器像素区70的中心距光强分布50的峰值位置X远处的情况。由传感器像素接收的光的强度是把光强对该传感器像素的有效区进行积分得到的值,因此即是图中阴影部分80表示的数。一个显示装置的光强分布通常会在显示像素的中心部位有一个峰值,并且光强由此向末端部位减小。当然,显示像素的中心和传感器像素之间离得越近,传感器像素接收到的光的强度就变得越大。在图3A和3B的例子中,受显示像素图像区60影响的传感器像素最多为3个。即,显示像素图像区60的光强能够通过对相应的传感器像素的光强求积分来确定。在本实施例中,已预先对与显示像素有关的指定传感器像素的最大数目进行了确定。
图4表示了从一维扩展的二十个传感器像素70获得的图像存储器上的密度数据71。通过图10B所示的压缩处理电路402,从密度数据71中对密度数据的大值与小值进行迭代排列,通过该电路还可以对显示像素存在的部位和非显示像素存在的部位作出判定。依据光学放大倍数,可以确定峰值区的参考传感器像素间隔Pstd。如图4所示,大约为3.3个像素。当检查对象无缺陷时,峰值区按该参考传感器像素间隔Pstd重复出现。为了检查应当出现峰值区却未出现峰值区的部位的密度数据,下面给出判别值,如果判别值的条件不满足,就执行压缩转换过程。假设这些判别值为一个参考间隔下限比D和一个参考间隔上限比U。根据经验,实际处理中采用的D值的近似值为0.5和U值的近似值为1.5。基于此设定,参考间隔下限阈值Dthr和参考间隔上限阈值Uthr如下表示,后的判定是基于对峰值区之间所确定的间隔P来作出的:
Dthr=Pstd×D
Uthr=Pstd×U
            ………………………(1)1)如果P<Dthr,则
与P相关的出自峰值区的小密度数据区就从峰值区中排除掉;2)如果P>Uthr,则
在间隔P中取出数量为(P/Pstd)的、与Pstd符合的那些位置的密度数据。
就图4来说,从这些等式中确定的Dthr约为1.7个像素而Uthr约为5.0个像素。情况1)是指对峰值区的极小间隔的压缩转换处理方法,情况2)是指对峰值区的极大间隔的压缩转换处理方法。根据密度数据71,将峰值区依A、B、C、D(=D1)、E、的顺序进行检查。在此,峰值区A、B、C、D(=D1)、E、F的间隔满足Dthr和Uthr的条件。如先前已证实的受显示像素图像区60影响的传感器像素的最大数目为3个,所以关于显示像素61到66的典型密度数据就由组成峰值密度数据的三个像素以及该峰值密度数据之前和之后的两个像素的平均密度值所给定。而且,虽然峰值区的像素位置当它无任何问题时可能被当作峰值区的位置,但是以下对峰值区的位置的确定更为准确。如图6所示,以峰值区A为例,假设峰值区A以及峰值区A之前和之后的部位的密度数据分别为gA-1、gA、gA+1,并且假设对应于这些密度数据的传感器像素的位置分别为PA-1、PA、PA+1,那么,从如下这三个像素的加数平均值就能够确定该显示像素的位置:
(gA1×PA-1+gA×PA+gA+1×PA+1)/(gA-1+gA+gA+1)………(2)其中当涉及相邻近部位相同的密度数据(如D)时,就预先判定:采用第一和第2像素中的哪一个。这里,把计有二十的传感器像素压缩转换为如图4中所示的六块显示像素的典型密度数据。
有些情况下峰值区不出现在预先确定的位置。在这些情况下,前述峰值区的间隔P超过了Uthr。例如,如果峰值区应当出现在有3或4个像素的间隔处,并且如果一峰值区未出现在大约比该间隔大1.5倍的间隔处,那么在一个峰值区应出现的位置上及其周围的三个像素的密度数据的平均值,就被迫作为典型密度数据存储在该位置上。
图5示出了一个例子,其中在应出现峰值区的位置上缺少一个峰值区,而根据这一个峰值区之前和之后的两个峰值区将这一个峰值区补上。此外,“●”标记的部位为像素200,峰值区应出现在这里。
最后,通过检查处理电路403,将缺陷处理的图像算法用于压缩转换的图像。因此,在典型的点缺陷处理检查中,在一个像素的图像密度数据和该像素周围的的像素密度数据之间作出比较,如果其中存在有一个像素,其密度数据极小于其周围像素的那些密度数据中的每一个,则判定该像素为暗点,而当一个像素的密度数据极大于其圆周像素的那些密度数据中的每一个时,则判定该像素为亮点。
接着,参照图7来描述根据本发明的第二个实施例的显示屏检查方法,在这种情况下,通过参照传感器像素上一个显示像素的确定的位置就能够检查峰值区的移动。
图7表示了显示像素阵列L-1、L、L+1,其中有显示工作区存在。“○”标记的部分为显示像素的中心,它是经上述计算确定的密度数据的峰值区。传感器像素出现在“·”标记区,比如83,具有等间隔。如图所示,如果该基准传感器像素间隔Pstd大约为4个像素,那么可以确认,在给出正常峰值区间隔82的图7中,在80、81处存在非正常间隔。也可以通过对一个目标峰值区之上与之下的峰值区的位置比较来实现对这些非正常间隔的检查。关于峰值区85(它是一个非正常位置),先确认处在该峰值区85之上与之下的显示像素阵列L-1、L-、L+1,随后根据峰值区86、87的位置来测定显示像素阵列L-1、L、L+1的位置差。如果这些差的每一个都超过一个规定的阈值间隔,那么就将目标峰值区判定为造成非正常间隔出现的部分。
接着,参照图8对根据本发明的第三个实施例的显示屏检查方法作出描述。在这种情况下,能够估算显示像素的大小。
图8示出了已按二维方式展开的部分显示像素。标记“○”代表了一个被当作显示工作区的传感器像素,而标记“●”代表了该显示工作区中具有峰值密度数据的一个传感器像素。在这种情况下,用一个标准方法将十三个传感器像素定为一个显示像素。依经验判定,当用一个标准方法将十个或更多的传感器像素定为一个显示像素时,计算出具有高于某比率的密度数据且出现在峰值密度数据周围的传感器像素的数目使得对显示像素大小的判定成为可能。对于压缩转换的图像进行的点缺陷处理的检查以及对被辨明为显示工作区的传感器像素数目的估算,增强了缺陷处理的效能。例如在图8中,假设:如果传感器像素的数目为十一或更少,那么显示像素的尺寸就太小;如果传感器像素的数目为十五或更多,那么显示像素的尺寸就太大;而如果传感器像素的数目为十二至十四,那么显示像素的尺寸是正常的。由此,在图8中,数字90是指传感器像素的数目小到十一,数字91是指传感器像素的数目大到十五,数字92是指十三个传感器像素的标准部分。
在根据本发明的第一到第三个实施例的显示屏检查方法中,由于所选取的仅是显示屏的显示工作区的像素数据,所以就只会对所需部分的数据产生压缩的效果。
例如,当在显示屏的水平方向上将三个传感器像素定为显示像素的一个像素间距时,在水平方向上的压缩效果为1/3。当同样也在垂直方向上获得1/3的压缩效果时,整个就能获得1/9的压缩效果。图9表示了在本发明的一个实施例的应用中的一个例子,其中将包含亮线缺陷的检查对象的未压缩图像400和它的压缩图像(见左上角的一个小方块图像401)叠加在一起。在水平和垂直的两个方向上都实现了约1/3的压缩。
例如,当一个被捕获的图像具有一个2000×2000的图像存储空间时,那么1/9被压缩的图像就变成一个大约660×660的图像存储空间。无需指出,因为根据处理数据的数量处理时间是不同的,所以对处理时间上的缩减产生大影响。更进一步地,把显示像素的显示工作区和显示非工作区相互分离,使得捕获亮度中的细微变化成为可能。通常,由于亮度的判定已在显示工作区和显示非工作区被混和在一起的情况下完成,所以显示非工作区就会影响显示工作区从而不可能捕获亮度中的细微变化。
根据本发明的第二个实施例,可以提取显示装置的显示工作区的位置间隔,从而可以确定任何非正常位置的操作情况。例如,让我们以一个彩色液晶面板为例。在彩色液晶面板中,红色、绿色和蓝色按顺序并按规则形成在彩色滤光片上。在正常的液晶面板中,对于红色作用,光线只透过红色部分的液晶元件。但是,在存在缺陷的液晶面板中,就会发生应是红色点亮但却是它邻近的绿色点亮的一些情况。对于本发明,可以通过判定显示工作区的位置间隔来识别这些缺陷。
在有些CRT面板中,存在显示工作区的大小发生变化的缺陷。这是指存在诸如大孔或者小孔。根据本发明的第三个实施例,可以通过判定显示工作区的大小来识别这些缺陷。
因此,本发明是一个通用的方法,它能广泛地用于各种类型显示装置的显示屏的检查中。
于1996年6月28日提出的日本专利申请8-169782的全部公开内容,包括说明书、权利要求书、附图以及摘要在此被合并在一起而作为一个整体供参考。虽然结合优选实施例并参照其相应的附图对本发明作了完全的描述,但是须注意,这些变换与修改对本领域中的普通技术人员来说是显而易见的。这些变换与修改将被理解为包括在由所附的权利要求书限定的本发明的保护范围之内,别无例外。

Claims (4)

1、一种显示屏检查方法,它将显示装置的显示屏作为检查对象并对该显示屏的缺陷作出判定,该方法包括:
在存在于一灰度图像中的检查对象的显示工作区与显示非工作区之间进行灰度图像的各个像素的图像数据分离,该灰色图像是通过摄取检查对象的一个图像获得的;
选择性地仅提取适合显示工作区的图像数据并压缩要检查缺陷的图像数据,其中在选择性提取时,每一个显示工作区的位置由这样一个像素给定的,该像素表示一个出自灰度图像密度数据的峰值,把由该峰值密度数据及其周围的像素的密度数据计算出的结果值当作该显示工作区的典型密度数据,基于显示工作区的位置和该典型密度数据这二者,就可以选择性提取仅适合显示工作区的图像数据;以及
检查选择性提取的图像数据有无任何缺陷。
2、一种根据权利要求1的显示屏检查方法,其中在选择性提取时,为获得该显示工作区的位置和该典型密度数据,即使密度数据的峰值并不存在,也从该显示工作区应当出现的位置之前与之后的显示工作区的密度数据中选择性提取该位置的密度数据。
3、一种根据权利要求1至2中任何一个的显示屏检查方法,
其中在检查时,通过检查一个区来检查任何峰值区的移动,该区应具有与密度数据峰值的位置数据不同的、在该峰值之前与之后的显示工作区的位置数据间隔。
4、一种根据权利要求1至2中任何一个的显示屏检查方法,
其中在检查时,通过对多个超过一个基准密度的密度数据计数,来判定显示工作区的一个面积大小中是否存在任何缺陷,所述参考密度是由出自峰值周围像素的密度数据中的典型密度数据计算出的。
CNB971171114A 1996-06-28 1997-06-27 显示屏检查方法 Expired - Fee Related CN1135378C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16978296A JP3333686B2 (ja) 1996-06-28 1996-06-28 表示画面検査方法
JP169782/1996 1996-06-28
JP169782/96 1996-06-28

Publications (2)

Publication Number Publication Date
CN1174394A CN1174394A (zh) 1998-02-25
CN1135378C true CN1135378C (zh) 2004-01-21

Family

ID=15892777

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971171114A Expired - Fee Related CN1135378C (zh) 1996-06-28 1997-06-27 显示屏检查方法

Country Status (4)

Country Link
US (1) US5966458A (zh)
JP (1) JP3333686B2 (zh)
KR (1) KR100241504B1 (zh)
CN (1) CN1135378C (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154561A (en) * 1997-04-07 2000-11-28 Photon Dynamics, Inc. Method and apparatus for detecting Mura defects
US6219443B1 (en) * 1998-08-11 2001-04-17 Agilent Technologies, Inc. Method and apparatus for inspecting a display using a relatively low-resolution camera
US7095883B2 (en) * 2001-07-05 2006-08-22 Photon Dynamics, Inc. Moiré suppression method and apparatus
FR2833743B1 (fr) * 2001-12-17 2004-02-20 Eldim Procede et dispositif a faible resolution d'acquisition pour le controle d'un ecran d'affichage
JP2004069673A (ja) * 2002-06-11 2004-03-04 Nec Corp 外観検査装置および外観検査方法
CN1323545C (zh) * 2004-06-22 2007-06-27 东软飞利浦医疗设备系统有限责任公司 医学影像坏点自动检测门限确定方法
US20050286753A1 (en) * 2004-06-25 2005-12-29 Triant Technologies Inc. Automated inspection systems and methods
KR20060044032A (ko) * 2004-11-11 2006-05-16 삼성전자주식회사 표시패널용 검사 장치 및 이의 검사 방법
JP4799329B2 (ja) * 2006-09-07 2011-10-26 株式会社東芝 ムラ検査方法、表示パネルの製造方法及びムラ検査装置
CN101644919A (zh) * 2008-08-04 2010-02-10 施耐德电器工业公司 工业人机界面视觉检测系统和方法
JP5121685B2 (ja) * 2008-12-12 2013-01-16 株式会社東芝 バーコード読取装置、バーコード読取プログラム、バーコード読取方法
EP2200334A1 (en) * 2008-12-18 2010-06-23 Thomson Licensing Display device with feedback elements and method for monitoring
CN101800142A (zh) * 2009-12-31 2010-08-11 四川虹欧显示器件有限公司 等离子显示屏荧光粉涂布缺陷的检测方法及检测设备
US9177528B2 (en) * 2011-07-26 2015-11-03 Nec Corporation Screen inspection device, screen inspection method, and program
TWI512277B (zh) * 2013-01-04 2015-12-11 Taiwan Power Testing Technology Co Ltd 顯示器之檢測設備
WO2016207703A1 (en) 2015-06-23 2016-12-29 Bosch Car Multimedia Portugal, S.A. Apparatus and method for detection of pixel or sub-pixel functional defects of an image display
CN105699049A (zh) * 2016-01-08 2016-06-22 深圳控石智能系统有限公司 一种自动图像质量检测机具及其使用方法
CN107389307A (zh) * 2016-12-31 2017-11-24 深圳眼千里科技有限公司 屏幕自动检测机
CN106910444B (zh) * 2017-02-28 2020-11-27 京东方科技集团股份有限公司 点灯装置和点灯测试方法
CN108303424A (zh) * 2018-01-02 2018-07-20 京东方科技集团股份有限公司 显示面板检测装置及其检测方法
CN108020563A (zh) * 2018-01-08 2018-05-11 凯吉凯精密电子技术开发(苏州)有限公司 Oled面板用外观缺陷检测系统及其检测方法
CN109658320B (zh) * 2018-11-05 2023-04-07 苏州佳智彩光电科技有限公司 一种异形显示屏子像素辉度采集方法
CN111579211B (zh) * 2020-05-19 2022-09-30 Oppo(重庆)智能科技有限公司 显示屏的检测方法、检测装置及计算机存储介质
CN114298254B (zh) * 2021-12-27 2024-03-15 亮风台(上海)信息科技有限公司 一种获取光学设备的显示参数测试信息的方法与设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158238A (ja) * 1990-10-22 1992-06-01 Ezel Inc 液晶パネルの検査方法
JPH055709A (ja) * 1991-06-27 1993-01-14 Matsushita Electric Ind Co Ltd 画面検査装置
US5764209A (en) * 1992-03-16 1998-06-09 Photon Dynamics, Inc. Flat panel display inspection system
JP3297950B2 (ja) * 1993-07-13 2002-07-02 シャープ株式会社 平面型表示パネル検査装置
US5504504A (en) * 1994-07-13 1996-04-02 Texas Instruments Incorporated Method of reducing the visual impact of defects present in a spatial light modulator display
JP3471436B2 (ja) * 1994-08-19 2003-12-02 株式会社アドバンテスト 画質検査装置及びその画像合成方法
JP3190238B2 (ja) * 1995-10-31 2001-07-23 シャープ株式会社 アクティブマトリクス液晶パネルの欠陥検出方法

Also Published As

Publication number Publication date
CN1174394A (zh) 1998-02-25
KR100241504B1 (ko) 2000-02-01
KR980007802A (ko) 1998-03-30
JP3333686B2 (ja) 2002-10-15
US5966458A (en) 1999-10-12
JPH1019731A (ja) 1998-01-23

Similar Documents

Publication Publication Date Title
CN1135378C (zh) 显示屏检查方法
EP0997845B1 (en) A test efficient method of classifying image quality of an optical sensor using three categories of pixels
JP4143660B2 (ja) 画像解析方法、画像解析装置、検査装置、画像解析プログラムおよびコンピュータ読み取り可能な記録媒体
CN112985587B (zh) 发光物料影像处理方法
US7668344B2 (en) Stain inspection method and apparatus
KR101218637B1 (ko) 윤곽선 검출을 위한 대각선 스캔방법
JPH09153133A (ja) しきい値算出方法
JP3127598B2 (ja) 画像中の濃度変動構成画素抽出方法および濃度変動塊判定方法
JP3584507B2 (ja) パタンムラ検査装置
JP2019120644A (ja) 表面検査装置、及び表面検査方法
CN114689605A (zh) 基于机器视觉的显示屏检测方法、装置、设备及介质
JPH08327497A (ja) カラー液晶表示パネルの検査方法
US20200211199A1 (en) Image inspection method
JPH0735699A (ja) 表面欠陥検出方法およびその装置
JPH08247962A (ja) カラーフィルタの欠陥検出方法及び欠陥検出装置並びにパネルディスプレイの欠陥検出方法及び欠陥検出装置
JPH11175727A (ja) 検査方法および装置
JPH0979946A (ja) 表示装置の検査装置
JP3941403B2 (ja) 画像濃淡ムラ検出方法及びこの検査装置
JPH06323954A (ja) 斑検出方法および装置
JPH07122193A (ja) 欠陥検出方法および装置
WO2023108550A1 (en) System for detecting pixel defect
JPH1152904A (ja) Lcdパネルの検査方法
JP3912063B2 (ja) 画像濃淡ムラの検出方法
JPH0653700A (ja) 回路基板検査装置
JP3109237B2 (ja) 画像中の線分構成画素抽出方法および線分判定方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040121

Termination date: 20120627