CN111689773A - 一种微波快速烧结制备llzo固体电解质的方法 - Google Patents

一种微波快速烧结制备llzo固体电解质的方法 Download PDF

Info

Publication number
CN111689773A
CN111689773A CN202010580109.2A CN202010580109A CN111689773A CN 111689773 A CN111689773 A CN 111689773A CN 202010580109 A CN202010580109 A CN 202010580109A CN 111689773 A CN111689773 A CN 111689773A
Authority
CN
China
Prior art keywords
lithium ion
solid electrolyte
llzo
electrolyte
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010580109.2A
Other languages
English (en)
Other versions
CN111689773B (zh
Inventor
王泰林
庞庆乐
沈建兴
张雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202010580109.2A priority Critical patent/CN111689773B/zh
Publication of CN111689773A publication Critical patent/CN111689773A/zh
Application granted granted Critical
Publication of CN111689773B publication Critical patent/CN111689773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/02Conditioning the material prior to shaping
    • B28B17/026Conditioning ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种通过微波快速烧结制备LLZO(Li7La3Zr2O12)固体电解质的方法,该方法利用传统固相法,通过压制成型和新型微波烧结法,制备出一种LLZO固体电解质陶瓷材料。该材料具有典型的立方相石榴石结构,具有较高的离子电导率,此外该电解质材料还展现出了机械强度高,工作温度范围广的优点,是一种优秀的锂离子电池固体电解质材料。

Description

一种微波快速烧结制备LLZO固体电解质的方法
技术领域
本发明具体涉及一种锂离子固体电解质材料Li7La3Zr2O12的制备方法,属于锂离子电池技术领域。
背景技术
随着便携式电子设备,如笔记本电脑、智能手机的发展,锂离子电池在多个领域得到越来越多的应用。未来的锂离子电池将逐步向以下两个方向发展:用于微型电子设备的小/微型电池和作为储能与动力电池用的大型储能/动力系统。传统的电池使用的电解液一般是溶有锂盐的有机物,稳定性较差,此外目前使用较多的有机电解液还具有较强的腐蚀性与易燃性,虽然采用特殊保护措施等方法,仍然面临一定风险。
相对而言,使用固体电解质安全性能好、无泄漏风险,这提高了电池的安全性能和使用年限。但是固体电解质体系仍然面临较低的锂离子电导率以及电极/固体电解质(固-固)界面等突出问题。其中以LLZO为代表的石榴石结构材料具有良好的锂离子迁移率,是固体电解质的优异材料。
石榴石(garnet)的化学通式为A3B2(XO4)3(A=Ca、Mg、Y、La或其它稀土元素;B=Fe、Ge、Mn、Ga、Al、Ni或者V),其中,A、B、X均为阳离子占据位置,分别有8、6、4个氧配位,当X为Li+时,石榴石具有Li+导通能力,石榴石每结构单元可以含有5~7个Li+,超过了传统石榴石结构所能容纳的3个Li+。根据Li+在石榴石结构中的浓度,大致可分为以下几类:Li3Ln3Te2O12(Ln=Y、Pr、Nd、Sm-Lu)(Li3体系)、Li5La3M2O12(M=Nb、Ta、Sb、Bi)(Li5体系)、Li6ALa2M2O12(A=Ca、Sr、Ba;M=Nb、Ta)(Li6体系)和Li7La3C2O12(C=Zr、Sn、Hf)(Li7体系)。但是制备石榴石结构的LLZO材料仍然面临着传统烧结方法制备周期长、效果差等缺点。因此,在上述基础上,为了提升锂离子固体电解质材料的电化学性能,我们提出了一种微波快速烧结制备LLZO固体电解质的方法。
发明内容
本发明针对锂离子液体电解质电池的局限性和传统制备方法制备的锂离子固体电解质电池电导率低的问题,提供了一种利用压制成型结合微波烧结的方法,制备出具有高离子迁移率的锂离子固体电解质Li7La3Zr2O12
具体实施技术方案:
(1)按照化学计量比为7:3:2分别称取碳酸锂、六水硝酸镧、二氧化锆,由于碳酸锂在高温过程中容易挥发,因此在配置原料需要适当进行补锂,碳酸锂补锂量为10 %(可以取15%,20 %)。
(2)将称量的三种原料依次放进玛瑙球磨罐里,加入玛瑙球磨石和作为分散剂的乙醇进行球磨(料球醇比为1:2:1),球磨时间为100 min,转速为400 rpm,球磨后的浆料过筛后在80 ℃下干燥12 h。
(3)在得到的粉体中加入3 %的质量浓度为5 %的PVP水溶液,充分研磨后在直径为15 mm的模具中压片,压力设置为8 MPa,保压时间为1 min。
(4)将得到的陶瓷片置于马弗炉中进行排胶,排胶温度为600 ℃,保温1 h,升温速率为1 ℃·min-1
(5)在氧化铝坩埚中放入提前制备好的LLZO粉体作为母粉,将排胶后的陶瓷片埋入母粉中,放入微波快速烧结炉中进行快速烧结,升温速率为30 ℃·min-1,烧结温度为1150 ℃(可以选择为1125 ℃、1175 ℃、1120 ℃),保温1 h(2 h、3 h、4 h)。
(6)经自然冷却后的LLZO陶瓷经抛光后在充满氩气的手套箱中与金属锂片组装成对称扣式电池,并进行电化学测试。
本发明的显著优点:
(1)采用碳酸锂、六水硝酸镧、二氧化锆作为原料,价格低廉,降低了成本;
(2)采用简单易操作的压制成型法,生产工艺简单,制备过程易于操作,适合大规模工业化生产;
(3)采用微波烧结的烧结工艺,具有降低烧结温度,减少能耗,缩短烧结时间50 %以上,且微波烧结可以显著提高材料致密度、细化晶粒、工艺精确可控的优点,并能够改善材料电化学性能。
(4)制备的Li7La3Zr2O12锂离子固体电解质具有立方相的晶体结构和高的Li离子含量的优点,且机械强度高,工作温度区间宽,是一种优秀的锂离子固体电解质。
具体实施方案:
实施例1:
(1)按照化学计量比为7:3:2分别称取碳酸锂、六水硝酸镧、二氧化锆5.17g、12.9g、2.46g,碳酸锂补锂量为10 %,即再加入碳酸锂0.517g。
(2)将称量的三种原料依次放进玛瑙球磨罐里,加入玛瑙球磨石和作为分散剂的乙醇进行球磨(料球醇比为1:2:1),球磨时间为100 min,转速为400 rpm,球磨后的浆料过筛后在80 ℃下干燥12 h。
(3)在得到的粉体中加入3 %的质量浓度为5 %的PVP水溶液,充分研磨后在直径为15 mm的模具中压片,压力设置为8 MPa,保压时间为1 min。
(4)将得到的陶瓷片置于马弗炉中进行排胶,排胶温度为600 ℃,保温1 h,升温速率为1 ℃·min-1
(5)在氧化铝坩埚中放入提前制备好的LLZO粉体作为母粉,将排胶后的陶瓷片埋入母粉中,放入微波快速烧结炉中进行快速烧结,升温速率为30 ℃·min-1,烧结温度为1150 ℃,保温1 h。
(6)经自然冷却后的LLZO陶瓷经抛光后在充满氩气的手套箱中与金属锂片组装成对称扣式电池,并进行电化学测试。
实施例2:
(1)按照化学计量比为7:3:2分别称取碳酸锂、六水硝酸镧、二氧化锆5.17 g、12.9 g、2.46 g,碳酸锂补锂量为10 %,即再加入碳酸锂0.517 g。
(2)将称量的三种原料依次放进玛瑙球磨罐里,加入玛瑙球磨石和作为分散剂的乙醇进行球磨(料球醇比为1:2:1),球磨时间为100 min,转速为400 rpm,球磨后的浆料过筛后在80 ℃下干燥12 h。
(3)在得到的粉体中加入3 %的质量浓度为5 %的PVP水溶液,充分研磨后在直径为15 mm的模具中压片,压力设置为8 MPa,保压时间为1 min。
(4)将得到的陶瓷片置于马弗炉中进行排胶,排胶温度为600 ℃,保温1 h,升温速率为1 ℃·min-1
(5)在氧化铝坩埚中放入提前制备好的LLZO粉体作为母粉,将排胶后的陶瓷片埋入母粉中,放入微波快速烧结炉中进行快速烧结,升温速率为30 ℃·min-1,烧结温度为1175 ℃,保温1 h。
(6)经自然冷却后的LLZO陶瓷经抛光后在充满氩气的手套箱中与金属锂片组装成对称扣式电池,并进行电化学测试。
实施例3:
(1)按照化学计量比为7:3:2分别称取碳酸锂、六水硝酸镧、二氧化锆5.17 g、12.9 g、2.46 g,碳酸锂补锂量为15 %,即再加入碳酸锂0.776 g。
(2)将称量的三种原料依次放进玛瑙球磨罐里,加入玛瑙球磨石和作为分散剂的乙醇进行球磨(料球醇比为1:2:1),球磨时间为100 min,转速为400 rpm,球磨后的浆料过筛后在80 ℃下干燥12 h。
(3)在得到的粉体中加入3 %的质量浓度为5 %的PVP水溶液,充分研磨后在直径为15 mm的模具中压片,压力设置为8 MPa,保压时间为1 min。
(4)将得到的陶瓷片置于马弗炉中进行排胶,排胶温度为600 ℃,保温1 h,升温速率为1 ℃·min-1
(5)在氧化铝坩埚中放入提前制备好的LLZO粉体作为母粉,将排胶后的陶瓷片埋入母粉中,放入微波快速烧结炉中进行快速烧结,升温速率为30 ℃·min-1,烧结温度为1175 ℃,保温1 h。
(6)经自然冷却后的LLZO陶瓷经抛光后在充满氩气的手套箱中与金属锂片组装成对称扣式电池,并进行电化学测试。
实施例4:
(1)按照化学计量比为7:3:2分别称取碳酸锂、六水硝酸镧、二氧化锆5.17 g、12.9 g、2.46 g,碳酸锂补锂量为20 %,即再加入碳酸锂1.034 g。
(2)将称量的三种原料依次放进玛瑙球磨罐里,加入玛瑙球磨石和作为分散剂的乙醇进行球磨(料球醇比为1:2:1),球磨时间为100 min,转速为400 rpm,球磨后的浆料过筛后在80 ℃下干燥12 h。
(3)在得到的粉体中加入3 %的质量浓度为5 %的PVP水溶液,充分研磨后在直径为15 mm的模具中压片,压力设置为8 MPa,保压时间为1 min。
(4)将得到的陶瓷片置于马弗炉中进行排胶,排胶温度为600 ℃,保温1 h,升温速率为1 ℃·min-1
(5)在氧化铝坩埚中放入提前制备好的LLZO粉体作为母粉,将排胶后的陶瓷片埋入母粉中,放入微波快速烧结炉中进行快速烧结,升温速率为30 ℃·min-1,烧结温度为1175 ℃,保温2 h。
(6)经自然冷却后的LLZO陶瓷经抛光后在充满氩气的手套箱中与金属锂片组装成对称扣式电池,并进行电化学测试。
附图说明:
图1是本发明合成的LLZO固体电解质材料的SEM图。从电镜图中可以看出,材料颗粒大小均匀,致密度较高,说明通过微波烧结法可以实现材料晶粒的均匀化,并提高陶瓷材料的致密度,这为提高材料的锂离子迁移率提供了基础。
图2是本发明合成的LLZO固体电解质材料的XRD图,图中产物的谱图与标准谱图一致。所制备的材料展现出所有立方相LLZO的特征峰,说明通过微波烧结过程能够在较短时间内制备出立方相的LLZO材料。
图3是本发明合成的LLZO固体电解质材料用于作锂离子电池时的尼奎斯特图。从尼奎斯特图中看出以制备的LLZO作为隔膜制备的对称扣式电池具有理想的曲线形状,且在电池内阻和离子迁移率方面展现了优异的性能,材料的内阻约为1.15×105 Ω,经过拟合后计算的得到材料的离子迁移率约为3.67×10-7 S/cm。

Claims (7)

1.一种用作锂离子电池电解质材料,其特征在于,所述的电解质材料是Li7La3Zr2O12陶瓷材料。
2.根据权利要求1所述的一种用作锂离子电池电解质材料,其特征在于,将Li7La3Zr2O12固体电解质应用在锂离子电池中。
3.根据权利要求1所述的一种用作锂离子电池电解质材料,其特征在于,所述Li7La3Zr2O12固体电解质为立方相。
4.根据权利要求1所述的一种用作锂离子电池电解质材料,其特征在于,所述Li7La3Zr2O12固体电解质为压制成型后,经过微波烧结过程得到的。
5.根据权利要求1所述的一种用作锂离子电池电解质材料,其特征在于,所述Li7La3Zr2O12固体电解质原理配比中碳酸锂补锂量为10 %-20%。
6.根据权利要求3所述的一种用作锂离子电池电解质材料,其特征在于,所述Li7La3Zr2O12固体电解质立方相的烧结温度为烧结温度为1150-1120 ℃,保温1-4 h。
7.根据权利要求4所述的一种用作锂离子电池电解质材料,其特征在于,所述Li7La3Zr2O12固体电解质压制成型的压力为8 MPa,保压时间为1 min。
CN202010580109.2A 2020-06-23 2020-06-23 一种微波快速烧结制备llzo固体电解质的方法 Active CN111689773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010580109.2A CN111689773B (zh) 2020-06-23 2020-06-23 一种微波快速烧结制备llzo固体电解质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010580109.2A CN111689773B (zh) 2020-06-23 2020-06-23 一种微波快速烧结制备llzo固体电解质的方法

Publications (2)

Publication Number Publication Date
CN111689773A true CN111689773A (zh) 2020-09-22
CN111689773B CN111689773B (zh) 2023-10-24

Family

ID=72483417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010580109.2A Active CN111689773B (zh) 2020-06-23 2020-06-23 一种微波快速烧结制备llzo固体电解质的方法

Country Status (1)

Country Link
CN (1) CN111689773B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279643A (zh) * 2020-10-28 2021-01-29 武汉理工大学 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法
CN114956838A (zh) * 2022-06-02 2022-08-30 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280659A (zh) * 2011-06-30 2011-12-14 清华大学 锂镧锆氧固体电解质材料及其制备方法与应用
CN105406117A (zh) * 2015-11-24 2016-03-16 青岛能迅新能源科技有限公司 一种全固态锂离子电解质材料Li7La3Zr2O12的制备方法
CN105811000A (zh) * 2016-06-12 2016-07-27 上海空间电源研究所 一种微波辅助制备锂镧锆氧固态电解质的工艺方法
FR3040241A1 (fr) * 2016-01-27 2017-02-24 Commissariat Energie Atomique Batterie electrochimique au lithium comprenant un electrolyte solide specifique
JP2018041917A (ja) * 2016-09-09 2018-03-15 日本特殊陶業株式会社 キャパシタ
CN108155413A (zh) * 2018-01-12 2018-06-12 北京科技大学 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法
CN108695509A (zh) * 2018-07-06 2018-10-23 重庆环纽信息科技有限公司 高储能效率复合型锂电池正极及其制备方法和锂电池
CN109378525A (zh) * 2018-09-30 2019-02-22 武汉理工大学 一种微米级石榴石型无机固体电解质膜的制备方法
US20200052345A1 (en) * 2018-07-17 2020-02-13 University Of Maryland Office Of Technology Commercialization Rapid Thermal Annealing of Cathode-Electrolyte Interface for High-Temperature Solid-State Batteries
US20200087211A1 (en) * 2018-09-19 2020-03-19 The Regents Of The University Of Colorado, A Body Corporate Structure including a thin-film layer and flash-sintering method of forming same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280659A (zh) * 2011-06-30 2011-12-14 清华大学 锂镧锆氧固体电解质材料及其制备方法与应用
CN105406117A (zh) * 2015-11-24 2016-03-16 青岛能迅新能源科技有限公司 一种全固态锂离子电解质材料Li7La3Zr2O12的制备方法
FR3040241A1 (fr) * 2016-01-27 2017-02-24 Commissariat Energie Atomique Batterie electrochimique au lithium comprenant un electrolyte solide specifique
CN105811000A (zh) * 2016-06-12 2016-07-27 上海空间电源研究所 一种微波辅助制备锂镧锆氧固态电解质的工艺方法
JP2018041917A (ja) * 2016-09-09 2018-03-15 日本特殊陶業株式会社 キャパシタ
CN108155413A (zh) * 2018-01-12 2018-06-12 北京科技大学 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法
CN108695509A (zh) * 2018-07-06 2018-10-23 重庆环纽信息科技有限公司 高储能效率复合型锂电池正极及其制备方法和锂电池
US20200052345A1 (en) * 2018-07-17 2020-02-13 University Of Maryland Office Of Technology Commercialization Rapid Thermal Annealing of Cathode-Electrolyte Interface for High-Temperature Solid-State Batteries
US20200087211A1 (en) * 2018-09-19 2020-03-19 The Regents Of The University Of Colorado, A Body Corporate Structure including a thin-film layer and flash-sintering method of forming same
CN109378525A (zh) * 2018-09-30 2019-02-22 武汉理工大学 一种微米级石榴石型无机固体电解质膜的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DALU GAO: "Microwave assisted reactive sintering for Al doped Li7La3Zr2O12 lithium ion solid state electrolyte", 《MATERIALS RESEARCH EXPRESS》, vol. 6, no. 12, pages 1 - 17 *
JAE-MYUNG LEE: "High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction", SOLID STATE IONICS, vol. 258, pages 13 - 17 *
YANHUA ZHANG: "Rapid Fabrication of of Li7La3Zr2O12 Solid Electrolyte with Enhanced Lithium Ionic Conductivity by Microwave Sintering", INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 15, pages 7163 - 7174 *
孙晓: "石榴石基闪烁陶瓷的研究进展", 山东陶瓷, vol. 41, no. 3, pages 13 - 17 *
查文平;李君阳;阳敦杰;沈强;陈斐;: "无机固体电解质Li7La3Zr2O12的研究进展", 中国材料进展, no. 10, pages 16 - 23 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279643A (zh) * 2020-10-28 2021-01-29 武汉理工大学 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法
CN114956838A (zh) * 2022-06-02 2022-08-30 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法
CN114956838B (zh) * 2022-06-02 2023-10-27 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法

Also Published As

Publication number Publication date
CN111689773B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN110176627A (zh) 可抑制锂枝晶的锂镧锆氧基固体电解质材料及其制备方法和应用
CN110190259A (zh) 一种纳米高熵氧化物的制备方法及锂离子电池负极材料
CN103840148A (zh) 一种通过二次烧结制备多元复合锂离子电池正极材料的方法
CN106848392A (zh) 抑制全固态电池中锂枝晶生长的固态电解质及其制备方法
CN113321485B (zh) 一种硫银锗矿型硫化物固态电解质的制备方法
CN107742703A (zh) 制备锂离子电池用锂镍钴铝复合氧化物正极材料的方法
CN102709548A (zh) 一种锂离子电池多元正极材料及其制备方法
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN111689773B (zh) 一种微波快速烧结制备llzo固体电解质的方法
CN101908614B (zh) 一种高密度锰酸锂正极材料及其制备方法
CN101764212A (zh) 一种锂离子电池负极材料尖晶石钛酸锂制备方法
CN115275329A (zh) 一种石榴石型固态电解质的制备方法及应用
CN113651361A (zh) 一种钨铌复合氧化物的制备方法及其应用
CN108808075B (zh) 一种柔性无机固态电解质薄膜及其制备和应用
WO2012161055A1 (ja) エネルギーデバイス及び蓄電デバイスの内の少なくともいずれか一方に用いられる材料の製造方法、及びエネルギーデバイス及び蓄電デバイスの内の少なくともいずれか一方に用いられる材料
CN103456945A (zh) 一种低成本锂离子电池正极材料的制备方法
CN112771693B (zh) 三维复合金属锂负极和金属锂电池与装置
CN116230917B (zh) 一种海洋环境用高熵富锂层状正极材料及其制备方法
CN115676883B (zh) 一种固态电解质材料及其制备方法与应用
CN114497714B (zh) 一种高离子电导率石榴石型固体电解质的制备方法
CN114447420B (zh) 一种抑制锂枝晶生长的铈掺杂石榴石型llzo固态电解质及其制备方法
CN101950802A (zh) 一种锰酸锂系电池正极材料的制备方法
CN113964390A (zh) 卤素离子掺杂llzo固体电解质及制备方法
CN114597370A (zh) 一种空气稳定、高电压和长循环寿命钠离子电池正极材料及制备方法
CN113161607A (zh) 一种储能充电系统电池用高电导率的固态电池电解质的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant