CN113307310B - 一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 - Google Patents
一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 Download PDFInfo
- Publication number
- CN113307310B CN113307310B CN202110379821.0A CN202110379821A CN113307310B CN 113307310 B CN113307310 B CN 113307310B CN 202110379821 A CN202110379821 A CN 202110379821A CN 113307310 B CN113307310 B CN 113307310B
- Authority
- CN
- China
- Prior art keywords
- nickel ternary
- cathode material
- ternary cathode
- molybdenum
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法。将钼源化合物、钛源化合物以及高镍三元正极材料混合,高温热处理,获得钼掺杂二氧化钛包覆高镍三元正极材料;所述高镍三元正极材料为LiNi0.9Co0.05Al0.05O2;Mo6+对TiO2的掺杂形成空位缺陷,提高TiO2的电子电导率,提升高镍三元正极材料的倍率性能。同时,Mo掺杂TiO2包覆层将高镍三元正极材料与电解液隔开,避免活性材料高镍三元正极材料遭受电解液中的微量HF腐蚀而破坏晶体结构,提高高镍三元正极材料的循环性能,从而原位生成Mo掺杂TiO2包覆的高镍三元正极材料拥有优异的循环性能和倍率性能。
Description
技术领域
本发明属于新能源材料技术领域,特别涉及一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法。
背景技术
发展新能源发电技术(如太阳能发电、海洋能发电、风能发电等)及能源节约技术是应对能源危机的高效措施,是社会可持续发展的重要战略。新能源发电技术的高效利用离不开先进的储能技术,而可充电化学电源是目前最先进、效率最高、成本最低的储能系统。与铅酸电池、镍-镉电池、镍氢电池相比,锂离子电池具有使用寿命长、比能量高、环境友好等优点,在可充电化学电源中应用最广泛。然而,随着社会对锂离子电池能量密度要求越来越高,现有应用最广的钴酸锂正极材料LiCoO2已难以满足需求,开发具有高能量密度的锂离子电池正极材料已成为锂离子电池的发展重点和难点。高镍三元正极材料(LiNixCoyMnzO2或LiNixCoyAlzO2,x>0.8)的能量密度远高于LiCoO2的实际能量密度,而且其含钴量很低或不含钴,因此,高镍三元正极材料比LiCoO2更廉价、更环保,成为目前锂离子电池正极材料的发展重点,应用前景广阔。但目前高镍三元锂离子电池正极材料仍存在循环性能差的问题,亟需解决。已有研究表明,通过单一的Al2O3、MgO、TiO2、ZnO、ZrO2、SiO2、CeO2和RuO2等氧化物对材料进行表面包覆,提高三元正极材料的循环性能。本发明综合利用两种氧化物及缺陷氧化物电子电导率高的优点,通过原位形成的Mo掺杂TiO2 (Ti1-xMo2x/ 3O2)对高镍三元正极材料LiNi0.9Co0.05Al0.05O2进行包覆处理,提高 LiNi0.9Co0.05Al0.05O2的循环性能。
发明内容
本发明的目的是针对现有高镍三元锂离子电池正极材料循环性能差的问题,提供一种Mo掺杂TiO2包覆高镍三元正极材料LiNi0.9Co0.05Al0.05O2的制备方法,解决现有高镍三元材料循环性能较差的问题。
具体步骤为:
将1.0000~2.0000g的高镍三元正极材料LiNi0.9Co0.05Al0.05O2、 0.00082~0.00736g钼源化合物、0.04259~0.33794g钛源化合物、10~15mL醇溶液混合均匀,然后将混合物烘干并转移至管式炉中,往管式炉中通入氧气,加热升温至400℃~600℃,并恒温4~8小时,冷却后获得Mo掺杂TiO2包覆 LiNi0.9Co0.05Al0.05O2。
所述钼源化合物为钼酸铵、仲钼酸铵、二钼酸铵和四钼酸铵中的一种或多种。
所述钛源化合物为钛酸正丁酯、钛酸异丁酯和钛酸二异丙酯中的一种或多种。
所述醇溶液为乙二醇、异丙醇和正丁醇中的一种或多种。
所述高镍三元正极材料为LiNi0.9Co0.05Al0.05O2;
所述化学试剂均为分析纯。
本发明所制备的Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2具有良好的循环性能并具有较高的比容量。本发明利用原位生成的Mo掺杂TiO2包覆层将三元正极材料LiNi0.9Co0.05Al0.05O2与电解液隔离,避免电解液中可能产生的HF腐蚀活性材料,显著提升LiNi0.9Co0.05Al0.05O2的循环性能。而且原位生成的Mo掺杂TiO2存在缺陷,空位的缺陷提高氧化物的电子电导率,可以改善LiNi0.9Co0.05Al0.05O2的倍率性能。
附图说明
图1是本发明实施例1中制得Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2的XRD 图。
图2是本发明实施例2中制得Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2的SEM 图。
图3是本发明实施例2中制得Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2在 2.8-4.7V的电压范围内,电流密度为0.5C条件下的首次充放电曲线图。
图4是本发明实施例2中制得Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2在 2.8-4.7V的电压范围内,电流密度为0.5C条件下的循环性能曲线图。
具体实施方式
下面结合实施例对本发明作进一步描述,以下所述化学试剂均为分析纯。
实施例1:
将1.0000g高镍三元正极材料LiNi0.9Co0.05Al0.05O2、0.00082g钼酸铵、0.04259 g钛酸四丁酯、10mL乙二醇溶液混合均匀,然后将混合物烘干并转移至管式炉中,往管式炉中通入氧气,加热升温至400℃,并恒温8小时,冷却后获得Mo 掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2,Mo掺杂TiO2含量约占LiNi0.9Co0.05Al0.05O2的1.0wt%。图1为Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2的XRD图。
将锂离子电池正极材料Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2、乙炔黑和 PVDF按质量比为8:1:1的比例研磨混合均匀,滴加适量的NMP制成电极浆料,然后再将浆料在铝箔上涂抹均匀,置于120℃真空干燥箱中充分干燥,用对辊机压实并裁成直径为15mm的圆片电极。将所得圆片电极作为正极,以锂金属片作为负极,以1mol/L LiPF6的聚碳酸酯溶液作为电解液,隔膜为PVDF隔膜,在充满干燥的高纯氩气的手套箱(水分和氧气含量都小于0.1ppm)中组装成 CR2016型纽扣电池。将扣式电池置于电池测试系统上,测试其在室温的充放电性能,当电流密度为0.2C(44mA/g)及充放电电压范围为2.8-4.7V(vs.Li+/Li) 的条件下,其首次可逆放电容量为210mAh/g,循环50次后,其容量为200 mAh/g。而在相同的充放电测试条件下,未包覆处理过的LiNi0.9Co0.05Al0.05O2的放电容量为210mAh/g,循环50次后,其容量仅为180mAh/g。
实施例2:
将1.0000g高镍三元正极材料LiNi0.9Co0.05Al0.05O2、0.00147g钼酸铵、0.06759 g钛酸四异丙酯、10mL乙二醇溶液混合均匀,然后将混合物烘干并转移至管式炉中,往管式炉中通入氧气,加热升温至500℃,并恒温6小时,冷却后获得 Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2,Mo掺杂TiO2含量约占LiNi0.9Co0.05Al0.05O2的2.0wt%。图2为Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2的SEM图。
将锂离子电池正极材料Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2、乙炔黑和 PVDF按质量比为8:1:1的比例研磨混合均匀,滴加适量的NMP制成电极浆料,然后再将浆料在铝箔上涂抹均匀,置于120℃真空干燥箱中充分干燥,用对辊机压实并裁成直径为15mm的圆片电极。将所得圆片电极作为正极,以锂金属片作为负极,以1mol/L LiPF6的聚碳酸酯溶液作为电解液,隔膜为PVDF隔膜,在充满干燥的高纯氩气的手套箱(水分和氧气含量都小于0.1ppm)中组装成 CR2016型纽扣电池。将扣式电池置于电池测试系统上,测试其在室温的充放电性能,当电流密度为0.2C(44mA/g)及充放电电压范围为2.8-4.7V(vs.Li+/Li) 的条件下,其首次可逆放电容量为217mAh/g,循环50次后,其容量为210 mAh/g。而在相同的充放电测试条件下,未包覆处理过的LiNi0.9Co0.05Al0.05O2的放电容量为210mAh/g,循环50次后,其容量仅为180mAh/g。图3和图4分别相应的Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2的首次充放电曲线以及循环性能曲线图。
实施例3:
将2.0000g高镍三元正极材料LiNi0.9Co0.05Al0.05O2、0.00736g钼酸铵、0.33794 g钛酸四异丙酯、15mL异丙醇溶液混合均匀,然后将混合物烘干并转移至管式炉中,往管式炉中通入氧气,加热升温至500℃,并恒温6小时,冷却后获得 Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2,Mo掺杂TiO2含量约占LiNi0.9Co0.05Al0.05O2的5.0wt%。
将锂离子电池正极材料Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2、乙炔黑和 PVDF按质量比为8:1:1的比例研磨混合均匀,滴加适量的NMP制成电极浆料,然后再将浆料在铝箔上涂抹均匀,置于120℃真空干燥箱中充分干燥,用对辊机压实并裁成直径为15mm的圆片电极。将所得圆片电极作为正极,以锂金属片作为负极,以1mol/L LiPF6的聚碳酸酯溶液作为电解液,隔膜为PVDF隔膜,在充满干燥的高纯氩气的手套箱(水分和氧气含量都小于0.1ppm)中组装成 CR2016型纽扣电池。将扣式电池置于电池测试系统上,测试其在室温的充放电性能,当电流密度为0.2C(44mA/g)及充放电电压范围为2.8-4.7V(vs.Li+/Li) 的条件下,其首次可逆放电容量为200mAh/g,循环50次后,其容量为185mAh/g。而在相同的充放电测试条件下,未包覆处理过的LiNi0.9Co0.05Al0.05O2的放电容量为210mAh/g,循环50次后,其容量仅为180mAh/g。
由于本发明的实施方案较多,在此不一一列举,在不背离本发明的精神及其实质的情况下,熟悉本领域的技术人员可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
Claims (1)
1.一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法,其特征在于具体步骤为:
将1.0000~2.0000 g的高镍三元正极材料、0.00082~0.00736 g钼源化合物、0.04259~0.33794 g钛源化合物、10~15 mL醇溶液混合均匀,然后将混合物烘干并转移至管式炉中,往管式炉中通入氧气,加热升温至400 ℃~600 ℃,并恒温4 ~8 小时,冷却后获得Mo掺杂TiO2包覆LiNi0.9Co0.05Al0.05O2;
所述钼源化合物为钼酸铵、仲钼酸铵、二钼酸铵和四钼酸铵中的一种或多种;
所述钛源化合物为钛酸正丁酯、钛酸异丁酯和钛酸二异丙酯中的一种或多种;
所述醇溶液为乙二醇、异丙醇和正丁醇中的一种或多种;
所述高镍三元正极材料为LiNi0.9Co0.05Al0.05O2;
所述钼源化合物、钛源化合物以及醇溶液均为分析纯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110379821.0A CN113307310B (zh) | 2021-04-08 | 2021-04-08 | 一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110379821.0A CN113307310B (zh) | 2021-04-08 | 2021-04-08 | 一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113307310A CN113307310A (zh) | 2021-08-27 |
CN113307310B true CN113307310B (zh) | 2022-09-30 |
Family
ID=77372003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110379821.0A Active CN113307310B (zh) | 2021-04-08 | 2021-04-08 | 一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113307310B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115083792B (zh) * | 2022-06-28 | 2024-02-09 | 上海瑞浦青创新能源有限公司 | 一种镍钒锰氧化物正极材料及其制备方法和应用 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101918719B1 (ko) * | 2016-12-12 | 2018-11-14 | 주식회사 포스코 | 리튬 이차전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 |
CN108832121B (zh) * | 2018-06-04 | 2020-12-04 | 安徽潜川动力锂电科技有限公司 | 一种高镍正极材料及其制备方法 |
CN108777296A (zh) * | 2018-06-04 | 2018-11-09 | 国联汽车动力电池研究院有限责任公司 | 一种表面改性高镍三元正极材料及其制备和其制成的电池 |
CN111244397A (zh) * | 2018-11-28 | 2020-06-05 | 天津国安盟固利新材料科技股份有限公司 | 一种高镍三元正极材料及其制备方法 |
CN109768248A (zh) * | 2018-12-29 | 2019-05-17 | 桂林电器科学研究院有限公司 | 包覆改性LiNi0.8Co0.1Mn0.1O2三元正极材料及其制备方法和电池 |
CN110137488B (zh) * | 2019-05-28 | 2021-07-02 | 郑州中科新兴产业技术研究院 | 一种锂二次电池用高镍正极材料及其制备方法 |
CN110620234A (zh) * | 2019-08-28 | 2019-12-27 | 电子科技大学 | 一种高电位锂离子电池nca三元正极材料及其制备方法 |
CN111009654A (zh) * | 2019-11-13 | 2020-04-14 | 浙江工业大学 | Mo掺杂的LiNi0.6Co0.2Mn0.2O2正极材料及其制备方法 |
CN111477867A (zh) * | 2020-05-21 | 2020-07-31 | 苏州大学 | 一种锂离子电池高镍三元正极材料的改性方法 |
CN112117451A (zh) * | 2020-09-29 | 2020-12-22 | 山东省科学院能源研究所 | 混相二氧化钛改性高镍三元正极材料及其制备方法、应用 |
-
2021
- 2021-04-08 CN CN202110379821.0A patent/CN113307310B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113307310A (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110993903B (zh) | 一种钽改性高镍正极材料及其制备方法与应用 | |
CN113363415B (zh) | 一种含固态电解质的高镍三元复合正极及锂离子电池 | |
CN112614974A (zh) | 一种含锂化合物包覆、离子掺杂的三元正极材料的制备方法 | |
CN107946564B (zh) | 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用 | |
CN114524468B (zh) | 一种改性单晶超高镍四元ncma正极材料的制备方法 | |
CN109802133A (zh) | 钴酸锂前驱体及其制备方法与由该钴酸锂前驱体所制备的钴酸锂复合物 | |
CN112397766A (zh) | 一种高电压锂离子电池及其制备方法 | |
CN111048775A (zh) | 一种提升三元正极材料储锂性能的原位掺钠的改性方法 | |
CN113307310B (zh) | 一种高循环性能的钼掺杂二氧化钛包覆高镍三元正极材料的制备方法 | |
CN113644274A (zh) | 一种o2型锂离子电池正极材料及其制备方法与应用 | |
CN113582253A (zh) | 一种四元正极材料及其制备方法和应用 | |
CN116093309B (zh) | 一种锑改性的高镍三元层状复合正极材料及其制备方法和应用 | |
CN110931733B (zh) | 一种表面锰掺杂及Li-Mn-PO4包覆高镍正极材料及其制备方法和应用 | |
CN113078315A (zh) | 双导电层包覆的富锂锰基正极材料及其制备方法和应用 | |
CN116826014A (zh) | 包覆型钠基层状氧化物复合材料及其制备方法和钠离子电池 | |
CN116062797A (zh) | 一种正极材料及包含该正极材料的电池 | |
CN102738455A (zh) | 层状锰酸锂及其制备方法 | |
CN112670511B (zh) | 一种具有表层锂浓度梯度的ncm三元正极材料及其制备方法 | |
CN113629241A (zh) | 核壳结构正极材料的制备方法、正极材料及锂离子电池 | |
CN113307309A (zh) | 一种氟化锂包覆层转化提高锂离子电池三元正极材料循环性能的方法 | |
CN107785566A (zh) | 一种长寿命镍钴铝酸锂正极材料及其制备方法 | |
CN109728275A (zh) | 氟化钪提高高镍三元正极材料电化学性能的方法 | |
CN116364933B (zh) | 一种正极活性材料及应用其的正极片、电池 | |
CN114552032B (zh) | 一种锂离子储能器件正极预锂化添加剂的制作和使用方法 | |
CN108232188A (zh) | 一种高容量富锂层状正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210827 Assignee: GUANGXI GUOBO TECHNOLOGY Co.,Ltd. Assignor: GUILIN University OF TECHNOLOGY Contract record no.: X2022450000462 Denomination of invention: Preparation method of molybdenum doped titanium dioxide coated high nickel ternary cathode material with high cycling performance Granted publication date: 20220930 License type: Common License Record date: 20221228 |
|
EE01 | Entry into force of recordation of patent licensing contract |