CN113422017A - 用于二次电池的硅碳复合负极材料及制备方法 - Google Patents

用于二次电池的硅碳复合负极材料及制备方法 Download PDF

Info

Publication number
CN113422017A
CN113422017A CN202110681431.9A CN202110681431A CN113422017A CN 113422017 A CN113422017 A CN 113422017A CN 202110681431 A CN202110681431 A CN 202110681431A CN 113422017 A CN113422017 A CN 113422017A
Authority
CN
China
Prior art keywords
silicon
carbon composite
nickel
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110681431.9A
Other languages
English (en)
Inventor
张子栋
周海平
吴孟强
徐自强
冯婷婷
张庶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110681431.9A priority Critical patent/CN113422017A/zh
Publication of CN113422017A publication Critical patent/CN113422017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种用于二次电池的硅碳复合负极材料及制备方法、锂电池的制备方法,硅碳复合负极材料为氮、氟掺杂的非晶形石墨和P掺杂硅的复合结构,所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨,本发明磁控溅射的硅薄膜非常均匀,膜基结合力强,且P掺杂的硅导电性较纯硅而言导电性更强,等离子体增强的PECVD在制备石墨方面性能稳定,石墨薄膜较为均匀,黏着性高,制备的电池循环稳定性强,氟化和氮化的石墨导电能力、电解液浸润性进一步提升,硅的容量高,两者的优点相结合,制备的硅碳复合材料负极应用在二次电池上容量高,循环稳定性强。

Description

用于二次电池的硅碳复合负极材料及制备方法
技术领域
本发明涉及二次电池的负极材料技术领域,具体涉及到用于二次电池的一种硅碳复合物负极材料。
背景技术
硅负极材料由于具备高的理论容量和适宜的放电电压而被认为是下一代锂离子电池负极材料的候选人之一。但是硅负极材料本身导电性较差,这使得其嵌锂/脱锂能力较弱,同时硅在嵌锂和脱锂的过程中巨大的体积形变容易使得SEI不断的破裂与再生,导致消耗大量的锂离子,使得首次库伦效率较低,值得一提的是这种体积形变容易使得电极粉末化并脱落而导致电气连接问题。为解决硅负极材料导电性和体积膨胀的问题,相关研发者做出了大量的研究,其中硅碳复合负极材料由于其优异的体积能量密度表现脱颖而出,获得了广泛的关注。
有报道称,Si/C复合材料中碳的性质对SEI的形成有重要影响,如其电导率、润湿性、尺寸或厚度、与硅的键合形式等。为了获得合适的碳层,通过原子掺杂和蚀刻对碳表面的修饰对其导电性、润湿性和氧化还原反应起着决定性的作用,从而使锂离子电池获得稳定的SEI,进一步提升硅碳负极材料在高倍率充放电条件下的性能。因此,为了进一步提高Si/C复合材料的性能,一种简单有效的碳包覆层改性技术是必不可少的。
发明内容
针对上述硅碳负极材料中包覆层碳对锂离子传输过程中氧化还原反应动力学较慢的问题,本发明提供了一种用于二次电池的硅碳复合负极材料及其制备方法。
本发明的一个目的是提供一种用于二次电池的硅碳复合负极材料,其为氮化和氟化的非晶形石墨和P掺杂硅的双层复合结构。
本发明中所述的氟化和氮化后的非晶形石墨和P掺杂硅的双层复合结构作为硅碳复合物种的一种,在应用到二次电池时,由于氟化和氮化后的石墨较强的导电能力及硅具有较高的理论容量,两者复合后制备的二次电池导电性强、循环稳定性优异、容量高、倍率性能优异。
本发明的另一个目的是提供一种用于二次电池的硅碳复合负极材料的制备方法。具体为取清洗后的泡沫镍为基底,在其上使用磁控溅射的方法溅射一层硅,采用PECVD方法在硅上附着一层石墨,形成硅碳复合物。
为实现上述发明目的,本发明技术方案如下:
一种用于二次电池的硅碳复合负极材料,所述的硅碳复合负极材料为氮、氟掺杂的非晶形石墨和P掺杂硅的复合结构,所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
作为优选方式,用于二次电池的硅碳复合负极材料通过如下制备方法得到:
(1)取清洗后的泡沫镍于真空设备中,使用Ar和H2等离子体刻蚀泡沫镍表面;
(2)以磁控溅射方法溅射P掺杂的硅至泡沫镍上;
(3)接着以等离子体增强化学气相沉积法PECVD制备非晶形石墨,将石墨沉积在P掺杂的硅上;
(4)步骤(2)和(3)交替进行,得到P型掺杂硅-非晶形石墨-P型掺杂硅-非晶形石墨的多层结构;
(5)再将氮源和氟源气体以电感耦合等离子体ICP方法掺杂入最上层的非晶形石墨中,即得硅碳复合负极材料。
本发明还提供一种用于二次电池的硅碳复合负极材料的制备方法,包括如下步骤:
(1)取清洗后的泡沫镍于真空设备中,使用Ar和H2等离子体刻蚀泡沫镍表面;
(2)以磁控溅射方法溅射P掺杂的硅至泡沫镍上;
(3)接着以等离子体增强化学气相沉积法PECVD制备非晶形石墨,将石墨沉积在P掺杂的硅上;
(4)步骤(2)和(3)交替进行,得到P型掺杂硅-非晶形石墨-P型掺杂硅-非晶形石墨的多层结构;
(5)再将氮源和氟源气体以电感耦合等离子体ICP方法掺杂入最上层的非晶形石墨中,即得硅碳复合负极材料;所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
作为优选方式,步骤(1)使用厚度0.8mm,孔洞0.2mm,孔隙率93%-98%,PPI为110的泡沫镍。
作为优选方式,磁控溅射的方式为射频式磁控溅射,电源输出功率为300W,溅射的靶材距离样品台10-15cm,通入的氩气流量为30-50sccm,腔体内的真空度为2.0-15Pa。
作为优选方式,磁控溅射的靶材为P掺杂的硅靶。
作为优选方式,步骤(1)清洗泡沫镍具体为:首先丙酮超声清洗15min,其次用去离子水超声清洗15min,接着用稀盐酸超声清洗15min,再用去离子水清洗3次,每次15min,然后用乙醇超声清洗15min,最后在真空烘箱里面45℃烘干2h。
作为优选方式,步骤(3)制备非晶形石墨的碳源为甲烷,通入的甲烷和氢气流量分别为10-20sccm和10-20sccm;并且/或者步骤(5)中氟源和氮源分别为四氟化碳气体和氮气,通入的四氟化碳气体和氮气的流量分别为10-20sccm和10-20sccm。
作为优选方式,所述的二次电池为锂离子电池。
作为优选方式,步骤(2)磁控溅射时通入的氩气流量范围为30-50sccm;磁控溅射的时长为1h。
作为优选方式,步骤(3)中等离子体增强化学气相沉积法PECVD生长石墨时除碳源气体外同时通入氢气或者氩气至少一种,等离子体增强化学气相沉积法PECVD通入氢气或者氩气各自的流量在10-20sccm;等离子体增强化学气相沉积法PECVD的电源功率为300W,反射为0-30W。
作为优选方式,步骤(3)中等离子体增强化学气相沉积法PECVD的时长为1h。
作为优选方式,步骤(5)氮源和氟源气体电离的时长为10min。
作为优选方式,所述步骤(3)和步骤(5)中磁控溅射和等离子体增强化学气相沉积法PECVD时样品台的温度为200℃-400℃。
本发明还提供一种硅碳复合负极材料制备锂电池的方法,包括如下步骤:
步骤一:取泡沫镍在压片机上压取直径为6.5-8.5mm的圆片;
步骤二:取圆片泡沫镍置于冲片机上,使用18-25MPa的压力将其压平;
步骤三:取压片后的泡沫镍圆片,先使用丙酮超声清洗10-20分钟,再用去离子水超声清洗10-20分钟,接下来用浓度为0.01mol/L的稀盐酸清洗10-20分钟,然后用去离子水超声清洗3次,每次10-20分钟,再用乙醇超声清洗10-20分钟,最后将清洗后的泡沫镍置于真空烘箱中45℃持续2h烘干;
步骤四:取烘干后的泡沫镍于磁控溅射装置的样品台上,抽真空后,加热样品台约200℃-400℃;向腔体内通入氩气10-20sccm,氢气10-20sccm,打开电感耦合等离子体装置电源调节至300W电离气体,使得Ar和H2等离子体刻蚀泡沫镍表面,电感耦合等离子体装置运行1h,之后关闭电感耦合等离子体装置;得到等离子体刻蚀后的泡沫镍PMN;
步骤五:保持200℃-400℃温度不变,向腔体内通入氩气30-50sccm,打开磁控溅射电源,调解电源300W,调节反射至0-30W;运行磁控溅射溅射硅1h,之后关闭气体流量计和磁控溅射电源;
步骤六:保持200℃-400℃温度不变,向真空腔体内通入氢气10sccm-20sccm,甲烷10sccm-20sccm;打开电感耦合等离子体装置电源调节至300W电离气体,使得石墨沉积在硅表面,形成石墨薄膜,感耦合等离子体装置运行1h,之后关闭感耦合等离子体装置;
步骤七:重复步骤五和步骤六;所得样品即为C-Si-C-Si-等离子体刻蚀后的泡沫镍基硅碳复合物负极材料;
步骤八:保持200℃-400℃温度不变,向真空腔体内通入氮气10sccm-20sccm,氟化碳气体10sccm-20sccm;打开电感耦合等离子体装置ICP电源调节至300W电离气体,使得氮原子与氟原子掺杂入石墨薄膜,形成氮化和氟化的石墨薄膜,电感耦合等离子体装置ICP运行10min,之后关闭电感耦合等离子体装置ICP;待装置冷却后取出样品台上样品,所得样品即为氮氟同时掺杂的C-Si-C-Si-等离子体刻蚀后的泡沫镍基硅碳复合物负极材料;
步骤九:将制备好的镍基硅碳复合物负极材料置入氧气和水含量均低于0.1ppm且充满氩气的手套箱中;
步骤十:采用CR2032型号的纽扣电池模具,以Celgard-2500作为隔膜,1MLiPF6溶于体积比为1:1的碳酸乙烯酯EC:碳酸二乙酯DEC混合溶液中作为电解液,混合溶液中包括10%氟代碳酸乙烯酯FEC添加剂,以金属锂片为对电极,在手套箱内组装成纽扣电池。优选的,磁控溅射的硅靶为P型掺杂的硅,靶材直径约为75-80mm。
优选的,磁控溅射的电源功率为300W,反射为0-12W。
本发明的有益效果为:(1)本发明磁控溅射的硅薄膜非常均匀,膜基结合力强,且P掺杂的硅导电性较纯硅而言导电性更强,(2)等离子体增强的PECVD在制备石墨方面性能稳定,石墨薄膜较为均匀,黏着性高,制备的电池循环稳定性强,(3)氟化和氮化的石墨导电能力、电解液浸润性进一步提升,硅的容量高,两者的优点相结合,制备的硅碳复合材料负极应用在二次电池上容量高,循环稳定性强。
附图说明
图1为实施例1中的镍基硅碳复合物的SEM图谱;
图2为实施例1中的制备方法流程图;其中,MN是压缩后的泡沫镍;PMN是等离子体刻蚀后的泡沫镍;Si-PMN是磁控溅射Si后的泡沫镍;ICP-CVD电感耦合等离子体-化学气相沉积法;Ar/H2 Plasma氩气/氢气等离子体;Magnetron Sputtering P-doped Silicon磁控溅射P型硅;N2/CF4 Plasma氮气/氟化碳等离子体;
图3为实施例1中的镍基硅碳复合物的XPS图谱;其中(a)是N的XPS,(b)是F的XPS;
图4为实施例1中和对比例1的镍基硅碳复合物在一定电流密度下的充放电长循环图和不同电流密度下的倍率图;其中,(a)是在一定电流密度下的充放电长循环图,(b)不同电流密度下的倍率图,其中C-Si-C-Si-PMN表示实施例1,10N/F-C-Si-C-Si-PMN表示对比例1。
具体实施方式
本发明提供一种用于二次电池的硅碳复合物负极材料,所述的硅碳复合负极材料为氮、氟掺杂的非晶形石墨和P掺杂硅的复合结构,所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
本发明还提供一种用于二次电池的硅碳复合负极材料的制备方法,包括如下步骤:
(1)取清洗后的泡沫镍于真空设备中,使用Ar和H2等离子体刻蚀泡沫镍表面;
(2)以磁控溅射方法溅射P掺杂的硅至泡沫镍上;
(3)接着以等离子体增强化学气相沉积法PECVD制备非晶形石墨,将石墨沉积在P掺杂的硅上;
(4)步骤(2)和(3)交替进行,得到P型掺杂硅-非晶形石墨-P型掺杂硅-非晶形石墨的多层结构;
(5)再将氮源和氟源气体以电感耦合等离子体ICP方法掺杂入最上层的非晶形石墨中,即得硅碳复合负极材料;所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
作为优选方式,步骤(1)使用厚度0.8mm,孔洞0.2mm,孔隙率93%-98%,PPI为110的泡沫镍。
作为优选方式,磁控溅射的方式为射频式磁控溅射,电源输出功率为300W,溅射的靶材距离样品台10-15cm,通入的氩气流量为30-50sccm,腔体内的真空度为2.0-15Pa。
作为优选方式,磁控溅射的靶材为P掺杂的硅靶。
作为优选方式,步骤(1)清洗泡沫镍具体为:首先丙酮超声清洗15min,其次用去离子水超声清洗15min,接着用稀盐酸超声清洗15min,再用去离子水清洗3次,每次15min,然后用乙醇超声清洗15min,最后在真空烘箱里面45℃烘干2h。
作为优选方式,步骤(3)制备非晶形石墨的碳源为甲烷,通入的甲烷和氢气流量分别为10-20sccm和10-20sccm;并且/或者步骤(5)中氟源和氮源分别为四氟化碳气体和氮气,通入的四氟化碳气体和氮气的流量分别为10-20sccm和10-20sccm。
作为优选方式,所述的二次电池为锂离子电池。
作为优选方式,步骤(2)磁控溅射时通入的氩气流量范围为30-50sccm;磁控溅射的时长为1h。
作为优选方式,步骤(3)中等离子体增强化学气相沉积法PECVD生长石墨时除碳源气体外同时通入氢气或者氩气至少一种,等离子体增强化学气相沉积法PECVD通入氢气或者氩气各自的流量在10-20sccm;等离子体增强化学气相沉积法PECVD的电源功率为300W,反射为0-30W。
作为优选方式,步骤(3)中等离子体增强化学气相沉积法PECVD的时长为1h。
作为优选方式,步骤(5)氮源和氟源气体电离的时长为10min。
作为优选方式,所述步骤(3)和步骤(5)中磁控溅射和等离子体增强化学气相沉积法PECVD时样品台的温度为200℃-400℃。
实施例1
本实施例提供一种用于二次电池的硅碳复合负极材料的制备方法,包括如下步骤:
步骤一:取泡沫镍在压片机上压取直径为6.5-8.5mm的圆片;
步骤二:取圆片泡沫镍置于冲片机上,使用18-25MPa的压力将其压平;
步骤三:取压片后的泡沫镍圆片,先使用丙酮超声清洗10-20分钟,再用去离子水超声清洗10-20分钟,接下来用浓度为0.01mol/L的稀盐酸清洗10-20分钟,然后用去离子水超声清洗3次,每次10-20分钟,再用乙醇超声清洗10-20分钟,最后将清洗后的泡沫镍置于真空烘箱中45℃持续2h烘干;
步骤四:取烘干后的泡沫镍于磁控溅射装置的样品台上,抽真空后,加热样品台约200℃-400℃;向腔体内通入氩气10-20sccm,氢气10-20sccm,打开电感耦合等离子体装置电源调节至300W电离气体,使得Ar和H2等离子体刻蚀泡沫镍表面,电感耦合等离子体装置运行1h,之后关闭电感耦合等离子体装置;得到等离子体刻蚀后的泡沫镍PMN;
步骤五:保持200℃-400℃温度不变,向腔体内通入氩气30-50sccm,打开磁控溅射电源,调解电源300W,调节反射至0-30W;运行磁控溅射溅射硅1h,之后关闭气体流量计和磁控溅射电源;
步骤六:保持200℃-400℃温度不变,向真空腔体内通入氢气10sccm-20sccm,甲烷10sccm-20sccm;打开电感耦合等离子体装置电源调节至300W电离气体,使得石墨沉积在硅表面,形成石墨薄膜,感耦合等离子体装置运行1h,之后关闭感耦合等离子体装置;
步骤七:重复步骤五和步骤六;所得样品即为C-Si-C-Si-等离子体刻蚀后的泡沫镍PMN镍基硅碳复合物负极材料;
步骤八:保持200℃-400℃温度不变,向真空腔体内通入氮气10sccm-20sccm,氟化碳气体10sccm-20sccm;打开电感耦合等离子体装置ICP电源调节至300W电离气体,使得氮原子与氟原子掺杂入石墨薄膜,形成氮化和氟化的石墨薄膜,电感耦合等离子体装置ICP运行10min,之后关闭电感耦合等离子体装置ICP;待装置冷却后取出样品台上样品,所得样品即为氮氟同时掺杂的C-Si-C-Si-等离子体刻蚀后的泡沫镍基硅碳复合物负极材料,即10N/F-C-Si-C-Si-PMN镍基硅碳复合物负极材料。
将上述镍基硅碳复合物负极材料制成锂电池还包括步骤九和步骤十:
步骤九:将制备好的镍基硅碳复合物负极材料置入氧气和水含量均低于0.1ppm且充满氩气的手套箱中;
步骤十:采用CR2032型号的纽扣电池模具,以Celgard-2500作为隔膜,1MLiPF6溶于体积比为1:1的碳酸乙烯酯EC:碳酸二乙酯DEC混合溶液中作为电解液,混合溶液中包括10%氟代碳酸乙烯酯FEC添加剂,以金属锂片为对电极,在手套箱内组装成纽扣电池。
本实施例所述的硅碳复合物负极材料的XPS谱图、SEM谱图以及一定电流密度下的充放电长循环图和不同电流密度下的倍率图如图3-1所示。
通过蓝电测试仪测试该电池首次库伦效率为86.2%(0.1A g-1),放电比容量为2586.4mA h g-1。在电流密度为2A g-1的大小下循环500圈之后,其可逆容量为1635.6mA hg-1
对比例1
本实施例所述的一种用于二次电池的硅碳复合物负极材料,与实施例1的区别在于:不包含步骤八,没有对非晶型石墨氮化和氟化共同掺杂,所得样品即为C-Si-C-Si-等离子体刻蚀后的泡沫镍PMN镍基硅碳复合物负极材料。
通过蓝电测试仪测试该电池在第一个循环过程中(0.1A g-1),首次库伦效率为51.8%,循环500圈之后,在电流密度为2A g-1的大小下,其可逆容量有781.4mA h g-1
对比例2
本对比例所述的硅碳复合负极材料,其制备方法和实施例1相比,区别在于:
步骤八中:电感耦合等离子体装置(ICP)运行5min,之后关闭ICP等装置。待装置冷却后取出样品台上样品,所得样品即为5N/F-C-Si-C-Si-PMN镍基硅碳复合物负极材料。
将上述镍基硅碳复合物负极材料制成锂电池,如实施例1。
通过蓝电测试仪测试该电池在电流密度为2A g-1的大小下循环500圈之后,其可逆容量为701.5mA h g-1
对比例3
本对比例所述的硅碳复合负极材料,其制备方法和实施例1相比,区别在于:步骤八中:电感耦合等离子体装置(ICP)运行15min,之后关闭ICP等装置。待装置冷却后取出样品台上样品,所得样品即为15N/F-C-Si-C-Si-PMN镍基硅碳复合物负极材料。
将上述镍基硅碳复合物负极材料制成锂电池,如实施例1。
通过蓝电测试仪测试该电池在循环500圈之后,在电流密度为2Ag-1的大小下,其可逆容量为1207.1mA h g-1
通过实施例和对比例可见,本发明所述的硅碳复合负极材料在等离子体氮化和氟化其非晶形石墨薄膜后,其倍率性能及可逆容量有着较为明显的提升。
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。

Claims (15)

1.一种用于二次电池的硅碳复合负极材料,其特征在于:所述的硅碳复合负极材料为氮、氟掺杂的非晶形石墨和P掺杂硅的复合结构,所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
2.根据权利要求1所述的用于二次电池的硅碳复合负极材料,其特征在于通过如下制备方法得到:
(1)取清洗后的泡沫镍于真空设备中,使用Ar和H2等离子体刻蚀泡沫镍表面;
(2)以磁控溅射方法溅射P掺杂的硅至泡沫镍上;
(3)接着以等离子体增强化学气相沉积法PECVD制备非晶形石墨,将石墨沉积在P掺杂的硅上;
(4)步骤(2)和(3)交替进行,得到P型掺杂硅-非晶形石墨-P型掺杂硅-非晶形石墨的多层结构;
(5)再将氮源和氟源气体以电感耦合等离子体ICP方法掺杂入最上层的非晶形石墨中,即得硅碳复合负极材料。
3.一种用于二次电池的硅碳复合负极材料的制备方法,其特征在于包括如下步骤:
(1)取清洗后的泡沫镍于真空设备中,使用Ar和H2等离子体刻蚀泡沫镍表面;
(2)以磁控溅射方法溅射P掺杂的硅至泡沫镍上;
(3)接着以等离子体增强化学气相沉积法PECVD制备非晶形石墨,将石墨沉积在P掺杂的硅上;
(4)步骤(2)和(3)交替进行,得到P型掺杂硅-非晶形石墨-P型掺杂硅-非晶形石墨的多层结构;
(5)再将氮源和氟源气体以电感耦合等离子体ICP方法掺杂入最上层的非晶形石墨中,即得硅碳复合负极材料;所述的复合结构从下至上依次为泡沫镍、P型掺杂硅、非晶形石墨、P型掺杂硅、氮氟同时掺杂的非晶形石墨。
4.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(1)使用厚度0.8mm,孔洞0.2mm,孔隙率93%-98%,PPI为110的泡沫镍。
5.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:磁控溅射的方式为射频式磁控溅射,电源输出功率为300W,溅射的靶材距离样品台10-15cm,通入的氩气流量为30-50sccm,腔体内的真空度为2.0-15Pa。
6.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:磁控溅射的靶材为P掺杂的硅靶。
7.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(1)清洗泡沫镍具体为:首先丙酮超声清洗15min,其次用去离子水超声清洗15min,接着用稀盐酸超声清洗15min,再用去离子水清洗3次,每次15min,然后用乙醇超声清洗15min,最后在真空烘箱里面450C烘干2h。
8.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(3)制备非晶形石墨的碳源为甲烷,通入的甲烷和氢气流量分别为10-20sccm和10-20sccm;并且/或者步骤(5)中氟源和氮源分别为四氟化碳气体和氮气,通入的四氟化碳气体和氮气的流量分别为10-20sccm和10-20sccm。
9.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:所述的二次电池为锂离子电池。
10.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(2)磁控溅射时通入的氩气流量范围为30-50sccm;磁控溅射的时长为1h。
11.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(3)中等离子体增强化学气相沉积法PECVD生长石墨时除碳源气体外同时通入氢气或者氩气至少一种,等离子体增强化学气相沉积法PECVD通入氢气或者氩气各自的流量在10-20sccm;等离子体增强化学气相沉积法PECVD的电源功率为300W,反射为0-30W。
12.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(3)中等离子体增强化学气相沉积法PECVD的时长为1h。
13.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:步骤(5)氮源和氟源气体电离的时长为10min。
14.根据权利要求3所述的用于二次电池的硅碳复合负极材料的制备方法,其特征在于:所述步骤(3)和步骤(5)中磁控溅射和等离子体增强化学气相沉积法PECVD时样品台的温度为200℃-400℃。
15.一种硅碳复合负极材料制备锂电池的方法,其特征在于包括如下步骤:
步骤一:取泡沫镍在压片机上压取直径为6.5-8.5mm的圆片;
步骤二:取圆片泡沫镍置于冲片机上,使用18-25MPa的压力将其压平;
步骤三:取压片后的泡沫镍圆片,先使用丙酮超声清洗10-20分钟,再用去离子水超声清洗10-20分钟,接下来用浓度为0.01mol/L的稀盐酸清洗10-20分钟,然后用去离子水超声清洗3次,每次10-20分钟,再用乙醇超声清洗10-20分钟,最后将清洗后的泡沫镍置于真空烘箱中45℃持续2h烘干;
步骤四:取烘干后的泡沫镍于磁控溅射装置的样品台上,抽真空后,加热样品台约200℃-400℃;向腔体内通入氩气10-20sccm,氢气10-20sccm,打开电感耦合等离子体装置电源调节至300W电离气体,使得Ar和H2等离子体刻蚀泡沫镍表面,电感耦合等离子体装置运行1h,之后关闭电感耦合等离子体装置;得到等离子体刻蚀后的泡沫镍PMN;
步骤五:保持200℃-400℃温度不变,向腔体内通入氩气30-50sccm,打开磁控溅射电源,调解电源300W,调节反射至0-30W;运行磁控溅射溅射硅1h,之后关闭气体流量计和磁控溅射电源;
步骤六:保持200℃-400℃温度不变,向真空腔体内通入氢气10sccm-20sccm,甲烷10sccm-20sccm;打开电感耦合等离子体装置电源调节至300W电离气体,使得石墨沉积在硅表面,形成石墨薄膜,感耦合等离子体装置运行1h,之后关闭感耦合等离子体装置;
步骤七:重复步骤五和步骤六;所得样品即为C-Si-C-Si-等离子体刻蚀后的泡沫镍基硅碳复合物负极材料;
步骤八:保持2000C-4000C温度不变,向真空腔体内通入氮气10sccm-20sccm,氟化碳气体10sccm-20sccm;打开电感耦合等离子体装置ICP电源调节至300W电离气体,使得氮原子与氟原子掺杂入石墨薄膜,形成氮化和氟化的石墨薄膜,电感耦合等离子体装置ICP运行10min,之后关闭电感耦合等离子体装置ICP;待装置冷却后取出样品台上样品,所得样品即为氮氟同时掺杂的C-Si-C-Si-等离子体刻蚀后的泡沫镍基硅碳复合物负极材料;
步骤九:将制备好的镍基硅碳复合物负极材料置入氧气和水含量均低于0.1ppm且充满氩气的手套箱中;
步骤十:采用CR2032型号的纽扣电池模具,以Celgard-2500作为隔膜,1MLiPF6溶于体积比为1:1的碳酸乙烯酯EC:碳酸二乙酯DEC混合溶液中作为电解液,混合溶液中包括10%氟代碳酸乙烯酯FEC添加剂,以金属锂片为对电极,在手套箱内组装成纽扣电池。
CN202110681431.9A 2021-06-18 2021-06-18 用于二次电池的硅碳复合负极材料及制备方法 Pending CN113422017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110681431.9A CN113422017A (zh) 2021-06-18 2021-06-18 用于二次电池的硅碳复合负极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110681431.9A CN113422017A (zh) 2021-06-18 2021-06-18 用于二次电池的硅碳复合负极材料及制备方法

Publications (1)

Publication Number Publication Date
CN113422017A true CN113422017A (zh) 2021-09-21

Family

ID=77789348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110681431.9A Pending CN113422017A (zh) 2021-06-18 2021-06-18 用于二次电池的硅碳复合负极材料及制备方法

Country Status (1)

Country Link
CN (1) CN113422017A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476921A (zh) * 2023-12-28 2024-01-30 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103430A (zh) * 2014-06-12 2014-10-15 燕山大学 具有高体积比电容的氟氮共掺杂石墨化碳微球的制备方法
CN105932234A (zh) * 2016-05-05 2016-09-07 华东师范大学 一种钠离子电池负极材料用掺杂多孔碳球及其制备方法
CN108807883A (zh) * 2018-05-28 2018-11-13 云南大学 硅碳薄膜负极材料及其制备方法
CN109686928A (zh) * 2018-11-21 2019-04-26 电子科技大学 一种应用于二次电池的碳硅复合负极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103430A (zh) * 2014-06-12 2014-10-15 燕山大学 具有高体积比电容的氟氮共掺杂石墨化碳微球的制备方法
CN105932234A (zh) * 2016-05-05 2016-09-07 华东师范大学 一种钠离子电池负极材料用掺杂多孔碳球及其制备方法
CN108807883A (zh) * 2018-05-28 2018-11-13 云南大学 硅碳薄膜负极材料及其制备方法
CN109686928A (zh) * 2018-11-21 2019-04-26 电子科技大学 一种应用于二次电池的碳硅复合负极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476921A (zh) * 2023-12-28 2024-01-30 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、电池

Similar Documents

Publication Publication Date Title
JP6138007B2 (ja) 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法
KR20210129691A (ko) 복합 음극 재료 및 그 제조 방법과 리튬 이온 전지
KR101771187B1 (ko) 축전 디바이스의 제작 방법
CN109686928B (zh) 一种应用于二次电池的碳硅复合负极材料的制备方法
CN110444751B (zh) Li-Si-N纳米复合薄膜及其制备方法、负极结构及锂电池
TW201421781A (zh) 石墨烯電極、包含其之能量儲存裝置、及其製造方法
CN104577059A (zh) 泡沫镍基底上直接生长碳纳米管来制备电池电极的方法
CN109167062A (zh) 一种氮气和氢气混合等离子体处理石墨粉末的方法
WO2021068575A1 (zh) 一种金属负极电池的改性隔膜、制备方法及应用
CN113422017A (zh) 用于二次电池的硅碳复合负极材料及制备方法
CN101246959A (zh) 一种锂离子二次电池正极薄膜极片的制备方法
CN112531147A (zh) 一种正极活性物质及其制备方法和应用
CN110943205A (zh) 原子层沉积修饰的钾离子电池石墨负极改性方法及其应用
CN111916680A (zh) 氟化聚合物修饰的电池电极的制备方法及在电池领域中的应用
CN108550844B (zh) 一种钠离子电池正极材料普鲁士蓝类化合物的改性方法
JP2002025557A (ja) カソード活物質として酸化バナジウムを含むリチウム二次電池用カソード
TW201642511A (zh) 鋰電池、及電極複合材料及其製備方法
JP2001266951A (ja) 非水電解質二次電池
CN113410445A (zh) 一种用于二次电池的硅碳复合物负极材料及其制备方法
CN111987287A (zh) 一种锂金属电极及其制备方法和应用
CN111969186B (zh) 一种以石墨烯为骨架的硅碳薄膜负极及制备方法
CN116190774B (zh) 一种固态电解质材料、改性方法及半固态电池
CN117374245A (zh) 一种改性正极材料及其制备方法和应用
CN107845800B (zh) 一种用于锂电池的纳米氮化锡/硅负极材料及制备方法
CN115976494A (zh) 一种钠离子电池正极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210921