CN113264760A - 一种用于超导飞轮储能材料的前驱粉体制作改善方法 - Google Patents

一种用于超导飞轮储能材料的前驱粉体制作改善方法 Download PDF

Info

Publication number
CN113264760A
CN113264760A CN202110717792.4A CN202110717792A CN113264760A CN 113264760 A CN113264760 A CN 113264760A CN 202110717792 A CN202110717792 A CN 202110717792A CN 113264760 A CN113264760 A CN 113264760A
Authority
CN
China
Prior art keywords
ball milling
placing
powder
sintering
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110717792.4A
Other languages
English (en)
Inventor
尚德华
袁玖玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aopu Shanghai New Energy Co Ltd
Original Assignee
Aopu Shanghai New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aopu Shanghai New Energy Co Ltd filed Critical Aopu Shanghai New Energy Co Ltd
Priority to CN202110717792.4A priority Critical patent/CN113264760A/zh
Publication of CN113264760A publication Critical patent/CN113264760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及超导材料相关领域,具体公开了一种用于超导飞轮储能材料的前驱粉体制作改善方法,包括以下步骤:S1、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=2:1:1的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200‑260℃,干燥时间为30‑45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到Gd2BaCuO5;S2、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200‑260℃,干燥时间为30‑45min,提高了超导储能飞轮的载流能力和机械性能,改善了超导储能飞轮的性能。

Description

一种用于超导飞轮储能材料的前驱粉体制作改善方法
技术领域
本发明涉及超导材料相关领域,具体为一种用于超导飞轮储能材料的前驱粉体制作改善方法。
背景技术
能源问题是21世纪人类面临的重大课题之一,在不断开发新能源的同时,为了更有效地利用现有的能源需要发展先进的节能技术和储能技术。飞轮储能是可以将电能、风能、太阳能等能源转化成飞轮的旋转动能加以储存的一种新型的高效的机械储能技术。
飞轮储能系统的结构主要有五部分组成:飞轮转子、支撑轴承、能量转换系统、电动/发电机、真空室。其中支承高速飞轮的轴承技术是制约飞轮储能效率、寿命的关键因素之一,超导飞轮储能的支承方式主要是超导磁轴承。当外部磁场(磁体)接近超导体时,在超导体内部感应电流,感应电流产生的磁场与外部磁场方向相反,大小相同,这相当于在超导体背后出现了外部磁场的镜像磁场,由此,产生超导体和磁体之间的电磁斥力,使超导体或永久磁体稳定在悬浮状态。
目前已有的方案大多从轴承的结构上进行改进,这些都可以间接提高飞轮性能,但是占用空间大,对超导材料的利用率和实用性仍有提升空间。而现有高温超导材料由于本身晶界的弱连接性和较弱的磁通钉扎能力等因素,较大程度地制约了超导性能的提升。
在制备超导块材中,初始粉末的制备是最基础的,同时也是决定超导块材性能的重要指标之一,不同的粉末合成方法和制备的工艺都会对其造成不一样的影响。制备先驱粉末目前可以通过这三种方式:固相反应法、溶液合成法、等离子合成法。溶液合成法和等离子合成法制备的粉末径粒较小,缺点是制备的工艺复杂、持续的周期较长。
发明内容
本发明的目的在于提供一种用于超导飞轮储能材料的前驱粉体制作改善方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种用于超导飞轮储能材料的前驱粉体制作改善方法,包括以下步骤:
S1、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=2:1:1的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到Gd2BaCuO5
S2、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到GdBa2Cu3O7-δ
S3、将步骤S1和S2中的Gd2BaCuO5和GdBa2Cu3O7-δ分别与金属Cu粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S4、取原料粉Y2O3、BaCO3和CuO后,按照原子摩尔比Y:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,分别放入干燥机内进行干燥,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Y2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到YBa2Cu3O7-δ
S5、将步骤S4中的YBa2Cu3O7-δ与金属Ag粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S6、加入适量酒精放入球磨机,将步骤S3和S5中制备的二次球磨产物分别与玛瑙球按照1:1的比例加入球磨机内,球磨机的转速为175r/min,旋转5h,并且每小时搅拌一次;
S5、将研磨后的Cu添加的Gd2BaCuO5、Cu添加的GdBa2Cu3O7-δ和Ag添加的YBa2Cu3O7-δ分别放入炉中,并在温度为880℃、900℃、920℃和940℃的烧结炉中分别进行第一次烧结;
S6、在温度为880℃、900℃、920℃和940℃的烧结炉中,烧结完成后取出三个样品,烧结后的样品颜色:Cu添加的GdBa2Cu3O7-δ呈现深黑色,Cu添加的Gd2BaCuO5呈现绿色,银添加的YBa2Cu3O7-δ呈现浅黑深灰色,然后分别放入球磨机中先球磨2h,再球磨1h;
S7、将步骤S6中的样品取出分别进行压片,在18MPa的条件下,保压10min后再次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第二次烧结;
S8、在温度为880℃、900℃、920℃和940℃的烧结炉中,二次烧结后取出三个样品,进行敲碎后放入研钵,手磨30-45min,再放入球磨机中进行细磨1h,取出后继续手磨10-18min,直至粉末变得细滑;
S9、再分别对三个样品继续压片,然后次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第三次烧结;
S10、在温度为880℃、900℃、920℃和940℃的烧结炉中,三次烧结后,取出敲碎后放入研钵中,手磨1-1.5h,再放入球磨机中进行细磨1-2h,取出后继续手磨12-16min,直至粉末变得细滑,取出留待XRD测试。
优选的,步骤S3中银的添加量为5-25wt%,将银添加的YBa2Cu3O7-δ进行研磨后,进行压样成型,经920℃,2h烧结后,再经450-500℃,24-26h的吸氧处理,然后再进行研磨,便可制成银添加的YBa2Cu3O7-δ的粉末。
优选的,步骤S5和S7的烧结时间为24-28h,保温30-50min。
优选的,步骤S9中的烧结时间为20-24h,保温20-35min。
优选的,将步骤S1和S2中烘干处理过的Gd2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-360r/min,球磨时间为2h,得到一次球磨产物;
优选的,将步骤S4中烘干处理过的Y2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-350r/min,球磨时间为2h,得到一次球磨产物。
优选的,步骤S3和S5中的球磨转速为400-500r/min,球磨2-2.5h,从而得到二次球磨产物。
与现有技术相比,本发明的有益效果是:采用酒精作为湿磨试剂,简单安全,成本较低,添加的铜粉末和银粉末,改善晶粒间的弱连接和超导储能飞轮的陶瓷脆性,提高了超导储能飞轮的载流能力和机械性能。改善了超导储能飞轮的性能。
附图说明
图1为本发明的不同温度下GdBa2Cu3O7-δ样品的X-ray衍射图;
图2为本发明的不同温度下Gd2BaCuO5样品的X-ray衍射图;
图3为本发明的不同温度下YBa2Cu3O7-δ样品的X-ray衍射图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明提供一种技术方案:一种用于超导飞轮储能材料的前驱粉体制作改善方法,包括以下步骤:
S1、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=2:1:1的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到Gd2BaCuO5
S2、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到GdBa2Cu3O7-δ
S3、将步骤S1和S2中的Gd2BaCuO5和GdBa2Cu3O7-δ分别与金属Cu粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S4、取原料粉Y2O3、BaCO3和CuO后,按照原子摩尔比Y:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,分别放入干燥机内进行干燥,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Y2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到YBa2Cu3O7-δ;
S5、将步骤S4中的YBa2Cu3O7-δ与金属Ag粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S6、加入适量酒精放入球磨机,将步骤S3和S5中制备的二次球磨产物分别与玛瑙球按照1:1的比例加入球磨机内,球磨机的转速为175r/min,旋转5h,并且每小时搅拌一次;
S5、将研磨后的Cu添加的Gd2BaCuO5、Cu添加的GdBa2Cu3O7-δ和Ag添加的YBa2Cu3O7-δ分别放入炉中,并在温度为880℃、900℃、920℃和940℃的烧结炉中分别进行第一次烧结;
S6、在温度为880℃、900℃、920℃和940℃的烧结炉中,烧结完成后取出三个样品,烧结后的样品颜色:Cu添加的GdBa2Cu3O7-δ呈现深黑色,Cu添加的Gd2BaCuO5呈现绿色,银添加的YBa2Cu3O7-δ呈现浅黑深灰色,然后分别放入球磨机中先球磨2h,再球磨1h;
S7、将步骤S6中的样品取出分别进行压片,在18MPa的条件下,保压10min后再次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第二次烧结;
S8、在温度为880℃、900℃、920℃和940℃的烧结炉中,二次烧结后取出三个样品,进行敲碎后放入研钵,手磨30-45min,再放入球磨机中进行细磨1h,取出后继续手磨10-18min,直至粉末变得细滑;
S9、再分别对三个样品继续压片,然后次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第三次烧结;
S10、在温度为880℃、900℃、920℃和940℃的烧结炉中,三次烧结后,取出敲碎后放入研钵中,手磨1-1.5h,再放入球磨机中进行细磨1-2h,取出后继续手磨12-16min,直至粉末变得细滑,取出留待XRD测试。
进一步的,步骤S3中银的添加量为5-25wt%,将银添加的YBa2Cu3O7-δ进行研磨后,进行压样成型,经920℃,2h烧结后,再经450-500℃,24-26h的吸氧处理,然后再进行研磨,便可制成银添加的YBa2Cu3O7-δ的粉末。
进一步的,步骤S5和S7的烧结时间为24-28h,保温30-50min。
进一步的,步骤S9中的烧结时间为20-24h,保温20-35min。
进一步的,将步骤S1和S2中烘干处理过的Gd2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-360r/min,球磨时间为2h,得到一次球磨产物;
进一步的,将步骤S4中烘干处理过的Y2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-350r/min,球磨时间为2h,得到一次球磨产物。
进一步的,步骤S3和S5中的球磨转速为400-500r/min,球磨2-2.5h,从而得到二次球磨产物。
GdBa2Cu3O7-δ缩写为Gd123,Gd2BaCuO5缩写为Gd211,YBa2Cu3O7-δ缩写为Y123;
图1是不同温度下Gd123样品的X-ray衍射图,看杂相和峰值的情况,发现900℃杂相较少,且峰值比较尖锐,说明比较纯,所以900℃是Gd123先驱粉的最佳制备温度;
图2是不同温度下Gd211样品的X-ray衍射图,看杂相和峰值的情况,发现900℃杂相较少,且峰值比较尖锐,说明比较纯,所以900℃是Gd123先驱粉的最佳制备温度;
图3是不同温度下Y123样品的X-ray衍射图,得看杂相和峰值的情况,发现920℃杂相较少,且峰值比较尖锐,说明比较纯,所以920℃是Y123先驱粉的最佳制备温度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,包括以下步骤:
S1、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=2:1:1的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到Gd2BaCuO5
S2、取原料粉Gd2O3、BaCO3和CuO后,按照原子摩尔比Gd:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Gd2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到GdBa2Cu3O7-δ
S3、将步骤S1和S2中的Gd2BaCuO5和GdBa2Cu3O7-δ分别与金属Cu粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S4、取原料粉Y2O3、BaCO3和CuO后,按照原子摩尔比Y:Ba:Cu=1:2:3的比例进行称重后,分别装在三个容器中,分别放入干燥机内进行干燥,接着将容器放入电热恒温干燥箱中,设定干燥箱内部的温度为200-260℃,干燥时间为30-45min,然后将干燥后的Y2O3、BaCO3和CuO放入球磨机中,进行球磨混合得到YBa2Cu3O7-δ
S5、将步骤S4中的YBa2Cu3O7-δ与金属Ag粉末进行二次球磨混合处理,得到二次球磨产物,取出备用;
S6、加入适量酒精放入球磨机,将步骤S3和S5中制备的二次球磨产物分别与玛瑙球按照1:1的比例加入球磨机内,球磨机的转速为175r/min,旋转5h,并且每小时搅拌一次;
S5、将研磨后的Cu添加的Gd2BaCuO5、Cu添加的GdBa2Cu3O7-δ和Ag添加的YBa2Cu3O7-δ分别放入炉中,并在温度为880℃、900℃、920℃和940℃的烧结炉中分别进行第一次烧结;
S6、在温度为880℃、900℃、920℃和940℃的烧结炉中,烧结完成后取出三个样品,烧结后的样品颜色:Cu添加的GdBa2Cu3O7-δ呈现深黑色,Cu添加的Gd2BaCuO5呈现绿色,银添加的YBa2Cu3O7-δ呈现浅黑深灰色,然后分别放入球磨机中先球磨2h,再球磨1h;
S7、将步骤S6中的样品取出分别进行压片,在18MPa的条件下,保压10min后再次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第二次烧结;
S8、在温度为880℃、900℃、920℃和940℃的烧结炉中,二次烧结后取出三个样品,进行敲碎后放入研钵,手磨30-45min,再放入球磨机中进行细磨1h,取出后继续手磨10-18min,直至粉末变得细滑;
S9、再分别对三个样品继续压片,然后次分别放入温度为880℃、900℃、920℃和940℃的烧结炉中进行第三次烧结;
S10、在温度为880℃、900℃、920℃和940℃的烧结炉中,三次烧结后,取出敲碎后放入研钵中,手磨1-1.5h,再放入球磨机中进行细磨1-2h,取出后继续手磨12-16min,直至粉末变得细滑,取出留待XRD测试。
2.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,步骤S3中银的添加量为5-25wt%,将银添加的YBa2Cu3O7-δ进行研磨后,进行压样成型,经920℃,2h烧结后,再经450-500℃,24-26h的吸氧处理,然后再进行研磨,便可制成银添加的YBa2Cu3O7-δ的粉末。
3.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,步骤S5和S7的烧结时间为24-28h,保温30-50min。
4.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,步骤S9中的烧结时间为20-24h,保温20-35min。
5.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,将步骤S1和S2中烘干处理过的Gd2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-360r/min,球磨时间为2h,得到一次球磨产物。
6.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,将步骤S4中烘干处理过的Y2O3、BaCO3和CuO粉末与100mL的无水乙醇分别放置在不锈钢球磨容器内,容器内置有多个不锈钢小球,然后将不锈钢球磨容器置于球磨仪上,调整球磨转速为300-350r/min,球磨时间为2h,得到一次球磨产物。
7.根据权利要求1所述的一种用于超导飞轮储能材料的前驱粉体制作改善方法,其特征在于,步骤S3和S5中的球磨转速为400-500r/min,球磨2-2.5h,从而得到二次球磨产物。
CN202110717792.4A 2021-06-28 2021-06-28 一种用于超导飞轮储能材料的前驱粉体制作改善方法 Pending CN113264760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110717792.4A CN113264760A (zh) 2021-06-28 2021-06-28 一种用于超导飞轮储能材料的前驱粉体制作改善方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110717792.4A CN113264760A (zh) 2021-06-28 2021-06-28 一种用于超导飞轮储能材料的前驱粉体制作改善方法

Publications (1)

Publication Number Publication Date
CN113264760A true CN113264760A (zh) 2021-08-17

Family

ID=77236038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110717792.4A Pending CN113264760A (zh) 2021-06-28 2021-06-28 一种用于超导飞轮储能材料的前驱粉体制作改善方法

Country Status (1)

Country Link
CN (1) CN113264760A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962084A (en) * 1988-04-12 1990-10-09 Inco Alloys International, Inc. Production of oxidic superconductor precursors
US5034373A (en) * 1989-12-22 1991-07-23 Inco Alloys International, Inc. Process for forming superconductor precursor
CN101121605A (zh) * 2007-07-05 2008-02-13 江苏大学 一种高温超导材料在减摩耐磨和润滑方面的用途
CN101717256A (zh) * 2009-12-21 2010-06-02 上海交通大学 稀土钡铜氧超导块体材料制备方法
CN102994799A (zh) * 2012-11-16 2013-03-27 河南科技大学 一种铜基自润滑复合材料及其制备方法
CN103541011A (zh) * 2013-10-31 2014-01-29 上海交通大学 一种生长rebco高温超导准单晶体的方法
CN110357611A (zh) * 2019-07-18 2019-10-22 马桂明 一种基于高温超导材料的铜氧化物陶瓷基润滑材料
CN112927858A (zh) * 2021-01-26 2021-06-08 黄华青 一种新能源高温超导材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962084A (en) * 1988-04-12 1990-10-09 Inco Alloys International, Inc. Production of oxidic superconductor precursors
US5034373A (en) * 1989-12-22 1991-07-23 Inco Alloys International, Inc. Process for forming superconductor precursor
CN101121605A (zh) * 2007-07-05 2008-02-13 江苏大学 一种高温超导材料在减摩耐磨和润滑方面的用途
CN101717256A (zh) * 2009-12-21 2010-06-02 上海交通大学 稀土钡铜氧超导块体材料制备方法
CN102994799A (zh) * 2012-11-16 2013-03-27 河南科技大学 一种铜基自润滑复合材料及其制备方法
CN103541011A (zh) * 2013-10-31 2014-01-29 上海交通大学 一种生长rebco高温超导准单晶体的方法
CN110357611A (zh) * 2019-07-18 2019-10-22 马桂明 一种基于高温超导材料的铜氧化物陶瓷基润滑材料
CN112927858A (zh) * 2021-01-26 2021-06-08 黄华青 一种新能源高温超导材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111477949B (zh) 一种具有超结构的锂离子固态电解质
CN113880577B (zh) 一种固体电解质的干法制备工艺
CN113754432A (zh) 一种高熵氧化物陶瓷纤维材料的制备方法
CN104617292A (zh) 一种高容量球形镍钴铝酸锂正极材料的制备方法
CN103326008A (zh) 一种压块烧结合成钛酸锂负极材料的方法
CN113443654B (zh) 一种具有电磁波调控功能的稀土掺杂尖晶石材料及其制备
CN113372110B (zh) 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法
CN114132971A (zh) 复合共生结构的钠离子电池正极材料、制备方法和钠离子电池
CN113024250B (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN112745118B (zh) 脉冲储能陶瓷材料及其制备方法
CN113264760A (zh) 一种用于超导飞轮储能材料的前驱粉体制作改善方法
CN101717118B (zh) 一种CuCrS2纳米粉体的制备方法
CN101478047B (zh) 一种中温固体氧化物燃料电池阴极的制备方法
CN112680791A (zh) 单晶型iv-vi-viii族富锂无序岩盐结构正极材料及其制备方法
CN102723478A (zh) 一种八面体形锰酸锂微米单晶电极材料及其制备方法
AU2021105658A4 (en) A Preparation Method for Garnet-type Electrolyte of Batteries with High Ionic Conductivity in the Energy Storage Charging System
CN104269547A (zh) 一种碳包覆钒掺杂钛氧化物的制备方法
CN115572162A (zh) 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料
CN109786025B (zh) 一种改性铋系超导体的制备方法
CN107253859A (zh) 高发光热稳定性的Eu‑Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN112279643A (zh) 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法
CN113161607A (zh) 一种储能充电系统电池用高电导率的固态电池电解质的制备方法
CN116143194B (zh) 一种三相共生层状氧化物电极材料及其制备方法和其在钠离子电池中的应用
CN113401946B (zh) 一种光吸收材料及其制备方法
CN115385398B (zh) 一种掺杂改性的三元材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210817

RJ01 Rejection of invention patent application after publication