CN112279643A - 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法 - Google Patents

一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法 Download PDF

Info

Publication number
CN112279643A
CN112279643A CN202011173129.4A CN202011173129A CN112279643A CN 112279643 A CN112279643 A CN 112279643A CN 202011173129 A CN202011173129 A CN 202011173129A CN 112279643 A CN112279643 A CN 112279643A
Authority
CN
China
Prior art keywords
solid electrolyte
powder raw
temperature
base compound
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011173129.4A
Other languages
English (en)
Inventor
谭刚健
黎俊
唐新峰
张加旭
翟慧宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202011173129.4A priority Critical patent/CN112279643A/zh
Publication of CN112279643A publication Critical patent/CN112279643A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种快速合成Li7La3Zr2O12基陶瓷固体电解质的方法,属于锂离子电池固态电解质制备的技术领域,在5~10 min内制备单相立方结构Li7La3Zr2O12粉体,具有制备时间短,工艺简单,适合规模化生产等优点,与传统的长时间固相反应相比,能够极大减少制备成本。

Description

一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法
技术领域
本发明涉及一种快速和成Li7La3Zr2O12基化合物以及固体电解质的方法,属于锂离子电池材料的制备技术领域。
背景技术
随着现代社会各种各样的便携式移动电子产品的迅速发展,从上个世纪至今锂离子电池作为高性能的储能器件受到人们的极大关注。特别是在电动汽车领域,锂离子电池作为新一代动力电源,正在改变单一传统化石燃料驱动的方式,受到科研人员的广泛关注。这些电池获得广泛应用的前提是具有高能量密度和高安全性。当前广泛使用的液态锂电池大多采用有机电解液,存在易燃,易挥发,易泄漏及有毒等安全问题,难以满足目前的应用。可充电全固态电池被认为是下一代可替换液态锂电池的高性能电池,具备高能量密度,高功率密度及高安全性等诸多潜在优点。固态电解质作为全固态电池的核心材料,必须具有较高的锂离子电导率(>0.1mS/cm,室温下)、良好的化学稳定性,较高的能量密度和分解电压,同时与金属锂的润湿性较好,具有低的界面阻抗。
石榴石结构的Li7La3Zr2O12是一种理想的固态电解质材料,与金属锂具有较好的相容性。它具有四方相和立方相两种稳定相。研究发现,立方相的锂离子电导率(~10-3S/cm)比四方相的锂离子电导率(~10-6S/cm)高3个数量级。此外,四方相在空气中不稳定(100~150℃发生相变),而立方相在空气中具有很好的稳定性。自2007年Weppner课题组首次报道固态电解质Li7La3Zr2O12至今,有大量的相关工作围绕提高其立方相离子电导率及电化学稳定性展开。固溶和掺杂是两种普遍使用以提高电解质材料离子电导率的方法,在Li位掺入Al/Ga能够引入Li空位,提高锂离子电导率,同时稳定其立方结构。
传统固相反应方法是目前制备Li7La3Zr2O12固体电解质的主要方法,通过以下步骤制备:球磨混合原料,通过多步长时间高温固相反应制备立方结构Li7La3Zr2O12,球磨后压片成型,覆盖与母粉中后置于马弗炉中长时间(8~12h)无压烧结后获得块体材料。需要长时间的高温热处理工艺(1200℃,~35h),易造成Li元素的挥发,实际生产中一般加入过量10~15%wt的Li2CO3补偿Li元素,该方法具有高的能耗。
发明内容
针对传统制备方法周期长、能耗高、Li挥发严重的问题,本发明首次采用快速反应合成得到单相立方结构Li7La3Zr2O12基化合物,再结合热压技术,超短时间内合成单相立方结构Li7La3Zr2O12基固体电解质。
本发明为解决上述问题采用的技术方案为:
一种快速合成Li7La3Zr2O12基化合物的方法,包括如下步骤:
(1)按照Li7La3Zr2O12基化合物的化学组成表达式Li6.25M0.25La3Zr2O12中金属元素的化学计量比称量锂源、镧源、锆源和M源作为粉体原料,混合均匀;另外,Li2CO3需过量加入粉体原料总质量的0~1.5wt.%,M选自Al或Ga中的一种或两种;
(2)将混合均匀的粉体原料置于坩埚中,均匀铺展,置于高温马弗炉中进行快速反应,反应完成后取出置于空气中自然冷却,即可制备得到单相立方结构Li7La3Zr2O12基化合物。
在上述基础上,本发明还提供一种快速合成Li7La3Zr2O12基固体电解质的方法,将上述步骤(2)获得的单相立方结构Li7La3Zr2O12基化合物粉体装入石墨模具后,至于热压炉中保护气体氛围下进行热压烧结实现致密化,得到Li7La3Zr2O12基固体电解质。
按上述方案,步骤(1)中,锂源、镧源、锆源和M源为氢氧化物或者氧化物;锂源为Li2CO3或LiOH等,镧源为La2O3或La(OH)3等;锆源一般为ZrO2等;M源一般为M2O3等。
按上述方案,步骤(2)中快速反应的条件为:将混合均匀的粉体原料直接置于1100~1200℃的高温马弗炉中,保温5~10min。
按上述方案,热压烧结的条件为:在20~40MPa的轴向压力下,以1~2℃/s升温速率从25℃升至900℃,然后以1~2℃/s升温速率升至1000~1150℃,保温1h后降温并卸压。其中,所述的保护气体为氩气等惰性气体或氮气。
上述方法合成的Li7La3Zr2O12基固体电解质,它的化合物通式为Li6.25M0.25La3Zr2O12,物相为立方结构,致密度≥98%,其中M选自Al或Ga中的一种或两种。其中,M分别为Al或Ga时,Li7La3Zr2O12基固体电解质的化学组成表达式分别为Li6.25Al0.25La3Zr2O12或Li6.25Ga0.25La3Zr2O12,密度为5.08~5.13g/cm3,致密度达到98%以上;其中,室温下Li6.25Al0.25La3Zr2O12离子电导率~0.26mS/cm,Li6.25Ga0.25La3Zr2O12离子电导率~2mS/cm。
以上述内容为基础,在不脱离本发明基础技术的前提下,根据本领域的普通技术知识和手段,对其内容还可以有多种形式的修改、替换或变更。
与现有技术相比,本发明的有益效果是:
1.本发明利用M2O3(M=Al,Ga)掺入Li7La3Zr2O12电解质体系能够在较低温度获得稳定立方结构,通过短时间的反应结合热压烧结工艺可制备出致密单相立方结构Li7La3Zr2O12基固态电解质,大幅度缩短了制备周期,降低了能耗。此外,由于避免了长时间的高温反应过程,有效减少了Li的挥发,只需过量~1wt.%的Li2CO3即可。
2.本发明能够在原料混合后短时间内快速获得立方相Li7La3Zr2O12基化合物,结合热压烧结后得到Li7La3Zr2O12基固体电解质,其锂离子电导率与传统方法制备的Li7La3Zr2O12基固体电解质相当,极大的降低了时间和能源成本,能够很好的满足工业化生产的需求。
附图说明
图1是实施例1和2分别制备的Li7La3Zr2O12基化合物粉体(Li6.25Al0.25La3Zr2O12、Li6.25Ga0.25La3Zr2O12)的X射线衍射图谱;
图2是实施例1和2分别制备的Li7La3Zr2O12基固体电解质块体(Li6.25Al0.25La3Zr2O12与Li6.25Ga0.25La3Zr2O12)的X射线衍射图谱;
图3是实施例1制备的Li7La3Zr2O12基固体电解质块体Li6.25Al0.25La3Zr2O12室温时的交流阻抗谱;
图4是实施例2制备的Li7La3Zr2O12基固体电解质块体Li6.25Ga0.25La3Zr2O12室温时的交流阻抗谱;
图5a、图5b分别是实施例1制备的Li6.25Al0.25La3Zr2O12化合物粉体、Li6.25Al0.25La3Zr2O12固体电解质块体的显微结构图;
图6a、图6b分别是实施例2制备的Li6.25Ga0.25La3Zr2O12化合物粉体、Li6.25Ga0.25La3Zr2O12固体电解质块体的显微结构图。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
下述实施例中,所采用的石墨模具的内径为12.5mm。
实施例1
一种快速合成Li7La3Zr2O12基固体电解质的方法,其具体步骤如下:
(1)按照Li7La3Zr2O12基固体电解质的化学组成表达式Li6.25Al0.25La3Zr2O12中的金属元素的化学计量比精确称量Li2CO3,La2O3,ZrO2,Al2O3粉体原料共2.5g,另外再额外加入粉体原料总量1wt.%的Li2CO3(即0.025g),混合均匀;
(2)将步骤(1)混合均匀的粉体原料至于坩埚中,均匀铺展,置于预先升温至1200℃的马弗炉中,保温10min后取出,将坩埚置于空气中自然冷却至室温,得到Li7La3Zr2O12基化合物粉体Li6.25Al0.25La3Zr2O12
(3)将步骤(2)获得的Li7La3Zr2O12基化合物粉体经研磨后,装入石墨模具,在热压炉中烧结获得直径为12.5mm、厚度为2.73mm,相对致密度为99%的固体电解质块体;其中,热压烧结的具体工艺参数如下:在氩气环境下,预设轴向压力20MPa,以2℃/s的升温速率从25℃升至900℃,然后以1℃/s升温速率升至1150℃,保温1h后自然降温,同时卸压,待冷却至室温后取出石墨模具,所得固体电解质块体即为Li7La3Zr2O12基固体电解质Li6.25Al0.25La3Zr2O12
将上述制备的Li7La3Zr2O12基固体电解质块体依次以120目,400目,800目及2000目的砂纸进行打磨和抛光,得到电解质片,然后利用离子溅射仪进行表面镀Au处理,测定其交流阻抗曲线,获得其在室温下的锂离子电导率为0.26mS/cm。
实施例2
一种快速合成Li7La3Zr2O12基固体电解质的方法,其步骤如下:
(1)按照Li7La3Zr2O12基固体电解质的化学组成表达式Li6.25Ga0.25La3Zr2O12中的金属元素的化学计量比精确称量Li2CO3,La2O3,ZrO2,Ga2O3粉体原料共2.5g;另外再补充加入粉体原料总质量的1wt.%的Li2CO3,混合均匀;
(2)将步骤(1)混合均匀的粉体原料至于坩埚中,均匀铺展,置于预先升温至1100℃的马弗炉中,保温10min后取出,将坩埚置于空气中自然冷却至室温,得到Li7La3Zr2O12基化合物粉体Li6.25Ga0.25La3Zr2O12
(3)将步骤(2)获得的Li7La3Zr2O12基化合物粉体经研磨后,装入石墨模具,在热压炉中烧结获得直径为12.5mm、厚度为1.61mm,相对致密度为99%的固体电解质块体;其中,热压烧结的具体工艺参数如下:在氩气环境下,预设轴向压力20MPa,以2℃/s的升温速率从25℃升至900℃,然后以1℃/s升温速率升至1100℃,保温1h后自然降温,同时卸压,待冷却至室温后取出石墨模具,所得固体电解质块体即为Li7La3Zr2O12基固体电解质Li6.25Ga0.25La3Zr2O12,密度为5.12g/cm3
将上述制备的Li7La3Zr2O12基固体电解质块体依次以120目,400目,800目及2000目的砂纸进行打磨和抛光,得到电解质片,然后利用离子溅射仪进行表面镀Au处理,测定其交流阻抗曲线,获得其在室温下的锂离子电导率为2.03mS/cm。
对经快速反应获得的单相立方结构Li7La3Zr2O12基化合物与热压烧结后的Li7La3Zr2O12基固体电解质的扫描电镜微观结构对比观察,其显微结构如图5a、图5b、图6a、图6b所示:经热压烧结的固体电解质结构致密,晶界结合紧密。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (10)

1.一种快速合成Li7La3Zr2O12基化合物的方法,其特征在于包括如下步骤:
(1) 按照Li7La3Zr2O12基化合物的化学组成表达式Li6.25M0.25La3Zr2O12中金属元素的化学计量比称量锂源、镧源、锆源和M源作为粉体原料,混合均匀;其中,M选自Al或Ga中的一种或两种;
(2)称取步骤(1)所述粉体原料总质量的0.5~1.5wt.%的Li2CO3,与步骤(1)所述粉体原料混合均匀,置于1100~1200℃环境中进行快速反应,即可制备得到Li7La3Zr2O12基化合物。
2.根据权利要求1所述的一种快速合成Li7La3Zr2O12基化合物的方法,其特征在于步骤(2)中,混合均匀的粉体原料置于1100~1200℃环境中保温5~10 min即完成快速反应。
3.根据权利要求1所述的一种快速合成Li7La3Zr2O12基化合物的方法,其特征在于Li7La3Zr2O12基化合物为立方结构。
4.根据权利要求1所述的一种快速合成Li7La3Zr2O12基化合物的方法,其特征在于步骤(1)中,锂源为Li2CO3或LiOH中的一种或两种,镧源为La2O3或La(OH)3中的一种或两种;锆源为ZrO2;M源为M2O3
5.一种快速合成Li7La3Zr2O12基固体电解质的方法,其特征在于包括如下步骤:
(1) 按照Li7La3Zr2O12基固体电解质的化学组成表达式Li6.25M0.25La3Zr2O12中金属元素的化学计量比称量粉体原料Li2CO3、La2O3、ZrO2和M2O3,混合均匀;其中,M选自Al或Ga中的一种或两种;
(2) 称取步骤(1)所述粉体原料总质量的0.5~1.5wt.%的Li2CO3,与步骤(1)所述粉体原料混合均匀,置于1100~1200℃环境中进行快速反应,即可制备得到Li7La3Zr2O12基化合物;
(3)将Li7La3Zr2O12基化合物粉体装入模具后,在保护气体氛围下进行热压烧结,烧结温度为1000~1200 ℃,得到Li7La3Zr2O12基固体电解质。
6.根据权利要求5所述的一种快速合成Li7La3Zr2O12基固体电解质的方法,其特征在于步骤(2)中,混合均匀的粉体原料置于1100~1200℃环境中保温5~10 min即完成快速反应。
7.根据权利要求5所述的一种快速合成Li7La3Zr2O12基固体电解质的方法,其特征在于所述的Li7La3Zr2O12基化合物为单相立方结构。
8.根据权利要求5所述的一种快速合成Li7La3Zr2O12基固体电解质的方法,其特征在于所述的热压烧结的条件为:在20~40 MPa的轴向压力下,以1~2℃/s升温速率升至850~950℃,然后升至1000~1150 ℃,保温30~60 min后降温并卸压;保护气体为惰性气体或氮气。
9.权利要求5所述方法合成的Li7La3Zr2O12基固体电解质。
10.根据权利要求9所述的Li7La3Zr2O12基固体电解质,其特征在于它的物相为立方结构,致密度≥98%;M为Al时,室温下Li6.25Al0.25La3Zr2O12的离子电导率0.24~0.28mS/cm;M为Ga时,室温下Li6.25Ga0.25La3Zr2O12的离子电导率1.9~2.1 mS/cm。
CN202011173129.4A 2020-10-28 2020-10-28 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法 Pending CN112279643A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011173129.4A CN112279643A (zh) 2020-10-28 2020-10-28 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011173129.4A CN112279643A (zh) 2020-10-28 2020-10-28 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法

Publications (1)

Publication Number Publication Date
CN112279643A true CN112279643A (zh) 2021-01-29

Family

ID=74372379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011173129.4A Pending CN112279643A (zh) 2020-10-28 2020-10-28 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法

Country Status (1)

Country Link
CN (1) CN112279643A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413273A (zh) * 2021-03-31 2022-11-29 第一稀元素化学工业株式会社 陶瓷粉末材料、烧结体及电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049688A1 (en) * 2014-08-18 2016-02-18 Hyundai Motor Company Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot press and manufacturing method thereof
CN108832173A (zh) * 2018-06-27 2018-11-16 东北大学 镓和钼共掺杂的石榴石型锂离子固体电解质及其制备方法
CN108946807A (zh) * 2017-05-18 2018-12-07 珠海市赛纬电子材料股份有限公司 一种固体电解质Li7La3Zr2O12粉体的制备方法
CN109148948A (zh) * 2018-09-30 2019-01-04 武汉理工大学 一种高锂离子电导率的固体电解质及其制备方法
CN111689773A (zh) * 2020-06-23 2020-09-22 齐鲁工业大学 一种微波快速烧结制备llzo固体电解质的方法
US20210179441A1 (en) * 2018-08-30 2021-06-17 Kaneka Corporation Garnet-type composite metal oxide particle and method for producing same, and compression-molded product of garnet-type composite metal oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049688A1 (en) * 2014-08-18 2016-02-18 Hyundai Motor Company Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot press and manufacturing method thereof
CN108946807A (zh) * 2017-05-18 2018-12-07 珠海市赛纬电子材料股份有限公司 一种固体电解质Li7La3Zr2O12粉体的制备方法
CN108832173A (zh) * 2018-06-27 2018-11-16 东北大学 镓和钼共掺杂的石榴石型锂离子固体电解质及其制备方法
US20210179441A1 (en) * 2018-08-30 2021-06-17 Kaneka Corporation Garnet-type composite metal oxide particle and method for producing same, and compression-molded product of garnet-type composite metal oxide
CN109148948A (zh) * 2018-09-30 2019-01-04 武汉理工大学 一种高锂离子电导率的固体电解质及其制备方法
CN111689773A (zh) * 2020-06-23 2020-09-22 齐鲁工业大学 一种微波快速烧结制备llzo固体电解质的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THOMAS CLEMENCEAU ET AL.: "Flash sintering of Li-ion conducting ceramic in a few seconds at 850 °C", 《SCRIPTA MATERIALIA》 *
YASUAKI MATSUDA ET AL.: "Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.25M0.25La3Zr2O12 (M: Al3+ and Ga3+)", 《SOLID STATE IONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413273A (zh) * 2021-03-31 2022-11-29 第一稀元素化学工业株式会社 陶瓷粉末材料、烧结体及电池
CN115413273B (zh) * 2021-03-31 2023-04-28 第一稀元素化学工业株式会社 陶瓷粉末材料、烧结体及电池

Similar Documents

Publication Publication Date Title
CN102924073B (zh) 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN101786873B (zh) 锂离子电池电解质陶瓷膜的制备方法
CN110165292B (zh) 一种改性nasicon型固态电解质片及其制备方法
KR102433699B1 (ko) 이온 전도체 및 축전 디바이스
CN109935901A (zh) 一种Nb、Ta共掺石榴石型LLZO固体电解质及其制备方法
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
CN109037759A (zh) 制备致密石榴石型锂离子固体电解质的烧结方法
CN111793824B (zh) 一种表面修饰高镍正极材料及其制备方法和应用
CN109148948A (zh) 一种高锂离子电导率的固体电解质及其制备方法
CN109626996A (zh) 一种铝铁共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN104557013A (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN107742703A (zh) 制备锂离子电池用锂镍钴铝复合氧化物正极材料的方法
Li et al. Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li 7 La 3 Zr 2 O 12 ceramics
CN109037765B (zh) 一种低温下制备高电导率石榴石型电解质片的方法
CN110128140A (zh) 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN115275329A (zh) 一种石榴石型固态电解质的制备方法及应用
CN112939601A (zh) 一种电解质材料、其制备方法和应用
Cheng et al. A strategy for improving sinterability and electrical properties of gadolinium-doped ceria electrolyte using calcium oxide additive
CN111129580A (zh) 一种硫银锗矿掺杂钙钛矿型固体电解质及其制备方法
CN112279643A (zh) 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法
JP2011079707A (ja) セラミックス材料及びその製造方法
CN111689773A (zh) 一种微波快速烧结制备llzo固体电解质的方法
CN108232259B (zh) 一种中温固体燃料电池电解质材料的制备方法
CN114835492A (zh) 一种稀土基锆铪复合陶瓷材料及其制备方法和应用
CN111763081B (zh) 一种焦磷酸盐复合电解质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210129

RJ01 Rejection of invention patent application after publication