WO2023108550A1 - System for detecting pixel defect - Google Patents

System for detecting pixel defect Download PDF

Info

Publication number
WO2023108550A1
WO2023108550A1 PCT/CN2021/138841 CN2021138841W WO2023108550A1 WO 2023108550 A1 WO2023108550 A1 WO 2023108550A1 CN 2021138841 W CN2021138841 W CN 2021138841W WO 2023108550 A1 WO2023108550 A1 WO 2023108550A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pattern
micro led
led array
preset
Prior art date
Application number
PCT/CN2021/138841
Other languages
French (fr)
Inventor
Chenchao XU
Yang Yue
Qiming Li
Original Assignee
Jade Bird Display (Shanghai) Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jade Bird Display (Shanghai) Company filed Critical Jade Bird Display (Shanghai) Company
Priority to PCT/CN2021/138841 priority Critical patent/WO2023108550A1/en
Publication of WO2023108550A1 publication Critical patent/WO2023108550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/10Dealing with defective pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present disclosure generally relates to a light emitting diode technology field and, more particularly, to a system for detecting pixel defect of a micro light emitting diode (LED) array panel.
  • LED micro light emitting diode
  • micro LEDs with extra smaller area and higher resolution are increasingly popular in the world.
  • a micro LED array panel including a plurality of micro LEDs can be used to form various kinds of devices, such as camera module, projection modules, display modules, VR/AR optical modules, etc.
  • the pixel defects are not easy to be detected and identified by conventional methods.
  • operators need to review a wafer, a chip and a mask through a graphical user interface displaying various patterns of the micro LED panel, so as to identify the pattern defects.
  • the present disclosure provides a system for detecting pixel defects and to improve the detection efficiency and the detection effect.
  • the present disclosure provides a system for detecting pixel defect of a micro light emitting diode (LED) array panel including a micro LED array, comprising:
  • micro LED control module configured to control switching-on or switching-off of pixels in the micro LED array panel for displaying multiple part-pattern images
  • an image collecting module configured to acquire multiple part-pattern images of the micro LED array panel by multiple exposure processes
  • a pixel defect data processing module configured to transform the multiple part-pattern images acquired by the image collecting module to part-pattern image data and to acquire whole micro LED array image data by combining all of the part-pattern image data;
  • a pixel defect determining module configured to construct a defect detection model by analyzing and processing the whole micro LED array image data.
  • the image collecting module collects images of the micro LED array panel with the pixels being switched on corresponding to the multiple preset part-patterns, to acquire the multiple part-pattern images.
  • the micro LED control module acquires N pieces of preset part-patterns by dividing a whole preset micro LED pattern into N parts;
  • the micro LED control module switches on the pixels in the micro LED array panel according to an Nth preset part-pattern
  • the image collecting module acquires an Nth part-pattern image by imaging the micro LED array with the switched on pixels; wherein, N is a positive integer and more than one.
  • one pixel that needs to be switched on is arranged in every N pixel positions in a row direction and also in a column direction; and, in every preset part-pattern, the first pixel that needs to be switched on in an (N+1) th row is shifted horizontally by one pixel position along a second direction, compared to the first pixel that needs to be switched on in an Nth row; and, the pixels need to be switched on in every preset part-pattern are repeated by every N rows.
  • a first pixel that needs to be switched on in a first row of an (N+1) th preset part-pattern is shifted horizontally by at least one pixel along the second direction, compared to a first pixel position need to be switched on in a first row of an Nth preset part-pattern.
  • the patterns in each preset part-pattern are formed by multiple first-directional parallel lines of pixels, and the multiple first-directional parallel lines are arranged at a preset interval along a second direction; and, the preset part-patterns comprises a first preset part-pattern, a second preset part-pattern, «, and a Nth preset part-pattern; the Nth preset part-pattern is acquired by shifting the pixel that need to be switched on by at least one pixel compared to the (N-1) th preset part-pattern along every row or column in the micro LED array.
  • the first direction is different from the second direction.
  • each preset part-pattern comprises a decomposing matrix that includes N pixels;
  • the preset part-pattern group comprises:
  • the decomposing matrix at least comprises two or more rows and two or more columns.
  • the pixels that need to be switched on in the Nth preset part-pattern are separated from each other along the row direction by at least one pixel and along the column direction by at least one pixel.
  • the pixels that need to be switched on in the decomposing matrix are formed one by one in a certain sequence.
  • the pixels that need to be switched on in the decomposing matrix are formed one by one in a sequence from left to right and from up to down.
  • the positions of the pixels that need to be switched on are different in different preset part-patterns.
  • the number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, and the last decomposing matrix along the row direction is incomplete.
  • the pixel defect determining module further determines pixel defect points not matching a preset feature of the whole micro LED array image data; and determines the detect detection model of the micro LED array panel according to the pixel defect points.
  • the pixel defect determining module before determining pixel defect points, the pixel defect determining module further performs a normalization processing to the whole micro LED array image data; wherein, the micro LED array image data comprises grayscale values of pixels; and, the preset feature is a preset grayscale value of each pixel.
  • the preset feature is a preset threshold acquired from a user input; and, the normalization processing at least includes analyzing a grayscale distribution of the whole micro LED array image data line by line; and, the pixel defect determining module further classifies the pixels into a normal type and an abnormal type according to the pixel grayscale values and the preset feature.
  • the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective preset threshold values; and, the abnormal type further comprises: a dead area, a dead line, a dark line, a dark area, an overly bright line and an overly bright area.
  • the system further comprises a display module, for displaying a whole defect pattern of the micro LED array panel according to the micro LED array image data and displaying the pixel grayscale values and the defective pixels of the micro LED array panel on a display screen according to the defect detection model; and, coloring the defect pixels.
  • the display module further displays a micro LED array image according to the whole micro LED array image data.
  • the system further comprises a sample stage for disposing the micro LED array panel, or a semiconductor wafer.
  • the position of the micro LED array panel is adjusted to be aligned with the image collecting module by adjusting the position of the sample stage.
  • the image collecting module includes optical components, electron-optical components, and/or a detector for detecting the part-patterns.
  • the system further comprises an optical processing module and an optical determining module; wherein, the micro LED control module further switches on all of the pixels in the micro LED array; and, the image collecting module acquires an optical signal of the micro LED array with the switched-on pixels; then, the optical processing module transforms the optical signal to electrical data of the micro LED array; finally, the optical determining module analyzes and processes the electrical data to obtain an optical model of the micro LED array.
  • the image collecting module further includes an optical detector for detecting the optical signal of the micro LED array with the switched-on pixels.
  • FIG. 1 is a block diagram illustrating a system for detecting pixel defect of a micro LED array panel according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating multiple preset part-patterns of a micro LED array according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating the multiple preset part-patterns of the micro LED array according to another embodiment of the present disclosure
  • FIG. 4 is a block diagram illustrating a system for detecting pixel defect of a micro LED array panel according to another embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for constructing a defect detection model of the micro LED array panel according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of the step 1 of FIG. 5 according to an embodiment of the present disclosure.
  • a system for detecting pixel defect of a micro LED array panel comprises: a micro LED control module, an image collecting module, a pixel defect data processing module, and a pixel defect determining module.
  • the micro LED control module is configured to control switching-on or switching-off of the pixels in a micro LED array included in the micro LED array panel for displaying multiple part-pattern images.
  • the image collecting module is configured to acquire the multiple part-pattern images of the micro LED array in the micro LED array panel by multiple exposure processes.
  • the pixel defect data processing module is configured to acquire part-pattern image data corresponding to each part-pattern image acquired by the image collecting module and acquire whole micro LED array image data by combining all of the part-pattern image data.
  • the pixel defect determining module is configured to construct a defect detection model by analyzing and processing the whole micro LED array image data.
  • the micro LED control module controls the pixels in the micro LED array by performing multiple switching-on and switching-off actions to display multiple part-pattern images; and, the image collecting module images the micro LED array with the pixels switched on corresponding to the multiple preset part-patterns, to acquire multiple part-pattern images.
  • the micro LED control module acquires N pieces of preset part-patterns which are overlapped to form a whole preset micro LED pattern. Then, the micro LED control module switches on the pixels that need to be switched on in the micro LED array panel according to every preset part-pattern.
  • the image collecting module acquires N pieces of the part-pattern images by capturing images displayed by the micro LED array with the switched-on pixels according to every preset part-pattern in multiple exposure processes; wherein, N is a positive integer and more than one.
  • each white box represents a pixel, which needs to be switched on.
  • one pixel that needs to be switched on is arranged in every N pixels in a row direction and also in a column direction.
  • a first pixel that needs to be switched on in an (N+1) th row is shifted horizontally by one pixel position along a second direction (for example, from left to right) , compared to a first pixel that needs to be switched on in an Nth row.
  • the pixels that need to be switched on in the every preset part-pattern are repeated by every N rows.
  • a first pixel that needs to be switched on in a first row of an (N+1) th preset part-pattern is shifted horizontally by at least one pixel along the second direction (from left to right) , compared to a first pixel that needs to be switched on in a first row of the Nth preset part-pattern.
  • the preset part-patterns can be arranged in any sequence; and, the positions of the preset part-patterns can be changed alternatively.
  • the whole preset micro LED pattern can be formed by overlapping the N pieces of the preset part-patterns of pixels together.
  • N is, for example, selected as three, or any times of three.
  • one pixel that needs to be switched on is arranged in every three pixels in every row and in every column.
  • the first pixel that needs to be switched on in the second row is shifted horizontally by one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row; and the first pixel that needs to be switched on in the third row is shifted horizontally by one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the second row, and so forth.
  • the pixels that need to be switched on in the every preset part-pattern are repeated by every three rows.
  • the first pixel that needs to be switched on in the first row of the second preset part-pattern is shifted horizontally by at least one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row of the first part-pattern; and, the first pixel that needs to be switched on in the first row of the third part-pattern is shifted horizontally by at least one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row of the second preset part-pattern.
  • the patterns in each preset part-pattern are formed by multiple first-directional parallel lines of pixels, and the multiple first-directional parallel lines are arranged at a preset interval along the second direction; and, the preset part-patterns comprises a first preset part-pattern, a second preset part-pattern, «, and a Nth preset part-pattern; the Nth preset part-pattern is acquired by shifting the pixels that need to be switched on by at least one pixel compared to the (N-1) th preset part-pattern along every row or column in the micro LED array.
  • the first direction is different from the second direction.
  • the N is three and the preset interval is two pixels; or the N is two and the preset interval is one pixel.
  • the preset part-patterns comprise a first preset part-pattern, a second preset part-pattern, and a third preset part-pattern.
  • the first preset part-pattern, the second preset part-pattern, and the third preset part-pattern are arranged in an order from left to right, wherein, the white boxes represent the pixels that need to be switched on.
  • each one of the big boxes represents a preset part-pattern.
  • Each one of the multiple smaller boxes in the larger boxes represents a pixel of the preset micro LED part-pattern.
  • the preset first part-pattern comprises multiple parallel lines formed by the white boxes.
  • the parallel lines can be along any direction in the preset micro LED part-pattern, for example, the parallel lines can be formed along the row direction, along the column direction, or along the diagonal direction or any other directions in the preset micro LED part-pattern.
  • the second direction when the first direction is along the row direction, the second direction is along the column direction, that is to say, the parallel lines move down vertically; or, when the first direction is along the column direction, the second direction is along the row direction, that is to say, the parallel lines shift horizontally; or when the first direction is along any direction except for the row direction, the second direction is along the row direction, that is to say, the parallel lines shift horizontally.
  • the first preset part-pattern comprises a diagonal line in the big box and other lines parallel to the diagonal line at an interval of two pixels along the row direction.
  • the parallel lines of the second preset part-pattern shift one pixel along the row direction compared to the parallel lines of the first preset part-pattern
  • the parallel lines of the third preset part-pattern shift one pixel along the row direction compared to the parallel lines of the second preset part-pattern.
  • the first preset part-pattern, the second preset part-pattern and the third preset part-pattern can be overlapped together to form a whole preset micro LED pattern.
  • the first preset part-pattern in FIG. 3 is the same as the first preset part-pattern in FIG. 2.
  • the difference between the patterns in FIG. 2 and FIG. 3 is as follows:
  • the second preset part-pattern in FIG. 3 is the third preset part-pattern in FIG. 2; and, the third preset part-pattern in FIG. 3 is the second preset part-pattern in FIG. 2. That is to say, the preset part-patterns can be arranged in any sequence.
  • the pixels are switched on under the control of the micro LED control module such as an IC system.
  • the pixels are switched on according to the preset part-patterns, in an order from the first preset part-pattern to the Nth preset part-pattern.
  • the pixels of the micro LED array panel are switched on according to each one of the preset part-patterns. Because the pixels in each preset pattern are separated from each other by at least one pixel in the row direction and/or in the column direction, the switched on pixels in the micro LED array panel are not adjacent to each other in the row direction or in the column direction. As a result, cross talk between the adjacent LEDs (i.e., adjacent pixels) is inhibited.
  • Each preset part-pattern comprises a decomposing matrix that includes N pixels.
  • the preset part-pattern group comprises: a first preset pattern formed by repeating a first decomposing matrix in the row direction and in the column direction, the first decomposing matrix comprises a first pixel that needs to be switched on; a second preset part-pattern formed by repeating a second decomposing matrix in the row direction and in the column direction, the second decomposing matrix comprises a second pixel that needs to be switched on; and an Nth preset part-pattern formed by repeating an Nth decomposing matrix in the row direction and in the column direction, the Nth decomposing matrix comprises a Nth pixel that needs to be switched on; wherein, the objective pixel array pattern is formed by overlapping N pieces of preset part-patterns; wherein, N is an integer not less than 2.
  • the decomposing matrix at least comprises two or more rows and two or more columns. Furthermore, the pixels that need to be switched on in the Nth preset part-pattern are separated from each other along the row direction by at least one pixel and along the column direction by at least one pixel. In another embodiment, the pixels that need to be switched on in the decomposing matrix are formed one by one in a certain sequence. Furthermore, the pixels that need to be switched on in the decomposing matrix are formed one by one in a sequence from left to right and from up to down. The positions of the pixels that need to be switched on are different in different preset part-patterns. The number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, and the last decomposing matrix along the row direction is incomplete.
  • every 2 ⁇ 2 decomposing matrix comprises four pixels as follows: a first pixel, a second pixel, a third pixel and a fourth pixel in an order from left to right and from up to down.
  • the first pixel is at the first position of the first row from left to right;
  • the second pixel is at the second position of the first row from left to right;
  • the third pixel is at the first position of the second row from left to right;
  • the fourth pixel is at the second position of the second row from left to right.
  • the first pixel in the first 2 ⁇ 2 decomposing matrix needs to be switched on, and the first decomposing matrix is repeated from left to right and from up to down, to form the first preset part-pattern.
  • the second pixel in the second 2 ⁇ 2 decomposing matrix needs to be switched on, and the second decomposing matrix is repeated from left to right and from up to down, to form the second part-pattern.
  • the third pixel in the third 2 ⁇ 2 decomposing matrix needs to be switched on, and the third decomposing matrix is repeated from left to right and from up to down, to form the third preset part-pattern.
  • the fourth pixel in the fourth 2 ⁇ 2 decomposing matrix needs to be switched on, and the fourth decomposing matrix is repeated from left to right and from up to down, to form the fourth preset part-pattern.
  • the pixels that need to be switched on among every preset part-pattern are at different pixel positions in the decomposing matrix.
  • the pixel that needs to be switched on in the first preset part-pattern is the first pixel in the first 2 ⁇ 2 decomposing matrix
  • the pixel that needs to be switched on in the second preset part-pattern is the second pixel in the second 2 ⁇ 2 decomposing matrix; the positions of the first pixel and the second pixel are not the same in the2 ⁇ 2 decomposing matrix.
  • the pixel that needs to be switched on in the third preset part-pattern is the third pixel
  • the pixel that needs to be switched on in the fourth preset part-pattern is the fourth pixel
  • the positions of the third pixel and the fourth pixel are not the same in the 2 ⁇ 2 decomposing matrix. Therefore, the positions of the pixel that needs to be switched on in different preset part-patterns are different.
  • the last decomposing matrix along the row direction may be incomplete, and may not include the pixel that needs to be switched on.
  • the left dashed rectangle in each preset part-pattern represents the last decomposing matrix in the row direction; in the first preset part-pattern, the last decomposing matrix in the first row direction cannot include 2 ⁇ 2 array, but only 2 ⁇ 1 array; and, the second pixel and the fourth pixel are not comprised in the last decomposing matrix.
  • the first pixel and the third pixel are repeated into the last decomposing matrix in the row direction, while the second pixel and the fourth pixel are not repeated into the last decomposing matrix in the row direction.
  • the last decomposing matrix along the column direction may be incomplete. For example, referring to FIG.
  • the arrow direction represent the repeated direction of the decomposing matrix
  • the dashed rectangle represents the decomposing matrix
  • the last dotted rectangle represents the last decomposing matrix at the column direction
  • the bottom decomposing matrix at the first column direction cannot includes 3 ⁇ 3 array but only 2 ⁇ 3 array
  • the seventh pixel, the eighth pixel and the ninth pixel are not comprised in the last decomposing matrix.
  • the first through sixth pixels are repeated into the last decomposing matrix in the column direction, while the seventh pixel, the eighth pixel and the ninth pixel are not repeated into the last decomposing matrix in the column direction.
  • FIG. 8 illustrating nine pieces of preset part-patterns of the micro LED array panel, in which N is nine; herein the decomposing matrix is 3 ⁇ 3 array with 9 pixels.
  • the decomposing matrix is 3 ⁇ 3 array with 9 pixels.
  • nine pieces of preset part-patterns from left to right and up to down are shown as a first preset part-pattern, a second preset part-pattern, a third preset part-pattern, ... and a ninth preset part-pattern; in each of the nine part-patterns, the pixels that need to be switched on are separated from each other by two pixels along the row direction and by two pixels along the column direction.
  • the nine pieces of part-patterns can be overlapped to form the objective pixel array pattern.
  • the pixel that needs to be switched on in the 3 ⁇ 3 decomposing matrix are determined one by one in a certain sequence.
  • the pixel that needs to be switched on in the decomposing matrix are determined one by one in a sequence that from left to right and from up row to lower row.
  • every 3 ⁇ 3 decomposing matrix comprises nine pixels as follows: a first pixel, a second pixel, a third pixel, a fourth pixel, «, and a ninth pixel in order from left to right and from up to down.
  • the first pixel is at the first position of the first row from left to right
  • the second pixel is at the second position of the first row from left to right
  • the third pixel is at the third position of the first row from left to right
  • the fourth pixel is at the first position of the second row from left to right
  • the fifth pixel is at the second position of the second row from left to right
  • the sixth pixel is at the third position of the second row from left to right
  • the seventh pixel is at the first position of the third row from left to right
  • the eighth pixel is at the second position of the third row from left to right
  • the ninth pixel is at the third position of the third row from left to right.
  • the first pixel at the first row in every 3 ⁇ 3 decomposing matrix needs to be switched on; thus, the first pixel of every decomposing matrix are repeated from left to right and from up to down, to form the first preset part-pattern.
  • the second pixel at the first row in every 3 ⁇ 3 decomposing matrix needs to be switched on; thus, the second pixel of every decomposing matrix are repeated from left to right and from up to down, to form the second preset part-pattern.
  • the third pixel at the first row in every 3 ⁇ 3 decomposing matrix needs to be switched on; thus, the third pixel of every decomposing matrix are repeated from left to right and from up to down, to form the third preset part-pattern.
  • the fourth preset part-pattern the first pixel at the second row in every 3 ⁇ 3 decomposing matrix needs to be switched on; thus, the fourth pixel of every decomposing matrix are repeated from left to right and from up to down, to form the fourth preset part-pattern; and so forth, the nine preset part-patterns are formed.
  • the pixels that need to be switched on among every preset part-pattern are at different pixel positions in the decomposing matrix.
  • the pixel that needs to be repeated in the first preset part-pattern is the first pixel in the 3 ⁇ 3 decomposing matrix
  • the pixel that needs to be repeated in the second preset part-pattern is the second pixel in the 3 ⁇ 3 decomposing matrix
  • the pixel that needs to be repeated in the third preset part-pattern is the third pixel in the 3 ⁇ 3 decomposing matrix
  • the first pixel, the second pixel and the third pixels are not at the same position in every 3 ⁇ 3 decomposing matrix.
  • the position of the pixel that needs to be repeated in every preset part-pattern is different from the position of the pixel that needs to be repeated in another preset part-pattern. Therefore, the positions of the pixel that needs to be repeated in different preset part-patterns are different.
  • the preset part-patterns together constitute a multiple preset part-pattern group for the multi-exposure process. Additionally, the preset part-patterns in the multi-exposure process can be exposed in any sequence.
  • the pixel defect determining module further determines pixel defect points not matching a preset feature of the whole micro LED array image data; and determines the detect detection model of the micro LED array panel according to the pixel defect points.
  • the preset feature can include one or more preset threshold values acquired from a user input.
  • the pixel defect determining module further performs a normalization processing to the whole micro LED array image data, i.e., performs a normalization processing to the feature values of the pixels included in the whole micro LED array image data.
  • the micro LED pattern image data comprises grayscale values of pixels; and the preset feature is a preset grayscale value of each pixel.
  • the normalization processing at least includes analyzing a grayscale distribution of the whole micro LED array image data line by line.
  • the pixel defect determining module further classifies the pixels into a normal type and an abnormal type according to the pixel grayscale values and the preset feature.
  • the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective pixel grayscale values and the preset threshold values.
  • the preset threshold values comprise several thresholds such as a first threshold, a second threshold, and so on.
  • a pixel having a grayscale value of zero is a dead point pixel; a pixel having a grayscale value of less than the first threshold is a dark point pixel; a pixel having a grayscale value between the first threshold and the second threshold is a normal point pixel; and a pixel having a grayscale value of more than the second threshold is an overly bright point pixel.
  • the various preset threshold values are empirical values. Taking an 8-bit image as an example, the first set threshold may be 40 and the second set threshold may be 60.Of course, the above values are for example only, and are not limited in practice.
  • the abnormal type may further comprise: a dead area, a dead line, a dark line, a dark area, an overly bright line, and an overly bright area.
  • the system further comprises a display module, for displaying pixel grayscale values and defective pixels of the micro LED array panel on a display screen according to the defect detection model; and, further coloring the defective pixels and showing the colored pixel defects on the display screen. Additionally, after the whole micro LED array image data was obtained, the display module further displays a micro LED array image according to the whole micro LED array image data.
  • the system further comprises a sample stage for disposing the micro LED array panel, or a semiconductor wafer.
  • the position of the micro LED array panel is adjusted to be aligned with the image collecting module by adjusting the position of the sample stage.
  • the image collecting module includes any optical components, electron-optical components such as a gray camera, a charge-coupled device (CCD) , photo multiplier tube (PMT) , etc., and/or a detector for detecting the part-pattern images.
  • the system further comprises an optical processing module and an optical determining module;
  • the image collecting module further includes an optical detector for capturing the optical image of the micro LED array with at least some switched-on pixels or no switched-on pixels.
  • the micro LED control module switches on all of pixels in the micro LED array; and, the optical detector acquires an optical signal from the micro LED array; then, the optical processing module transforms the optical signal or image data to electrical data; finally, the optical determining module analyzes and processes the electrical data to obtain an optical model of the micro LED array.
  • the optical model comprises various optical parameters, such as, wave length, half-width, and CIE XY (Commission International de IE clairage) of the emitting light from the micro LED array, luminous power, chromaticity coordinate, absolute brightness and so on.
  • the image collecting model further acquires an electrical signal from the micro LED array; then, another electrical processor analyzes and processes the electrical signal to obtain an electrical model of the micro LED array.
  • the electrical model can comprise a current value, which is acquired under a preset negative voltage.
  • a method for detecting pixel defect performed by the aforementioned system comprises the following steps:
  • step 1 the image collecting module acquires multiple part-pattern images of a micro LED array in the micro LED array panel by multiple exposure processes; wherein, each exposure process obtains one part-pattern of the micro LED array;
  • the multiple part-pattern images may be binary images or grayscale images. Furthermore, each of the part-pattern images is 1/N of a whole micro LED pattern in another embodiment, wherein, N is a positive integer and more than 1.
  • the step 1 further comprises the following steps:
  • step 101 the micro LED control module acquires N pieces of preset part-patterns by dividing a whole preset micro LED pattern into N parts; N is a positive integer and more than one;
  • each one of the N pieces of preset part-patterns includes a section of the whole preset micro LED pattern, and the whole preset micro LED pattern is formed by overlapping all of the N pieces of preset part-patterns together.
  • the detail of the step 101 can be referred to the aforementioned description of the FIGs. 2 and 3, the descriptions of which will not be repeated herein.
  • the pixels are switched on according to the preset part-patterns, in an order from the first preset part-pattern to the Nth preset part-pattern.
  • the detail procedure can be described as follows:
  • step 102 the micro LED control module switches on the pixels in the micro LED array panel according to the first preset part-pattern
  • the pixels are switched on under the control of the micro LED control module such as IC system according to the first preset part-pattern. It is noted that, the pixels can be switched on in a dark room or in any environment.
  • step 103 the image collecting module acquires a first part-pattern image by imaging the micro LED array with the switched on pixels;
  • the image collecting module comprises any optical components/electron-optical components, such as a gray camera, CCD, PMT etc.
  • An image displayed by the micro LED array in which the pixels are switched on according to the first preset part-pattern is captured by the optical module (e.g., a charge-coupled device (CCD) camera) to form a first part-pattern image.
  • the optical module e.g., a charge-coupled device (CCD) camera
  • CCD charge-coupled device
  • a binary pattern with a relatively single brightness is used to form the whole preset micro LED pattern, based on which the first present part-pattern image is formed.
  • the pixels in the binary pattern has only two kinds of brightness, and the brightness difference after imaging is more obvious, which is advantageous in detecting pixel defect according to pixel brightness.
  • the first part-pattern image may be a binary image.
  • the pixels in the binary image have only two kinds of brightness, e.g., black or white.
  • the first part-pattern image may be a grayscale image.
  • a grayscale camera can be directly used to collect the image obtained by switching on the pixels in the micro LED array according to the first present part-pattern, and then the grayscale image can be obtained; or after a color camera is used for shooting, the obtained image is subjected to graying, which is not limited in this embodiment.
  • the grayscale image includes black, white and multiple different gray levels between black and white.
  • the gray level can express the brightness of the first part-pattern image, for example, white means the brightest and black means the darkest. Therefore, based on the brightness of the pixels shown in the grayscale first part-pattern image, it can be determined which pixel in the micro LED array does not emit image light. It should be understood that the use of “first” to define the first part-pattern is only for the convenience of description and does not constitute any limitation to the present disclosure.
  • step 104 repeating the steps 102 and 103 to obtain the second part-pattern image, then, the third part-pattern image, ising, and the Nth part-pattern image.
  • N is three in this embodiment.
  • step 2 the image collecting module acquires part-pattern image data corresponding to each part-pattern image
  • the part-pattern image data includes data of each pixel in the part-pattern image.
  • the part-pattern image data may be binary image data or grayscale image data.
  • step 3 the pixel defect data processing module acquires a whole micro LED array image data by combining all of the part-pattern image data;
  • the whole micro LED array image data includes data of each pixel in a whole micro LED array image.
  • data of a pixel in the whole micro LED array image data is obtained by combining data of corresponding pixels of all of the part-pattern image data.
  • a grayscale value of the left-most pixel in the top-most row of the whole micro LED array image data is obtained by summing a first grayscale value of the left-most pixel in the top-most row of the first part-pattern image data, a second grayscale value of the left-most pixel in the top-most row of the second part-pattern image data, and a third grayscale value of the left-most pixel in the top-most row of the third part-pattern image data.
  • the display module displays a micro LED array image according to the whole micro LED array image data.
  • the micro LED array image is a grayscale image.
  • step 4 the pixel defect determining module obtains a defect detection model by analyzing and processing the whole micro LED array image data.
  • step 4 further comprises the following steps:
  • the pixel defect determining module determines pixel defect points not matching a preset feature of the whole micro LED array image data.
  • the pixel defect determining module performs a normalization processing to the whole micro LED array image data; and, the micro LED array image data comprises grayscale values of pixels; and, the preset feature is a preset grayscale level of each pixel.
  • the preset feature be a preset threshold values acquired from the a user input; and, the normalization processing at least includes: the pixel defect determining module analyzing a grayscale distribution of the whole micro LED pattern image data line by line.
  • the pixel defects with a grayscale change from the preset feature are determined based on the grayscale distribution.
  • the grayscale distribution is the brightness change of the grayscale image data of the micro LED array.
  • edge detection operators can be used, such as Roberts cross operator, Prewitt operator, Sobel operator, Kirsch operator, compass operator, Canny operator and/or Laplacian Operators, etc., to detect a pixel with larger brightness changer in each pixel row of the grayscale image data, and use them as pixel located on the boundary in each pixel row.
  • the step 401 further comprises: the pixel defect determining module classifies the pixel grayscale values into a normal type and an abnormal type according to the preset feature; wherein, the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective preset threshold values.
  • the preset thresholds comprise several thresholds such as a first threshold, a second threshold and so on. For example, the pixel value as zero is a dead point; the pixel value less than the first threshold is a dark point; the pixel value between the first threshold and the second threshold is a normal point; and the pixel value more than the second threshold is an overly bright point.
  • the various preset thresholds are empirical values. Taking an 8-bit image as an example, the first preset threshold may be 40 and the second set threshold may be 60. Of course, the above values are for example only, and are not limited in practice.
  • the pixel defect determining module determines the detect detection model of the micro LED array panel according to the pixel defect points.
  • a detect detection model comprises different pixel type corresponding to each pixel.
  • the abnormal type further comprises: a dead area, a dead line, a dark line, a dark area, an overly bright line and an overly bright area.
  • the defect area or the defect line has a specific grayscale feature and the grayscale feature is associated with the gray level of the grayscale image.
  • the pixel brightness of the defect area is close to or equal to a same grayscale, such as close to black or close to a grayscale value being less than 20.
  • step 05 the display module displays a whole defect pattern of the micro LED array panel according to the micro LED array image data.
  • the step 05 comprises the following detail steps: the display module displays the pixel grayscale values and the defective pixel of the micro LED array panel on a display screen according to the defect detection model.
  • the display module is electrically connected with a display screen.
  • the defective pixels with pixel grayscale values are displayed on the display screen.
  • step 05 further comprises: the display module colors the defective pixels and showing the colored pixel defects on the display screen.
  • the defect pixels comprise different type of defects, such as dark, dead, overly bright.
  • the color of the different defective pixels is different from each other, while the color of the defective pixels with the same defect type is same.

Abstract

A system for detecting pixel defect of a micro LED array panel with a micro LED array. The system comprises a micro LED control module, an image collecting module, a pixel defect data processing module, and a pixel defect determining module. The micro LED control module is configured to control switching-on or switching-off of pixels of the micro LED array panel for displaying multiple part-pattern images.

Description

SYSTEM FOR DETECTING PIXEL DEFECT
FIELD OF THE DISCLOSURE
The present disclosure generally relates to a light emitting diode technology field and, more particularly, to a system for detecting pixel defect of a micro light emitting diode (LED) array panel.
BACKGROUND OF THE DISCLOSURE
Micro LEDs with extra smaller area and higher resolution are increasingly popular in the world. A micro LED array panel including a plurality of micro LEDs can be used to form various kinds of devices, such as camera module, projection modules, display modules, VR/AR optical modules, etc.
However, because the light emitting area and the image displayed by the micro LED array panel are much smaller than before, the pixel defects are not easy to be detected and identified by conventional methods. Thus, operators need to review a wafer, a chip and a mask through a graphical user interface displaying various patterns of the micro LED panel, so as to identify the pattern defects.
Unfortunately, the pattern defects of the micro LED array panel cannot be clearly displayed in the patterns via the conventional method.
The above content is only used to assist in understanding the technical solutions of the present application, and does not constitute an admission that the above is prior art.
BRIEF SUMMARY OF THE DISCLOSURE
In order to overcome the drawback mentioned above, the present disclosure provides a system for detecting pixel defects and to improve the detection efficiency and the detection effect.
To achieve such an objective, the present disclosure provides a system for detecting pixel defect of a micro light emitting diode (LED) array panel including a micro LED array, comprising:
a micro LED control module, configured to control switching-on or switching-off of pixels in the micro LED array panel for displaying multiple part-pattern images;
an image collecting module, configured to acquire multiple part-pattern images of the micro  LED array panel by multiple exposure processes;
a pixel defect data processing module, configured to transform the multiple part-pattern images acquired by the image collecting module to part-pattern image data and to acquire whole micro LED array image data by combining all of the part-pattern image data;
a pixel defect determining module, configured to construct a defect detection model by analyzing and processing the whole micro LED array image data.
In some embodiments, the image collecting module collects images of the micro LED array panel with the pixels being switched on corresponding to the multiple preset part-patterns, to acquire the multiple part-pattern images.
In some embodiments, the micro LED control module acquires N pieces of preset part-patterns by dividing a whole preset micro LED pattern into N parts;
then, the micro LED control module switches on the pixels in the micro LED array panel according to an Nth preset part-pattern; and,
the image collecting module acquires an Nth part-pattern image by imaging the micro LED array with the switched on pixels; wherein, N is a positive integer and more than one.
In some embodiments, in every preset part-pattern, one pixel that needs to be switched on is arranged in every N pixel positions in a row direction and also in a column direction; and, in every preset part-pattern, the first pixel that needs to be switched on in an (N+1) th row is shifted horizontally by one pixel position along a second direction, compared to the first pixel that needs to be switched on in an Nth row; and, the pixels need to be switched on in every preset part-pattern are repeated by every N rows.
In some embodiments, a first pixel that needs to be switched on in a first row of an (N+1) th preset part-pattern is shifted horizontally by at least one pixel along the second direction, compared to a first pixel position need to be switched on in a first row of an Nth preset part-pattern.
In some embodiments, the patterns in each preset part-pattern are formed by multiple first-directional parallel lines of pixels, and the multiple first-directional parallel lines are arranged at a preset interval along a second direction; and, the preset part-patterns comprises a first preset part-pattern, a second preset part-pattern, ……, and a Nth preset part-pattern; the Nth preset part-pattern is acquired by shifting the pixel that need to be switched on by at least one pixel compared to the (N-1) th preset part-pattern along every row or column in the micro LED array.
In some embodiments, the first direction is different from the second direction.
In some embodiments, each preset part-pattern comprises a decomposing matrix that includes N pixels; and,
the preset part-pattern group comprises:
a first preset pattern formed by repeating a first decomposing matrix in the row direction and in the column direction, the first decomposing matrix comprises a first pixel that needs to be switched on; a second preset part-pattern formed by repeating a second decomposing matrix in the row direction and in the column direction, the second decomposing matrix comprises a second pixel that needs to be switched on; and an Nth preset part-pattern formed by repeating an Nth decomposing matrix in the row direction and in the column direction, the Nth decomposing matrix comprises a Nth pixel that needs to be switched on; wherein, the objective pixel array pattern is formed by overlapping N pieces of preset part-patterns; wherein, N is an integer not less than 2.
In some embodiments, the decomposing matrix at least comprises two or more rows and two or more columns.
In some embodiments, the pixels that need to be switched on in the Nth preset part-pattern are separated from each other along the row direction by at least one pixel and along the column direction by at least one pixel.
In some embodiments, the pixels that need to be switched on in the decomposing matrix are formed one by one in a certain sequence.
In some embodiments, the pixels that need to be switched on in the decomposing matrix are formed one by one in a sequence from left to right and from up to down.
In some embodiments, the positions of the pixels that need to be switched on are different in different preset part-patterns.
In some embodiments, the number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, and the last decomposing matrix along the row direction is incomplete.
In some embodiments, the pixel defect determining module further determines pixel defect points not matching a preset feature of the whole micro LED array image data; and determines the detect detection model of the micro LED array panel according to the pixel defect points.
In some embodiments, before determining pixel defect points, the pixel defect determining  module further performs a normalization processing to the whole micro LED array image data; wherein, the micro LED array image data comprises grayscale values of pixels; and, the preset feature is a preset grayscale value of each pixel.
In some embodiments, the preset feature is a preset threshold acquired from a user input; and, the normalization processing at least includes analyzing a grayscale distribution of the whole micro LED array image data line by line; and, the pixel defect determining module further classifies the pixels into a normal type and an abnormal type according to the pixel grayscale values and the preset feature.
In some embodiments, the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective preset threshold values; and, the abnormal type further comprises: a dead area, a dead line, a dark line, a dark area, an overly bright line and an overly bright area.
In some embodiments, the system further comprises a display module, for displaying a whole defect pattern of the micro LED array panel according to the micro LED array image data and displaying the pixel grayscale values and the defective pixels of the micro LED array panel on a display screen according to the defect detection model; and, coloring the defect pixels.
In some embodiments, after the whole micro LED array image data was obtained, the display module further displays a micro LED array image according to the whole micro LED array image data.
In some embodiments, the system further comprises a sample stage for disposing the micro LED array panel, or a semiconductor wafer.
In some embodiments, the position of the micro LED array panel is adjusted to be aligned with the image collecting module by adjusting the position of the sample stage.
In some embodiments, the image collecting module includes optical components, electron-optical components, and/or a detector for detecting the part-patterns.
In some embodiments, the system further comprises an optical processing module and an optical determining module; wherein, the micro LED control module further switches on all of the pixels in the micro LED array; and, the image collecting module acquires an optical signal of the micro LED array with the switched-on pixels; then, the optical processing module transforms the optical signal to electrical data of the micro LED array; finally, the optical determining module  analyzes and processes the electrical data to obtain an optical model of the micro LED array.
In some embodiments, the image collecting module further includes an optical detector for detecting the optical signal of the micro LED array with the switched-on pixels.
Many other advantages and features of the present disclosure will be further understood by the following detailed descriptions and the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating a system for detecting pixel defect of a micro LED array panel according to an embodiment of the present disclosure.
FIG. 2 is a schematic diagram illustrating multiple preset part-patterns of a micro LED array according to an embodiment of the present disclosure;
FIG. 3 is a schematic diagram illustrating the multiple preset part-patterns of the micro LED array according to another embodiment of the present disclosure;
FIG. 4 is a block diagram illustrating a system for detecting pixel defect of a micro LED array panel according to another embodiment of the present disclosure
FIG. 5 is a flowchart of a method for constructing a defect detection model of the micro LED array panel according to an embodiment of the present disclosure;
FIG. 6 is a flowchart of the step 1 of FIG. 5 according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Reference will now be made in detail to some embodiments to provide a further understanding of the disclosure. The specific embodiments and the accompanying drawings discussed are merely illustrative of specific ways to make and use the disclosure, and do not limit the scope of the disclosure or the appended claims.
Referring to FIG. 1, a system for detecting pixel defect of a micro LED array panel according to an embodiment comprises: a micro LED control module, an image collecting module, a pixel defect data processing module, and a pixel defect determining module. The micro LED control  module is configured to control switching-on or switching-off of the pixels in a micro LED array included in the micro LED array panel for displaying multiple part-pattern images. The image collecting module is configured to acquire the multiple part-pattern images of the micro LED array in the micro LED array panel by multiple exposure processes. The pixel defect data processing module is configured to acquire part-pattern image data corresponding to each part-pattern image acquired by the image collecting module and acquire whole micro LED array image data by combining all of the part-pattern image data. The pixel defect determining module is configured to construct a defect detection model by analyzing and processing the whole micro LED array image data.
The micro LED control module controls the pixels in the micro LED array by performing multiple switching-on and switching-off actions to display multiple part-pattern images; and, the image collecting module images the micro LED array with the pixels switched on corresponding to the multiple preset part-patterns, to acquire multiple part-pattern images. In detail, the micro LED control module acquires N pieces of preset part-patterns which are overlapped to form a whole preset micro LED pattern. Then, the micro LED control module switches on the pixels that need to be switched on in the micro LED array panel according to every preset part-pattern. The image collecting module acquires N pieces of the part-pattern images by capturing images displayed by the micro LED array with the switched-on pixels according to every preset part-pattern in multiple exposure processes; wherein, N is a positive integer and more than one.
Referring to FIG. 2, each white box represents a pixel, which needs to be switched on. In every preset part-pattern, one pixel that needs to be switched on is arranged in every N pixels in a row direction and also in a column direction. And, in every preset part-pattern, a first pixel that needs to be switched on in an (N+1) th row is shifted horizontally by one pixel position along a second direction (for example, from left to right) , compared to a first pixel that needs to be switched on in an Nth row. Additionally, the pixels that need to be switched on in the every preset part-pattern are repeated by every N rows.
Furthermore, a first pixel that needs to be switched on in a first row of an (N+1) th preset part-pattern is shifted horizontally by at least one pixel along the second direction (from left to right) , compared to a first pixel that needs to be switched on in a first row of the Nth preset part-pattern. It is noted that, the preset part-patterns can be arranged in any sequence; and, the  positions of the preset part-patterns can be changed alternatively. The whole preset micro LED pattern can be formed by overlapping the N pieces of the preset part-patterns of pixels together.
In addition, it should be noted that, when detecting pixel defect in the embodiment, in order to ensure that there is no omission in the comprehensive detection, and taking into consideration the detection efficiency and the detection effect, N is, for example, selected as three, or any times of three.
For examples, one pixel that needs to be switched on is arranged in every three pixels in every row and in every column. And, in every preset part-pattern, the first pixel that needs to be switched on in the second row is shifted horizontally by one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row; and the first pixel that needs to be switched on in the third row is shifted horizontally by one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the second row, and so forth. Furthermore, the pixels that need to be switched on in the every preset part-pattern are repeated by every three rows. In addition, the first pixel that needs to be switched on in the first row of the second preset part-pattern is shifted horizontally by at least one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row of the first part-pattern; and, the first pixel that needs to be switched on in the first row of the third part-pattern is shifted horizontally by at least one pixel along the second direction (e.g., from left to right) , compared to the first pixel that needs to be switched on in the first row of the second preset part-pattern.
It is noted that, the patterns in each preset part-pattern are formed by multiple first-directional parallel lines of pixels, and the multiple first-directional parallel lines are arranged at a preset interval along the second direction; and, the preset part-patterns comprises a first preset part-pattern, a second preset part-pattern, ……, and a Nth preset part-pattern; the Nth preset part-pattern is acquired by shifting the pixels that need to be switched on by at least one pixel compared to the (N-1) th preset part-pattern along every row or column in the micro LED array.
Furthermore, the first direction is different from the second direction. In some embodiments, the N is three and the preset interval is two pixels; or the N is two and the preset interval is one pixel. In the embodiment illustrated in FIG. 2, the preset part-patterns comprise a first preset  part-pattern, a second preset part-pattern, and a third preset part-pattern. Referring to FIG. 2, the first preset part-pattern, the second preset part-pattern, and the third preset part-pattern are arranged in an order from left to right, wherein, the white boxes represent the pixels that need to be switched on. In FIG. 2, each one of the big boxes represents a preset part-pattern. Each one of the multiple smaller boxes in the larger boxes represents a pixel of the preset micro LED part-pattern. The preset first part-pattern comprises multiple parallel lines formed by the white boxes.
It is noted that, the parallel lines can be along any direction in the preset micro LED part-pattern, for example, the parallel lines can be formed along the row direction, along the column direction, or along the diagonal direction or any other directions in the preset micro LED part-pattern. In some embodiments, when the first direction is along the row direction, the second direction is along the column direction, that is to say, the parallel lines move down vertically; or, when the first direction is along the column direction, the second direction is along the row direction, that is to say, the parallel lines shift horizontally; or when the first direction is along any direction except for the row direction, the second direction is along the row direction, that is to say, the parallel lines shift horizontally.
Herein, referring to FIG. 2, take the first direction along the diagonal direction of the big box as an example. The first preset part-pattern comprises a diagonal line in the big box and other lines parallel to the diagonal line at an interval of two pixels along the row direction. In FIG. 2, the parallel lines of the second preset part-pattern shift one pixel along the row direction compared to the parallel lines of the first preset part-pattern, and the parallel lines of the third preset part-pattern shift one pixel along the row direction compared to the parallel lines of the second preset part-pattern. Thus, the first preset part-pattern, the second preset part-pattern and the third preset part-pattern can be overlapped together to form a whole preset micro LED pattern.
Referring to FIG. 3, in another embodiment, the first preset part-pattern in FIG. 3 is the same as the first preset part-pattern in FIG. 2. The difference between the patterns in FIG. 2 and FIG. 3 is as follows:
the second preset part-pattern in FIG. 3 is the third preset part-pattern in FIG. 2; and, the third preset part-pattern in FIG. 3 is the second preset part-pattern in FIG. 2. That is to say, the preset part-patterns can be arranged in any sequence.
Herein, the pixels are switched on under the control of the micro LED control module such as an IC system. The pixels are switched on according to the preset part-patterns, in an order from the first preset part-pattern to the Nth preset part-pattern.
In some embodiments, the pixels of the micro LED array panel are switched on according to each one of the preset part-patterns. Because the pixels in each preset pattern are separated from each other by at least one pixel in the row direction and/or in the column direction, the switched on pixels in the micro LED array panel are not adjacent to each other in the row direction or in the column direction. As a result, cross talk between the adjacent LEDs (i.e., adjacent pixels) is inhibited. Each preset part-pattern comprises a decomposing matrix that includes N pixels. The preset part-pattern group comprises: a first preset pattern formed by repeating a first decomposing matrix in the row direction and in the column direction, the first decomposing matrix comprises a first pixel that needs to be switched on; a second preset part-pattern formed by repeating a second decomposing matrix in the row direction and in the column direction, the second decomposing matrix comprises a second pixel that needs to be switched on; and an Nth preset part-pattern formed by repeating an Nth decomposing matrix in the row direction and in the column direction, the Nth decomposing matrix comprises a Nth pixel that needs to be switched on; wherein, the objective pixel array pattern is formed by overlapping N pieces of preset part-patterns; wherein, N is an integer not less than 2.
Preferably, the decomposing matrix at least comprises two or more rows and two or more columns. Furthermore, the pixels that need to be switched on in the Nth preset part-pattern are separated from each other along the row direction by at least one pixel and along the column direction by at least one pixel. In another embodiment, the pixels that need to be switched on in the decomposing matrix are formed one by one in a certain sequence. Furthermore, the pixels that need to be switched on in the decomposing matrix are formed one by one in a sequence from left to right and from up to down. The positions of the pixels that need to be switched on are different in different preset part-patterns. The number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, and the last decomposing matrix along the row direction is incomplete.
For example, referring to the FIG. 7, every 2×2 decomposing matrix comprises four pixels as follows: a first pixel, a second pixel, a third pixel and a fourth pixel in an order from left to right  and from up to down. The first pixel is at the first position of the first row from left to right; the second pixel is at the second position of the first row from left to right; the third pixel is at the first position of the second row from left to right; and the fourth pixel is at the second position of the second row from left to right. In the first preset part-pattern, the first pixel in the first 2×2 decomposing matrix needs to be switched on, and the first decomposing matrix is repeated from left to right and from up to down, to form the first preset part-pattern. In the second preset part-pattern, the second pixel in the second 2×2 decomposing matrix needs to be switched on, and the second decomposing matrix is repeated from left to right and from up to down, to form the second part-pattern. In the third part-pattern, the third pixel in the third 2×2 decomposing matrix needs to be switched on, and the third decomposing matrix is repeated from left to right and from up to down, to form the third preset part-pattern. In the fourth part-pattern, the fourth pixel in the fourth 2×2 decomposing matrix needs to be switched on, and the fourth decomposing matrix is repeated from left to right and from up to down, to form the fourth preset part-pattern.
Additionally, the pixels that need to be switched on among every preset part-pattern are at different pixel positions in the decomposing matrix. Referring to FIG. 7 again, the pixel that needs to be switched on in the first preset part-pattern is the first pixel in the first 2×2 decomposing matrix, while the pixel that needs to be switched on in the second preset part-pattern is the second pixel in the second 2×2 decomposing matrix; the positions of the first pixel and the second pixel are not the same in the2×2 decomposing matrix. Similarly, the pixel that needs to be switched on in the third preset part-pattern is the third pixel, while the pixel that needs to be switched on in the fourth preset part-pattern is the fourth pixel; the positions of the third pixel and the fourth pixel are not the same in the 2×2 decomposing matrix. Therefore, the positions of the pixel that needs to be switched on in different preset part-patterns are different.
It is noted that, if the number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, the last decomposing matrix along the row direction may be incomplete, and may not include the pixel that needs to be switched on. example, referring to FIG. 7, the left dashed rectangle in each preset part-pattern represents the last decomposing matrix in the row direction; in the first preset part-pattern, the last decomposing  matrix in the first row direction cannot include 2×2 array, but only 2×1 array; and, the second pixel and the fourth pixel are not comprised in the last decomposing matrix. Thus, the first pixel and the third pixel are repeated into the last decomposing matrix in the row direction, while the second pixel and the fourth pixel are not repeated into the last decomposing matrix in the row direction. If the number of rows in the objective pixel array pattern is not an integral multiple of the number of rows in the decomposing matrix, the last decomposing matrix along the column direction may be incomplete. For example, referring to FIG. 8, the arrow direction represent the repeated direction of the decomposing matrix, the dashed rectangle represents the decomposing matrix and the last dotted rectangle represents the last decomposing matrix at the column direction; in the first part-pattern, the bottom decomposing matrix at the first column direction cannot includes 3×3 array but only 2 ×3 array; and, the seventh pixel, the eighth pixel and the ninth pixel are not comprised in the last decomposing matrix. Thus, the first through sixth pixels are repeated into the last decomposing matrix in the column direction, while the seventh pixel, the eighth pixel and the ninth pixel are not repeated into the last decomposing matrix in the column direction.
For example, referring to FIG. 8, illustrating nine pieces of preset part-patterns of the micro LED array panel, in which N is nine; herein the decomposing matrix is 3×3 array with 9 pixels. In FIG. 8, nine pieces of preset part-patterns from left to right and up to down are shown as a first preset part-pattern, a second preset part-pattern, a third preset part-pattern, ... and a ninth preset part-pattern; in each of the nine part-patterns, the pixels that need to be switched on are separated from each other by two pixels along the row direction and by two pixels along the column direction. The nine pieces of part-patterns can be overlapped to form the objective pixel array pattern.
Furthermore, the pixel that needs to be switched on in the 3×3 decomposing matrix are determined one by one in a certain sequence. In some embodiments, the pixel that needs to be switched on in the decomposing matrix are determined one by one in a sequence that from left to right and from up row to lower row. For example, every 3×3 decomposing matrix comprises nine pixels as follows: a first pixel, a second pixel, a third pixel, a fourth pixel, ……, and a ninth pixel in order from left to right and from up to down. The first pixel is at the first position of the first row from left to right, the second pixel is at the second position of the first row from left to right, the  third pixel is at the third position of the first row from left to right, the fourth pixel is at the first position of the second row from left to right, the fifth pixel is at the second position of the second row from left to right, the sixth pixel is at the third position of the second row from left to right, the seventh pixel is at the first position of the third row from left to right, the eighth pixel is at the second position of the third row from left to right, and the ninth pixel is at the third position of the third row from left to right. In the first preset part-pattern, the first pixel at the first row in every 3×3 decomposing matrix needs to be switched on; thus, the first pixel of every decomposing matrix are repeated from left to right and from up to down, to form the first preset part-pattern. In the second preset part-pattern, the second pixel at the first row in every 3×3 decomposing matrix needs to be switched on; thus, the second pixel of every decomposing matrix are repeated from left to right and from up to down, to form the second preset part-pattern. In the third preset part-pattern, the third pixel at the first row in every 3×3 decomposing matrix needs to be switched on; thus, the third pixel of every decomposing matrix are repeated from left to right and from up to down, to form the third preset part-pattern. In the fourth preset part-pattern, the first pixel at the second row in every 3×3 decomposing matrix needs to be switched on; thus, the fourth pixel of every decomposing matrix are repeated from left to right and from up to down, to form the fourth preset part-pattern; and so forth, the nine preset part-patterns are formed.
Additionally, the pixels that need to be switched on among every preset part-pattern are at different pixel positions in the decomposing matrix. Referring to FIG. 8 again, the pixel that needs to be repeated in the first preset part-pattern is the first pixel in the 3×3 decomposing matrix, the pixel that needs to be repeated in the second preset part-pattern is the second pixel in the 3×3 decomposing matrix, the pixel that needs to be repeated in the third preset part-pattern is the third pixel in the 3×3 decomposing matrix; the first pixel, the second pixel and the third pixels are not at the same position in every 3×3 decomposing matrix. Similarly, in the 3×3 decomposing matrix, the position of the pixel that needs to be repeated in every preset part-pattern is different from the position of the pixel that needs to be repeated in another preset part-pattern. Therefore, the positions of the pixel that needs to be repeated in different preset part-patterns are different.
It is noted that, the preset part-patterns together constitute a multiple preset part-pattern group  for the multi-exposure process. Additionally, the preset part-patterns in the multi-exposure process can be exposed in any sequence.
The pixel defect determining module further determines pixel defect points not matching a preset feature of the whole micro LED array image data; and determines the detect detection model of the micro LED array panel according to the pixel defect points. Herein, the preset feature can include one or more preset threshold values acquired from a user input. Before determining pixel defect points, the pixel defect determining module further performs a normalization processing to the whole micro LED array image data, i.e., performs a normalization processing to the feature values of the pixels included in the whole micro LED array image data. The micro LED pattern image data comprises grayscale values of pixels; and the preset feature is a preset grayscale value of each pixel. The normalization processing at least includes analyzing a grayscale distribution of the whole micro LED array image data line by line. The pixel defect determining module further classifies the pixels into a normal type and an abnormal type according to the pixel grayscale values and the preset feature. In some embodiments, the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective pixel grayscale values and the preset threshold values. The preset threshold values comprise several thresholds such as a first threshold, a second threshold, and so on. For example, a pixel having a grayscale value of zero is a dead point pixel; a pixel having a grayscale value of less than the first threshold is a dark point pixel; a pixel having a grayscale value between the first threshold and the second threshold is a normal point pixel; and a pixel having a grayscale value of more than the second threshold is an overly bright point pixel. It is noted that, the various preset threshold values are empirical values. Taking an 8-bit image as an example, the first set threshold may be 40 and the second set threshold may be 60.Of course, the above values are for example only, and are not limited in practice. The abnormal type may further comprise: a dead area, a dead line, a dark line, a dark area, an overly bright line, and an overly bright area.
The system further comprises a display module, for displaying pixel grayscale values and defective pixels of the micro LED array panel on a display screen according to the defect detection model; and, further coloring the defective pixels and showing the colored pixel defects on the display screen. Additionally, after the whole micro LED array image data was obtained, the display module further displays a micro LED array image according to the whole micro LED array image data.
Referring to FIG. 1 again, the system further comprises a sample stage for disposing the micro LED array panel, or a semiconductor wafer. The position of the micro LED array panel is adjusted to be aligned with the image collecting module by adjusting the position of the sample stage. The image collecting module includes any optical components, electron-optical components such as a gray camera, a charge-coupled device (CCD) , photo multiplier tube (PMT) , etc., and/or a detector for detecting the part-pattern images.
Referring to FIG. 4, the system further comprises an optical processing module and an optical determining module; the image collecting module further includes an optical detector for capturing the optical image of the micro LED array with at least some switched-on pixels or no switched-on pixels. For example, the micro LED control module switches on all of pixels in the micro LED array; and, the optical detector acquires an optical signal from the micro LED array; then, the optical processing module transforms the optical signal or image data to electrical data; finally, the optical determining module analyzes and processes the electrical data to obtain an optical model of the micro LED array. The optical model comprises various optical parameters, such as, wave length, half-width, and CIE XY (Commission International de IE clairage) of the emitting light from the micro LED array, luminous power, chromaticity coordinate, absolute brightness and so on. When no pixel of the micro LED array is switched on, the image collecting model further acquires an electrical signal from the micro LED array; then, another electrical processor analyzes and processes the electrical signal to obtain an electrical model of the micro LED array. The electrical model can comprise a current value, which is acquired under a preset negative voltage.
Hereafter, referring to FIGs. 5 and 6, a method for detecting pixel defect performed by the aforementioned system comprises the following steps:
step 1, the image collecting module acquires multiple part-pattern images of a micro LED array in the micro LED array panel by multiple exposure processes; wherein, each exposure process obtains one part-pattern of the micro LED array;
Herein, in the step 1, the multiple part-pattern images may be binary images or grayscale images. Furthermore, each of the part-pattern images is 1/N of a whole micro LED pattern in another embodiment, wherein, N is a positive integer and more than 1.
The step 1 further comprises the following steps:
step 101: the micro LED control module acquires N pieces of preset part-patterns by dividing a whole preset micro LED pattern into N parts; N is a positive integer and more than one;
Herein, each one of the N pieces of preset part-patterns includes a section of the whole preset micro LED pattern, and the whole preset micro LED pattern is formed by overlapping all of the N pieces of preset part-patterns together. The detail of the step 101 can be referred to the aforementioned description of the FIGs. 2 and 3, the descriptions of which will not be repeated herein.
Additionally, the pixels are switched on according to the preset part-patterns, in an order from the first preset part-pattern to the Nth preset part-pattern. The detail procedure can be described as follows:
step 102, the micro LED control module switches on the pixels in the micro LED array panel according to the first preset part-pattern;
Herein, the pixels are switched on under the control of the micro LED control module such as IC system according to the first preset part-pattern. It is noted that, the pixels can be switched on in a dark room or in any environment.
step 103, the image collecting module acquires a first part-pattern image by imaging the micro LED array with the switched on pixels;
Herein, the image collecting module comprises any optical components/electron-optical components, such as a gray camera, CCD, PMT etc. An image displayed by the micro LED array in which the pixels are switched on according to the first preset part-pattern is captured by the optical module (e.g., a charge-coupled device (CCD) camera) to form a first part-pattern image. When the optical module is capturing the image, there are some pixels with pixel defect in a non-working state, and these pixels cannot emit image light. As a result, in the first part-pattern image, the brightness of a pixel with pixel defect is different from a theoretical brightness of a pixel without defect. In order to obtain this brightness difference, in this embodiment, a binary pattern with a relatively single brightness is used to form the whole preset micro LED pattern, based on which the first present part-pattern image is formed. The pixels in the binary pattern has only two kinds of brightness, and the brightness difference after imaging is more obvious, which is advantageous in  detecting pixel defect according to pixel brightness.
In some embodiments, the first part-pattern image may be a binary image. The pixels in the binary image have only two kinds of brightness, e.g., black or white.
In some other embodiments, the first part-pattern image may be a grayscale image. A grayscale camera can be directly used to collect the image obtained by switching on the pixels in the micro LED array according to the first present part-pattern, and then the grayscale image can be obtained; or after a color camera is used for shooting, the obtained image is subjected to graying, which is not limited in this embodiment.
Different from the binary image, the grayscale image includes black, white and multiple different gray levels between black and white. The gray level can express the brightness of the first part-pattern image, for example, white means the brightest and black means the darkest. Therefore, based on the brightness of the pixels shown in the grayscale first part-pattern image, it can be determined which pixel in the micro LED array does not emit image light. It should be understood that the use of “first” to define the first part-pattern is only for the convenience of description and does not constitute any limitation to the present disclosure.
step 104, repeating the  steps  102 and 103 to obtain the second part-pattern image, then, the third part-pattern image, ……, and the Nth part-pattern image. Herein, in some embodiments, N is three in this embodiment.
step 2, the image collecting module acquires part-pattern image data corresponding to each part-pattern image;
Herein, the part-pattern image data includes data of each pixel in the part-pattern image. In the step 2, as mentioned above in step 1, the part-pattern image data may be binary image data or grayscale image data.
step 3, the pixel defect data processing module acquires a whole micro LED array image data by combining all of the part-pattern image data;
The whole micro LED array image data includes data of each pixel in a whole micro LED array image.
For example, data of a pixel in the whole micro LED array image data is obtained by combining data of corresponding pixels of all of the part-pattern image data. Taken FIG. 2 as an example, a grayscale value of the left-most pixel in the top-most row of the whole micro LED array image data is obtained by summing a first grayscale value of the left-most pixel in the top-most row of the first part-pattern image data, a second grayscale value of the left-most pixel in the top-most row of the second part-pattern image data, and a third grayscale value of the left-most pixel in the top-most row of the third part-pattern image data.
Herein, in the step 3, after the whole micro LED array image data was obtained, further comprises: the display module displays a micro LED array image according to the whole micro LED array image data. The micro LED array image is a grayscale image.
step 4, the pixel defect determining module obtains a defect detection model by analyzing and processing the whole micro LED array image data.
Herein, the step 4 further comprises the following steps:
step 401, the pixel defect determining module determines pixel defect points not matching a preset feature of the whole micro LED array image data.
Herein, in the step 401, before determining pixel defect points, further comprising: the pixel defect determining module performs a normalization processing to the whole micro LED array image data; and, the micro LED array image data comprises grayscale values of pixels; and, the preset feature is a preset grayscale level of each pixel.
Furthermore, in the step 401, the preset feature be a preset threshold values acquired from the a user input; and, the normalization processing at least includes: the pixel defect determining module analyzing a grayscale distribution of the whole micro LED pattern image data line by line.
The pixel defects with a grayscale change from the preset feature are determined based on the grayscale distribution. In the step 401, the grayscale distribution is the brightness change of the grayscale image data of the micro LED array. When analyzing the gray distribution of the grayscale image data line by line, edge detection operators can be used, such as Roberts cross operator, Prewitt operator, Sobel operator, Kirsch operator, compass operator, Canny operator and/or Laplacian Operators, etc., to detect a pixel with larger brightness changer in each pixel row of the  grayscale image data, and use them as pixel located on the boundary in each pixel row.
The step 401 further comprises: the pixel defect determining module classifies the pixel grayscale values into a normal type and an abnormal type according to the preset feature; wherein, the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective preset threshold values. The preset thresholds comprise several thresholds such as a first threshold, a second threshold and so on. For example, the pixel value as zero is a dead point; the pixel value less than the first threshold is a dark point; the pixel value between the first threshold and the second threshold is a normal point; and the pixel value more than the second threshold is an overly bright point. It is noted that, the various preset thresholds are empirical values. Taking an 8-bit image as an example, the first preset threshold may be 40 and the second set threshold may be 60. Of course, the above values are for example only, and are not limited in practice.
step 402, the pixel defect determining module determines the detect detection model of the micro LED array panel according to the pixel defect points.
Additionally, a detect detection model comprises different pixel type corresponding to each pixel. The abnormal type further comprises: a dead area, a dead line, a dark line, a dark area, an overly bright line and an overly bright area. After determining the pixel defect point on the grayscale image of the whole micro LED array, at least one contour of the pixel defect area or the pixel defect line composed of the defect points can be determined according to the coordinate of each pixel defect point in the grayscale image of the whole micro LED array.
It can be understood that the defect area or the defect line has a specific grayscale feature and the grayscale feature is associated with the gray level of the grayscale image. The pixel brightness of the defect area is close to or equal to a same grayscale, such as close to black or close to a grayscale value being less than 20.
step 05, the display module displays a whole defect pattern of the micro LED array panel according to the micro LED array image data.
Herein, the step 05 comprises the following detail steps: the display module displays the pixel grayscale values and the defective pixel of the micro LED array panel on a display screen according  to the defect detection model.
Herein, the display module is electrically connected with a display screen. The defective pixels with pixel grayscale values are displayed on the display screen. Additionally, step 05 further comprises: the display module colors the defective pixels and showing the colored pixel defects on the display screen. Herein, the defect pixels comprise different type of defects, such as dark, dead, overly bright. Thus, the color of the different defective pixels is different from each other, while the color of the defective pixels with the same defect type is same.
The above descriptions are merely embodiments of the present disclosure, and the present disclosure is not limited thereto. A modifications, equivalent substitutions and improvements made without departing from the conception and principle of the present disclosure shall fall within the protection scope of the present disclosure.

Claims (26)

  1. A system for detecting pixel defect of a micro light emitting diode (LED) array panel including a micro LED array, comprising:
    a micro LED control module, configured to control switching-on or switching-off of pixels in the micro LED array panel for displaying multiple part-pattern images;
    an image collecting module, configured to acquire multiple part-pattern images of the micro LED array panel by multiple exposure processes;
    a pixel defect data processing module, configured to transform the multiple part-pattern images acquired by the image collecting module to part-pattern image data and to acquire whole micro LED array image data by combining all of the part-pattern image data;
    a pixel defect determining module, configured to construct a defect detection model by analyzing and processing the whole micro LED array image data.
  2. The system according to claim 1, wherein, the image collecting module collects the images of the micro LED array panel with the pixels being switched on corresponding to the multiple preset part-patterns, to acquire multiple part-pattern images.
  3. The system according to claim 2, wherein, the micro LED control module acquires N pieces of preset part-patterns, which are overlapped together to form a whole preset micro LED pattern;
    then, the micro LED control module switches on the pixels in the micro LED array panel according to an Nth preset part-pattern; and,
    the image collecting module acquires an Nth part-pattern image by imaging the micro LED array panel with the switched on pixels; wherein, N is a positive integer and more than one.
  4. The system according to claim 3, wherein, in every preset part-pattern, one pixel that needs to be switched on is arranged in every N pixel positions in a row direction and also in a column direction; and, in every preset part-pattern, the first pixel that needs to be switched on in an (N+1) throw is shifted horizontally by one pixel position along a second direction, compared to the first pixel that needs to be switched on in an Nth row; and, the pixels need to be switched on in every preset part-pattern arerepeated by every N rows.
  5. The system according to claim 4, wherein, a first pixel that needs to be switched on in a first row of an (N+1) th preset part-pattern is shifted horizontally by at least one pixel along the second direction, compared to a first pixel position need to be switched on a the first row of an Nth preset part-pattern.
  6. The system according to claim 5, wherein, the patterns in each preset part-pattern are formed by multiple first-directional parallel lines of pixels, and the multiple first-directional parallel lines are arranged at a preset interval along a second direction; and, the preset part-patterns comprises a first preset part-pattern, a second preset part-pattern, ……, and a Nth preset part-pattern; the Nth preset part-pattern is acquired by shifting the pixel that need to be switched on by at least one pixel compared to the (N-1) th preset part-pattern along every row or column in the micro LED array.
  7. The system according to claim 6, wherein, the first direction is different from the second direction.
  8. The system according to claim 3, wherein, pixels in each preset part-pattern are separated from each other by at least one pixel in a row direction and/or in a column direction; and, the N pieces of preset part-patterns are overlapped for forming a whole preset micro LED pattern; wherein, N is a positive integer.
  9. The system according to claim 8, wherein, each preset part-pattern comprises a decomposing matrix that includes N pixels; and,
    the preset part-pattern group comprises:
    a first preset pattern formed by repeating a first decomposing matrix in the row direction and in the column direction, the first decomposing matrix comprises a first pixel that needs to be switched on; a second preset part-pattern formed by repeating a second decomposing matrix in the row direction and in the column direction, the second decomposing matrix comprises a second pixel that needs to be switched on; and an Nth preset part-pattern formed by repeating an Nth decomposing matrix in the row direction and in the column direction, the Nth decomposing matrix comprises a Nth pixel that needs to be switched on; wherein, the objective pixel array pattern is formed by overlapping N pieces of preset part-patterns; wherein, N is an integer not less than 2.
  10. The system according to claim 9, wherein, the decomposing matrix at least comprises two or more rows and two or more columns.
  11. The system according to claim 9, wherein, the pixels that need to be switched on in the Nth preset part-pattern are separated from each other along the row direction by at least one pixel and along the column direction by at least one pixel.
  12. The system according to claim 9, wherein, the pixels that need to be switched on in the decomposing matrix are formed one by one in a certain sequence.
  13. The system according to claim 12, wherein, the pixels that need to be switched on in the decomposing matrix are formed one by one in a sequence from left to right and from up to down.
  14. The system according to claim 9, wherein, the positions of the pixels that need to be switched on are different in different preset part-patterns.
  15. The system according to claim 9, wherein, the number of columns in the objective pixel array pattern is not an integral multiple of the number of columns in the decomposing matrix, and the last decomposing matrix along the row direction is incomplete.
  16. The system according to claim 1, wherein, the pixel defect determining module further determines pixel defect points not matching a preset feature of the whole micro LED array image data; and determines the detect detection model of the micro LED array panel according to the pixel defect points.
  17. The system according to claim 16, wherein, before determining pixel defect points, the pixel defect determining module further performs a normalization processing to the whole micro LED array image data; wherein, the micro LED array image data comprises grayscale values of pixels; and, the preset feature is a preset grayscale value of each pixel.
  18. The system according to claim 17, wherein, the preset feature is a preset threshold acquired from a user input; and, the normalization processing at least includes analyzing a grayscale distribution of the whole micro LED array image data line by line; and, the pixel defect determining module further classifies the pixels into a normal type and an abnormal type according to the pixel grayscale values and the preset feature.
  19. The system according to claim 18, wherein, the abnormal type comprises a dead pixel, a dark pixel, and an overly bright pixel corresponding to the respective preset threshold values; and, the abnormal type further comprises: a dead area, a dead line, a dark line, a dark area, an overly bright line and an overly bright area.
  20. The system according to claim 17, wherein, further comprises a display module,  configured to display a whole defect pattern of the micro LED array panel according to the micro LED array image data and display the pixel grayscale values and defective pixels of the micro LED array panel according to the defect detection model; and, to color the defective pixels.
  21. The system according to claim 20, wherein, after the whole micro LED array image data was obtained, the display modules further displays a micro LED array image according to the whole micro LED array image data.
  22. The system according to claim 1, wherein, the system further comprises a sample stage for disposing the micro LED array panel, or a semiconductor wafer.
  23. The system according to claim 22, wherein, the position of the micro LED array panel is adjusted to be aligned with the image collecting module by adjusting the position of the sample stage.
  24. The system according to claim 1, wherein, the image collecting module includes optical components, electron-optical components, and/or a detector for detecting the part-patterns.
  25. The system according to claim 1, wherein, the system further comprises an optical processing module and an optical determining module; wherein, the micro LED control module further switches on all of the pixels in the micro LED array; and, the image collecting module acquires an optical signal of the micro LED array with the switched-on pixels; then, the optical processing module transforms the optical signal to electrical data of the micro LED array; finally, the optical determining module analyzes and processes the electrical data to obtain an optical model of the micro LED array.
  26. The system according to claim 25, wherein, the image collecting module further includes an optical detector for detecting the optical signal of the micro LED array with the switched-on pixels.
PCT/CN2021/138841 2021-12-16 2021-12-16 System for detecting pixel defect WO2023108550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138841 WO2023108550A1 (en) 2021-12-16 2021-12-16 System for detecting pixel defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138841 WO2023108550A1 (en) 2021-12-16 2021-12-16 System for detecting pixel defect

Publications (1)

Publication Number Publication Date
WO2023108550A1 true WO2023108550A1 (en) 2023-06-22

Family

ID=86775066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138841 WO2023108550A1 (en) 2021-12-16 2021-12-16 System for detecting pixel defect

Country Status (1)

Country Link
WO (1) WO2023108550A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171527A (en) * 2005-12-21 2007-07-05 Nanao Corp Correction method and display apparatus
JP2007183499A (en) * 2006-01-10 2007-07-19 Sony Corp Display device and display method
CN101202015A (en) * 2007-08-22 2008-06-18 深圳市同洲电子股份有限公司 Lightness data obtaining method and device for gamma correction of LED
CN101447173A (en) * 2008-12-22 2009-06-03 北京巨数数字技术开发有限公司 System for adjusting point-to-point brightness in a plant and method
CN103327259A (en) * 2013-07-19 2013-09-25 西安诺瓦电子科技有限公司 Parameter adjusting method and device of camera for correcting LED (Light Emitting Diode) display screen
CN103413527A (en) * 2013-08-19 2013-11-27 西安诺瓦电子科技有限公司 Image acquisition method and display method for LED display screen correction
CN103559862A (en) * 2013-11-11 2014-02-05 西安诺瓦电子科技有限公司 Partition zone correcting method for LED display screen
CN104915922A (en) * 2015-06-25 2015-09-16 西安诺瓦电子科技有限公司 Splicing bright-dark line correction method
CN105185302A (en) * 2015-08-28 2015-12-23 西安诺瓦电子科技有限公司 Correction method for light point position deviation among monochromatic images and application thereof
CN109920368A (en) * 2019-04-09 2019-06-21 上海显耀显示科技有限公司 A kind of μ LED pixel drive circuit system and driving method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171527A (en) * 2005-12-21 2007-07-05 Nanao Corp Correction method and display apparatus
JP2007183499A (en) * 2006-01-10 2007-07-19 Sony Corp Display device and display method
CN101202015A (en) * 2007-08-22 2008-06-18 深圳市同洲电子股份有限公司 Lightness data obtaining method and device for gamma correction of LED
CN101447173A (en) * 2008-12-22 2009-06-03 北京巨数数字技术开发有限公司 System for adjusting point-to-point brightness in a plant and method
CN103327259A (en) * 2013-07-19 2013-09-25 西安诺瓦电子科技有限公司 Parameter adjusting method and device of camera for correcting LED (Light Emitting Diode) display screen
CN103413527A (en) * 2013-08-19 2013-11-27 西安诺瓦电子科技有限公司 Image acquisition method and display method for LED display screen correction
CN103559862A (en) * 2013-11-11 2014-02-05 西安诺瓦电子科技有限公司 Partition zone correcting method for LED display screen
CN104915922A (en) * 2015-06-25 2015-09-16 西安诺瓦电子科技有限公司 Splicing bright-dark line correction method
CN105185302A (en) * 2015-08-28 2015-12-23 西安诺瓦电子科技有限公司 Correction method for light point position deviation among monochromatic images and application thereof
CN109920368A (en) * 2019-04-09 2019-06-21 上海显耀显示科技有限公司 A kind of μ LED pixel drive circuit system and driving method

Similar Documents

Publication Publication Date Title
US7978903B2 (en) Defect detecting method and defect detecting device
US10616506B2 (en) Imaging device for distinguishing foreground
US9401015B2 (en) Defect classification method, and defect classification system
US5966458A (en) Display screen inspection method
CN1960439A (en) Methods and devices for image signal processing
WO2023108545A1 (en) Method for constructing defect detection model of micro led array panel, apparatures for dectectig pixel defect and devices
CN107024476A (en) Display panel detecting system and its detection means and detection method
US20090074285A1 (en) Surface inspection device
US20190333203A1 (en) Display panel inspection method and apparatus
JP4143660B2 (en) Image analysis method, image analysis apparatus, inspection apparatus, image analysis program, and computer-readable recording medium
JPH04158238A (en) Inspecting method of liquid crystal panel
WO2023108550A1 (en) System for detecting pixel defect
CN111385447A (en) Image pickup apparatus and method of driving the same
KR101068356B1 (en) Method for inspecting defect of the Pixels in display panel device by image
JP2005165387A (en) Method and device for detecting stripe defective of picture and display device
CN116721039A (en) Image preprocessing method applied to automatic optical defect detection
KR20140082333A (en) Method and apparatus of inspecting mura of flat display
CN113012074B (en) Intelligent image processing method suitable for low-illumination environment
WO2023108546A1 (en) Preset part-pattern group, methods of decomposing objective micro led array pattern, and methods of detecting pixel defect
CN114689605A (en) Display screen detection method, device, equipment and medium based on machine vision
KR101218637B1 (en) Diagonal scan method for fast edge detection
US20200211199A1 (en) Image inspection method
JP2004226272A (en) Method and apparatus for detecting stain defect
CN111833309A (en) Photovoltaic cell detection method and device
JP3433333B2 (en) Defect inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967685

Country of ref document: EP

Kind code of ref document: A1