CN113337847A - 一种具有多棱边结构的立方形铜颗粒的制备方法 - Google Patents

一种具有多棱边结构的立方形铜颗粒的制备方法 Download PDF

Info

Publication number
CN113337847A
CN113337847A CN202110509467.9A CN202110509467A CN113337847A CN 113337847 A CN113337847 A CN 113337847A CN 202110509467 A CN202110509467 A CN 202110509467A CN 113337847 A CN113337847 A CN 113337847A
Authority
CN
China
Prior art keywords
electrolysis
copper particles
copper
current
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110509467.9A
Other languages
English (en)
Other versions
CN113337847B (zh
Inventor
刘晓伟
杨宝朔
艾远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202110509467.9A priority Critical patent/CN113337847B/zh
Publication of CN113337847A publication Critical patent/CN113337847A/zh
Application granted granted Critical
Publication of CN113337847B publication Critical patent/CN113337847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明提供一种具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,包含如下步骤:步骤S1:用铜盐、碱金属氢氧化物、聚乙烯吡咯烷酮和去离子水配制电解液;步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解,所述二次电解电流不大于所述首次电解电流大小的三分之一;步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒。本发明通过二次电解在立方形铜颗粒上引入多棱边结构,增加铜颗粒比表面积,使其具有更多的活性位点和接触面积,光学和催化性能得以提升。

Description

一种具有多棱边结构的立方形铜颗粒的制备方法
技术领域
本发明涉及功能材料的制备技术领域,具体涉及一种具有多棱边结构的立方形铜颗粒的制备方法。
背景技术
与贵金属颗粒相比,铜颗粒也具有优异的光学、电学、热学和催化性能,并在许多领域中都具有重要的应用潜能,同时储量丰富,价格低廉,逐渐成为替代金、银等材料的选择。
铜颗粒按照结构和形貌的不同可分为线、棒、片、球、立方体、八面体等,到目前为止,已经探索出很多方法制备线、棒、球和八面体等结构的铜颗粒,而片状或立方体状的铜颗粒的相关报道则相对较少。
同时,铜颗粒在光和催化方面的性能与颗粒的比表面积具有很大关系,通过控制其不同类别的形状和结构的合成以改变比表面积,提升光性能和催化性能的技术已较为成熟,而在同一类别的形状下对颗粒进行二次创新和提升的相关报道则相对较少,如增加颗粒的边/角数目,同样可以提升比表面积。
发明内容
针对背景技术存在的问题,本发明提供一种具有多棱边结构的立方形铜颗粒的制备方法,提出了一种制备立方形铜颗粒的制备方法,并对颗粒进行二次生长,通过在单立方形铜颗粒上引入更多棱边,提高了立方形铜颗粒的比表面积,使其具有更多的接触位点,增强其光学性能和催化活性。
为解决上述技术问题,本发明采用如下技术方案:
一种具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,包含如下步骤:
步骤S1:用铜盐、碱金属氢氧化物、聚乙烯吡咯烷酮和去离子水配制电解液;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;
步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解,所述二次电解电流不大于所述首次电解电流大小的三分之一;
步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒。
进一步,步骤S1中,铜盐为氯化铜、硫酸铜和硝酸铜的一种或几种,电解液中,铜离子浓度为0.1~0.2mol/L,碱金属氢氧化物浓度为0.05~0.1mol/L,聚乙烯吡咯烷酮浓度为0.04~0.06mol/L。
进一步,步骤S2中,首次电解的电流为1.5~2A;步骤S3中,二次电解的电流为0.3~0.5A。
再进一步,步骤S2中,首次电解的时间为20~30min,温度为20~50℃;步骤S3中,二次电解的时间为10~20min,温度为50~100℃。
再进一步,首次电解和二次电解的电压相同,为20~30V。
进一步,步骤S2中,阳极片是直径为10~20mm,厚度为2~4mm的铜圆片,连接直流电源正极;阴极片是直径为10~20mm,厚度为2~4mm的石墨圆片,连接所述直流电源负极。
进一步,步骤S2中,阳极片和阴极片的间隔距离为5~10mm。
进一步,步骤S3中,搅拌速度为800rpm~1200rpm。
进一步,所述碱金属氢氧化物为氢氧化钠。
进一步,还包括步骤S5,其在步骤S4之后,步骤S5为:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥5~10min。
与现有技术相比,本发明的技术方案具有如下有益效果:
1.本发明在现有技术基础上引入二次电解,对立方形铜颗粒进行二次创新和生长,进一步得到了具有多棱边结构的立方形铜颗粒,在不改变颗粒形状和结构类别(恒为立方体,而未成为如棒、线、片等其他结构)的前提下增加其比表面积,使颗粒具有更多的活性位点和接触面积,光学和催化性能得以提升。
2.本发明方法操作简单,原料低廉,且得到的铜颗粒粒径均匀,表面光滑平整。
附图说明
图1是实施例1制备的立方形铜颗粒的扫描电镜图;
图2是实施例2制备的具有多棱边结构的立方形铜颗粒的扫描电镜图;
图3是实施例3制备的具有多棱边结构的立方形铜颗粒的扫描电镜图;
图4是实施例4制备的具有多棱边结构的立方形铜颗粒的扫描电镜图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
步骤S1:用铜盐、氢氧化钠、聚乙烯吡咯烷酮和去离子水配制电解液;铜盐为硫酸铜,电解液中,铜离子浓度为0.15mol/L,氢氧化钠浓度为0.08mol/L,聚乙烯吡咯烷酮浓度为0.05mol/L;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;阳极片和阴极片的间隔距离为8mm;阳极片是直径为15mm,厚度为3mm的铜圆片,连接直流电源正极;阴极片是直径为15mm,厚度为3mm的石墨圆片,连接所述直流电源负极;首次电解的电流为1.5A,时间为25min,温度为30℃,电解电压为25V;
步骤S3:首次电解结束后,阴极片表面得到立方形铜颗粒。
步骤S4:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥8min。
图1是实施例1制备的立方形铜颗粒的扫描电镜图,铜颗粒具有均匀的粒径,且表面光滑平整,粒径为300~400nm。
实施例2
步骤S1:用铜盐、氢氧化钠、聚乙烯吡咯烷酮和去离子水配制电解液;铜盐为硫酸铜,电解液中,铜离子浓度为0.15mol/L,氢氧化钠浓度为0.08mol/L,聚乙烯吡咯烷酮浓度为0.05mol/L;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;阳极片和阴极片的间隔距离为8mm;阳极片是直径为15mm,厚度为3mm的铜圆片,连接直流电源正极;阴极片是直径为15mm,厚度为3mm的石墨圆片,连接所述直流电源负极;首次电解的电流为1.5A,时间为25min,温度为30℃,电解电压为25V;
步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解;搅拌速度为1000rpm;二次电解的电流为0.3A,时间为15min,温度为80℃,电解电压仍保持为25V;
步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒;
步骤S5:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥8min。
图2是实施例2制备的具有多棱边结构的立方形铜颗粒的扫描电镜图,铜颗粒粒径为300~400nm,部分铜颗粒上形成了棱边(如图2中箭头所指),且有些铜颗粒上的棱边数目多达5条。
实施例3
步骤S1:用铜盐、氢氧化钠、聚乙烯吡咯烷酮和去离子水配制电解液;铜盐为硫酸铜,电解液中,铜离子浓度为0.15mol/L,氢氧化钠浓度为0.08mol/L,聚乙烯吡咯烷酮浓度为0.05mol/L;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;阳极片和阴极片的间隔距离为8mm;阳极片是直径为15mm,厚度为3mm的铜圆片,连接直流电源正极;阴极片是直径为15mm,厚度为3mm的石墨圆片,连接所述直流电源负极;首次电解的电流为2A,时间为25min,温度为30℃,电解电压为25V;
步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解;搅拌速度为1000rpm;二次电解的电流为0.5A,时间为15min,温度为80℃,电解电压仍保持为25V;
步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒;
步骤S5:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥8min。
图3是实施例3制备的具有多棱边结构的立方形铜颗粒的扫描电镜图,铜颗粒粒径为100~500nm,其中多集中在200nm,部分铜颗粒上形成了棱边(如图3中箭头所指),且有些铜颗粒上的棱边数目多达10条。
实施例4
步骤S1:用铜盐、氢氧化钠、聚乙烯吡咯烷酮和去离子水配制电解液;铜盐为硫酸铜,电解液中,铜离子浓度为0.15mol/L,氢氧化钠浓度为0.08mol/L,聚乙烯吡咯烷酮浓度为0.05mol/L;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;阳极片和阴极片的间隔距离为8mm;阳极片是直径为15mm,厚度为3mm的铜圆片,连接直流电源正极;阴极片是直径为15mm,厚度为3mm的石墨圆片,连接所述直流电源负极;首次电解的电流为1.5A,时间为25min,温度为30℃,电解电压恒为25V;
步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解;搅拌速度为1000rpm;二次电解的电流为0.7A,时间为15min,温度为80℃,电解电压仍保持为25V;
步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒;
步骤S5:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥8min。
图4是实施例4制备的具有多棱边结构的立方形铜颗粒的扫描电镜图,铜颗粒粒径为300~400nm,部分铜颗粒上形成了多棱边(如图4中箭头所指),但在颗粒表面又多生长出一层膜,颗粒分散性变差。
实施例1和实施例2的区别在于,实施例1仅进行了首次电解,而实施例2先后进行了首次电解和二次电解。引入二次电解的实施例2得到的铜颗粒(如图2所示),相较于仅有一次电解的实施例1得到的铜颗粒(如图1所示),两者的铜颗粒大小尺寸相当,但实施例2得到的铜颗粒上形成了多棱边结构,如图2中箭头所示。
实施3和实施例2的区别在于,实施例3的首次电解电流和二次电解电流都更大,得到的铜颗粒粒径为100~500nm,其中多集中在200nm,相较于实施例2,尺寸更小;而实施例3的铜颗粒具有更多的棱边数,有些铜颗粒上的棱边数目多达10条。
实施4和实施例2的区别在于,实施例4中二次电解电流更大,制备的具有多棱边结构的立方形铜颗粒具有与实施例2相同的粒径大小且也具有多棱边,但颗粒表面又生长出一层铜膜,使得颗粒不具有良好的分散性。
综上可以说明:首次电解是得到立方形铜颗粒的步骤,且首次电解电流越大,颗粒粒径越小;二次电解是得到多棱边的不可或缺的步骤,且在合理范围内二次电解电流越大,棱边数目越多,但当二次电解电流超出合理范围时,如实施例4,反而使得在颗粒表面又多生长出一层膜,颗粒分散性变差。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,包含如下步骤:
步骤S1:用铜盐、碱金属氢氧化物、聚乙烯吡咯烷酮和去离子水配制电解液;
步骤S2:将阳极片和阴极片垂直插入电解液中,施加首次电解电流进行首次电解;
步骤S3:首次电解结束后,对电解液进行搅拌,施加二次电解电流进行二次电解,所述二次电解电流不大于所述首次电解电流大小的三分之一;
步骤S4:二次电解结束后,在阴极片表面得到具有多棱边结构的立方形铜颗粒。
2.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S1中,铜盐为氯化铜、硫酸铜和硝酸铜的一种或几种,电解液中,铜离子浓度为0.1~0.2mol/L,碱金属氢氧化物浓度为0.05~0.1mol/L,聚乙烯吡咯烷酮浓度为0.04~0.06mol/L。
3.根据权利要求1或2所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S2中,首次电解的电流为1.5~2A;步骤S3中,二次电解的电流为0.3~0.5A。
4.根据权利要求3所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S2中,首次电解的时间为20~30min,温度为20~50℃;步骤S3中,二次电解的时间为10~20min,温度为50~100℃。
5.根据权利要求3所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,首次电解和二次电解的电压相同,为20~30V。
6.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S2中,阳极片是直径为10~20mm,厚度为2~4mm的铜圆片,连接直流电源正极;阴极片是直径为10~20mm,厚度为2~4mm的石墨圆片,连接所述直流电源负极。
7.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S2中,阳极片和阴极片的间隔距离为5~10mm。
8.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,步骤S3中,搅拌速度为800rpm~1200rpm。
9.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,所述碱金属氢氧化物为氢氧化钠。
10.根据权利要求1所述的具有多棱边结构的立方形铜颗粒的制备方法,其特征在于,还包括步骤S5,其在步骤S4之后,步骤S5为:取出阴极片,先用去离子水冲洗,再用无水乙醇冲洗,之后在30~50℃下干燥5~10min。
CN202110509467.9A 2021-05-11 2021-05-11 一种具有多棱边结构的立方形铜颗粒的制备方法 Active CN113337847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110509467.9A CN113337847B (zh) 2021-05-11 2021-05-11 一种具有多棱边结构的立方形铜颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110509467.9A CN113337847B (zh) 2021-05-11 2021-05-11 一种具有多棱边结构的立方形铜颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN113337847A true CN113337847A (zh) 2021-09-03
CN113337847B CN113337847B (zh) 2022-03-04

Family

ID=77470550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110509467.9A Active CN113337847B (zh) 2021-05-11 2021-05-11 一种具有多棱边结构的立方形铜颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN113337847B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250725A (zh) * 2007-11-26 2008-08-27 南京大学 大面积均匀分布的铜八面体纳米颗粒的制备方法
CN102240813A (zh) * 2010-05-10 2011-11-16 中国科学院过程工程研究所 一种立方体结晶铜微粉的制备方法
CN102418118A (zh) * 2011-11-16 2012-04-18 上海交通大学 电化学辅助制备特殊形态银粉的方法
CN102601380A (zh) * 2011-12-21 2012-07-25 中国科学院过程工程研究所 一种立方铜粉及其制备方法
CN103088371A (zh) * 2013-01-25 2013-05-08 重庆大学 纳米铜立方体颗粒的制备方法
JP2016102249A (ja) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 電解銅粉の製造方法
CN106757173A (zh) * 2016-11-25 2017-05-31 电子科技大学 一种无表面配体的银多面体微纳米晶体的制备方法
CN108213456A (zh) * 2017-12-08 2018-06-29 北京有色金属研究总院 一种立方体纳米铜粉的制备方法
CN109082697A (zh) * 2018-09-12 2018-12-25 河北工业大学 一种柱状铜颗粒膜的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250725A (zh) * 2007-11-26 2008-08-27 南京大学 大面积均匀分布的铜八面体纳米颗粒的制备方法
CN102240813A (zh) * 2010-05-10 2011-11-16 中国科学院过程工程研究所 一种立方体结晶铜微粉的制备方法
CN102418118A (zh) * 2011-11-16 2012-04-18 上海交通大学 电化学辅助制备特殊形态银粉的方法
CN102601380A (zh) * 2011-12-21 2012-07-25 中国科学院过程工程研究所 一种立方铜粉及其制备方法
CN103088371A (zh) * 2013-01-25 2013-05-08 重庆大学 纳米铜立方体颗粒的制备方法
JP2016102249A (ja) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 電解銅粉の製造方法
CN106757173A (zh) * 2016-11-25 2017-05-31 电子科技大学 一种无表面配体的银多面体微纳米晶体的制备方法
CN108213456A (zh) * 2017-12-08 2018-06-29 北京有色金属研究总院 一种立方体纳米铜粉的制备方法
CN109082697A (zh) * 2018-09-12 2018-12-25 河北工业大学 一种柱状铜颗粒膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程军 等: "连续电解精炼阴极铜过程中添加剂的作用", 《电镀与涂饰》 *

Also Published As

Publication number Publication date
CN113337847B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN108325539B (zh) 一种棒状自组装成花球状的钒修饰的Ni3S2电催化剂的合成方法
CN105742652B (zh) 一种用于电解水的具有双金属层阳极的膜电极及其制备方法
CN103422116A (zh) 一种多孔镍基钌氧化物复合析氢电极的制备方法
CN110257856B (zh) 复合电极及其制备方法和用途以及电催化全解水装置
CN107081163A (zh) 一种三维结构的NiWP电催化剂材料制备及应用
CN112626552B (zh) 一种泡沫镍表面电沉积Ni-Fe-Sn-P合金的方法
CN109750317A (zh) 一种多孔镍基铜铼复合析氢电极的制备方法
CN111790415B (zh) 一种b-p共掺杂双过渡金属催化剂及其制备方法与应用
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
CN109097790B (zh) 体相析氢电极的制备方法及电解水制氢反应器
CN109207958B (zh) 一种垂直于基底生长的磷化钼纳米片阵列结构的制备方法
CN113337847B (zh) 一种具有多棱边结构的立方形铜颗粒的制备方法
CN111939914B (zh) 一种利用废弃铜箔制备高活性三元金属析氧催化剂的方法
CN113428890A (zh) 一种多级结构CuS中空球、制备方法及其应用
US20230203675A1 (en) Hydrogen evolution electrode and preparation method thereof
CN116474772A (zh) 一种过渡金属掺杂改性片状氧化铱催化剂及其制备方法和应用
CN113445097B (zh) 一种纤维网状氧化镁薄膜及其制备方法与应用
CN108654655A (zh) 一种用于制备燃料电池专用氢的磷化铑催化剂及制备方法
CN110665509B (zh) 一种枝晶形貌FeNi3相电催化剂粉末的制备方法及其应用
CN103030306A (zh) 导电玻璃、其制备方法和应用
CN111020675A (zh) 二氧化钛纳米管掺杂的钴钨合金电沉积镀层的制备方法
CN114016070B (zh) 一种以坡莫合金为基材制备水氧化电极的方法
CN113201768B (zh) 一种具有多棱角结构的铜颗粒的双阳极电沉积制备方法
CN112376047B (zh) 一种钛基二氧化铱复合石墨烯和Mn-Mo氧化物电极及其制备方法
CN113084186B (zh) 一种花形态铜颗粒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant