CN113372110B - 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法 - Google Patents

基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法 Download PDF

Info

Publication number
CN113372110B
CN113372110B CN202110594175.XA CN202110594175A CN113372110B CN 113372110 B CN113372110 B CN 113372110B CN 202110594175 A CN202110594175 A CN 202110594175A CN 113372110 B CN113372110 B CN 113372110B
Authority
CN
China
Prior art keywords
solid electrolyte
temperature
lithium
pressure
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110594175.XA
Other languages
English (en)
Other versions
CN113372110A (zh
Inventor
周雪峰
杨文革
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center For High Pressure Science & Technology Advanced Research
Original Assignee
Center For High Pressure Science & Technology Advanced Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For High Pressure Science & Technology Advanced Research filed Critical Center For High Pressure Science & Technology Advanced Research
Priority to CN202110594175.XA priority Critical patent/CN113372110B/zh
Publication of CN113372110A publication Critical patent/CN113372110A/zh
Application granted granted Critical
Publication of CN113372110B publication Critical patent/CN113372110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,包括以下步骤:依据目标产物化学式称取原料,混合均匀并干燥处理,得到干燥粉末;将所得干燥粉高温煅烧煅烧,再经球磨、混料和干燥处理得到预烧粉末;将所得干燥粉末或预烧粉末作为前驱体材料,放入高压合成设备腔体中烧结,得到产物钙钛矿型固态电解质钛酸锂镧。该方法能够解决常压条件制备时的晶内高界面阻抗问题;同时本发明烧结制备过程在压力驱动下具备烧结时间短的优势,抑制晶粒异常长大和锂元素挥发等问题,获得高致密度、低气孔率的立方相或赝立方结构产物。本发明对新型固态电解质材料以及全固态电池技术的研究和发展都具有十分重要的价值。

Description

基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法
技术领域
本发明属于固态锂电池相关的新能源材料领域,具体涉及一种在高温高压条件下合成制备基于钙钛矿结构Li3xLa2/3-xTiO3固态电解质的新方法。
背景技术
自1991年,二次锂离子电池商业化以来,锂离子电池已广泛应用于便携式电子设备、电动汽车及储能设备等领域。然而,目前商用的锂离子电池通常采用有机液态电解质,不可避免的引入了易挥发、易燃的有机液体溶剂,存在着严重的安全隐患。相对而言,全固态锂离子电池采用不易燃的固态电解质替代传统有机液态电解质,有望从根本上解决传统锂离子电池的安全性问题。固态电解质主要分为聚合物固体电解质和无机固体电解质,相比于聚合物固体电解质,无机固体电解质具有离子电导率高,机械性能高和热稳定性高等优点。
在众多的无机固体电解质中,Li3xLa2/3-xTiO3(0<x≤0.167)因具有较高的体相离子电导率(高达10-3S/cm),而成为极具应用前景的电解质材料。1993年,日本东京工业大学Inaguma和Chen等研究人员(Solid State Commun.1993,86(10),689-693)在LLTO研究中取得突破性进展,率先报道了LLTO在室温条件下体相锂离子电导率高达1.0×10-3S/cm(x≈0.11),引起了广泛关注。
钙钛矿结构的LLTO存在三种物相:低温正交相、四方相以及高温立方相。常压下,LLTO在高温烧结后的降温过程中对称性发生降低,由正交相向四方相或正交相转变。Gao等研究人员(J.Mater.Chem.A2014,2,843-852)发现正交相和四方相LLTO晶粒内存在大量的纳米晶畴,其间形成高浓度的90°畴界和反相畴界(以90°畴界为主),畴界上应力和La偏析会导致晶格的可伸缩性降低和载流子浓度减少,穿越畴界的锂离子迁移势垒大幅增加,对LLTO的体相离子电导率影响显著。Moriwake和Gao等研究人员(J.Power Sources 2015,276,203-207.)进一步模拟计算研究发现,如果不计畴界影响,理论上LLTO的体相电导率较现有测量结果可提升3个数量级,达到1.0S/cm水平,即比商业化的有机液态电解液高100倍。
本发明针对解决常压条件下制备钙钛矿型LLTO固态电解质陶瓷时,因其晶粒内大量晶畴存在而导致的晶内高界面阻抗问题。本发明采用高温高压合成的方法,通过压力控制有效的抑制LLTO在降温过程中的相变和晶畴成核、长大,获得具有高离子电导率的立方相或者赝立方结构LLTO固态电解质陶瓷。
发明内容
本发明公开了一种在高温高压条件下合成制备基于钙钛矿结构Li3xLa2/3-xTiO3固态电解质的新方法。该方法原理主要基于抑制LLTO在完成高温烧结后的降温过程中的相变和晶畴成核、生长,达到避免畴界形成或降低畴界浓度的目的,从而制备出具有高离子电导率的立方相或赝立方结构的钙钛矿型固态电解质。本发明解决了传统常压条件下制备LLTO时,其晶粒内高浓度畴界引起的高界面阻抗问题。本发明采用高温高压合成的方法,通过压力控制有效的抑制LLTO在降温过程中的相变和晶畴成核、长大,获得具有高离子电导率的立方相或者赝立方结构的LLTO固态电解质陶瓷。
为实现上述目的,本发明技术方案为:
一种基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,包括以下步骤:
(1)依据Li3xLa2/3-xTiO3即LLTO或其衍生相M-doped LLTO化学式,按一定的化学计量比称取原料,经干法混合均匀,或湿法混合均匀并干燥处理,得到干燥粉末;
(2)将步骤(1)所得干燥粉高温煅烧煅烧,再经球磨、混料和干燥处理得到预烧粉末;
(3)高温高压合成:将步骤(1)所得干燥粉末或步骤(2)所得预烧粉末作为前驱体材料,放入高压合成设备腔体中烧结,得到结构致密的立方相或者赝立方结构LLTO固态电解质陶瓷,即产物钙钛矿型固态电解质钛酸锂镧。
优选地,所述步骤(1)中的Li3xLa2/3-xTiO3化学式满足0<x≤0.167,其衍生相M-doped LLTO中M为元素K、Na、Ag、Sr、Ba、Mg、Pr、Sm、Yb、Nd、Al、Cr、Zr、Mn、Ge、Sn、V、Nb、Ta、W、Mo、F中的一种或几种。
优选地,步骤(1)所述原料包括锂源、镧源、钛源、M元素来源中的一种或二种以上。
优选地,所述锂源包括碳酸锂、氧化锂、氢氧化锂、硝酸锂中的一种或几种。
优选地,所述镧源包括碳酸镧、氧化镧、氢氧化镧、硝酸镧中的一种或几种;所述M元素来源包括含有M元素的化合物或单质中的一种或二种以上。
优选地,所述钛源包括氧化钛、氢氧化钛、硝酸钛中的一种或几种。
优选地,步骤(2)所述高温煅烧,温度为700-1200℃,时间为1-12h。
优选地,步骤(3)所述烧结,压力为0.1-25GPa,温度为1200-1600℃,烧结时间为0.2-5h。
优选地,步骤(3)所述前驱体材料通过以下方法制备:溶胶凝胶法、共沉淀法、溶剂热法即水热法、固相法中的一种或多种。
优选地,步骤(1)所述干法混合均匀或湿法混合均匀,采用干法球磨或湿法球磨,球磨机转速为190-250r/min,球磨时间8-14h;所述干燥,为真空干燥,干燥温度为100-130℃,干燥时间为10-14h。
优选地,步骤(2)所述球磨,采用干法球磨或湿法球磨,球磨机转速为190-250r/min,球磨时间8-14h;所述干燥,为真空干燥,干燥温度为100-130℃,干燥时间为10-14h。
优选地,步骤(3)所述高压合成设备包括六面顶型大压机、活塞圆筒型大压机、金刚石对顶砧。
优选地,步骤(3)所述冷却为自然冷却或以20-150℃/min速率冷却,冷却过程中维持烧结压力,冷却至室温后卸压。
有益效果
基于Li3xLa2/3-xTiO3(LLTO)的钙钛矿型氧化物固态电解质因较高的界面阻抗严重限制了其在化学储能(如固态锂离子电池等)方面的应用。研究发现其较高的界面阻抗主要来自于晶界以及晶粒内部大量存在的晶畴之间的界面(畴界)。该类晶畴是LLTO在常压条件下烧结后,其由高温冷却至室温过程中,由相变(晶体结构对称性降低)诱发产生。本发明的构思在于在高压条件下烧结-冷却(降温),用于高压合成的设备包含但不限于活塞圆筒型压机、六面顶型压机、八面顶型压机、金刚石对顶砧。该方法原理主要基于抑制LLTO在完成高温烧结后的降温过程中的相变和晶畴成核、生长,达到避免畴界形成或降低畴界浓度的目的,从而制备出具有高离子电导率的立方相或赝立方结构的钙钛矿型固态电解质。本发明解决常压条件下制备钙钛矿型LLTO固态电解质陶瓷时,因其晶粒内大量晶畴存在而导致的晶内高界面阻抗问题;同时本发明涉及的烧结制备过程在压力驱动下具备烧结时间短的优势,可有效抑制因长时间高温烧结造成的晶粒异常长大和锂元素挥发等问题,获得接近高致密度、低气孔率的立方相或赝立方结构LLTO固态电解质陶瓷。该发明所涉及技术方法的应用和推广对新型固态电解质材料以及全固态电池技术的研究和发展都具有十分重要的价值。
附图说明
图1为高温高压、常压烧结制备的Li3xLa2/3-xTiO3(x=0.06)的XRD图谱。
图2a为常压烧结制备的Li3xLa2/3-xTiO3(x=0.06)内晶畴双束暗场像,图2b高温高压条件下制备的Li3xLa2/3-xTiO3(x=0.06)内晶畴结构高分辨透射图。
具体实施方式
下面结合具体实施例来对本发明的技术方案作进行完整的阐述。实施例只为说明本发明的技术构思及特点,并不能以此限制本发明的保护范围。凡根据本发明基本思想所实现的其他实施例,都应涵盖在本发明的保护范围之内。
实施例1:
1.球磨、干燥:按一定的化学计量比称取碳酸锂、氧化镧、氧化钛,置于球磨罐中,加入适量的无水乙醇,进行球磨机,使之混合均匀,然后将上述混合浆料放入真空干燥箱,在100-150℃条件下干燥处理18h;
2.煅烧:将上述干燥处理后的材料置于烧结炉中,1100℃煅烧1-6h,冷却至室温,取出样品并放入球磨罐中,加入适量无水乙醇,重复步骤1中球磨、真空干燥处理步骤;
3.高温高压合成:称取适量经步骤2所得的材料放入六面顶型大压机腔体中,在5GPa,1300℃条件下烧结2h,冷却至室温后卸压,获得赝立方结构的Li3xLa2/3-xTiO3固态电解质陶瓷(x=0.06)。
实施例2:
1.球磨、干燥:按一定的化学计量比称取碳酸锂、氧化镧、氧化钛,置于球磨罐中,加入适量的无水乙醇,进行球磨机,使之混合均匀,然后将上述混合浆料放入真空干燥箱,在100-150℃条件下干燥处理18h;
2.煅烧:将上述干燥处理后的材料置于烧结炉中,900℃煅烧8-12h,冷却至室温,取出样品并放入球磨罐中,加入适量无水乙醇,重复步骤1中球磨、真空干燥处理步骤;
3.高温高压合成:称取适量经步骤2所得的材料放入六面顶型大压机腔体中,在5GPa,1300℃条件下烧结2h,冷却至室温后卸压,获得赝立方结构的Li3xLa2/3-xTiO3固态电解质陶瓷(x=0.06)。
实施例3:
1.球磨、干燥:按一定的化学计量比称取碳酸锂、氧化镧、氧化钛,置于球磨罐中,加入适量的无水乙醇,进行球磨机,使之混合均匀,然后将上述混合浆料放入真空干燥箱,在100-150℃条件下干燥处理18h;
2.高温高压合成:称取适量经步骤1所得的材料放入六面顶型大压机腔体中,在5GPa,1300℃条件下烧结2h,冷却至室温后卸压,获得赝立方结构的Li3xLa2/3-xTiO3固态电解质陶瓷(x=0.06)。
对实施例1-3所得产物进行常规表征,图1为高温高压、常压烧结制备的Li3xLa2/3- xTiO3(x=0.06)的XRD图谱。测试结果表明可以通过本发明所涉及的高温高压条件下制备出纯相且具有赝立方结构的LLTO固态电解质陶瓷。图2a为常压烧结制备的Li3xLa2/3-xTiO3(x=0.06)内晶畴双束暗场像,图2b高温高压条件下制备的Li3xLa2/3-xTiO3(x=0.06)内晶畴结构高分辨透射图。常压烧结制备的LLTO,其晶畴尺寸较大(~105平方纳米);而高温高压条件下制备的LLTO,其晶畴尺寸大幅缩小(约是数十平方纳米);结果表明压力控制可成功抑制LLTO烧结后降温过程中的相变和晶畴成核、生长,制备出具有赝立方结构的钙钛矿型固态电解质材料。

Claims (6)

1.基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:包括以下步骤:
步骤(1)依据Li3x La2/3-x TiO3或其衍生相M元素掺杂的LLTO化学式,按一定的化学计量比称取原料,经干法混合均匀,或湿法混合均匀并干燥处理,得到干燥粉末;其衍生相M元素掺杂的LLTO中M为元素K、Na、Ag、Sr、Ba、Mg、Pr、Sm、Yb、Nd、Al、Cr、Zr、Mn、Ge、Sn、V、Nb、Ta、W、Mo、F中的一种或几种;
步骤(2)将步骤(1)所得干燥粉高温煅烧,再经球磨、混料和干燥处理得到预烧粉末;
所述步骤(2)所述高温煅烧,温度为700-1200℃,时间为1-12h;步骤(2)所述球磨,采用干法球磨或湿法球磨,球磨机转速为190-250r/min,球磨时间8-14h;所述干燥,为真空干燥,干燥温度为100-130℃,干燥时间为10-14h;
步骤(3)高温高压合成:将步骤(1)所得干燥粉末或步骤(2)所得预烧粉末作为前驱体材料,放入高压合成设备腔体中依次进行烧结和冷却,冷却过程中维持烧结压力,冷却至室温后卸压,以得到赝立方结构LLTO固态电解质陶瓷,即产物钙钛矿型固态电解质钛酸锂镧;
步骤(3)所述烧结,压力为0.1-25GPa,温度为1200-1600℃,烧结时间为0.2-5h;抑制LLTO在完成高温高压烧结后的降温过程中的相变和晶畴成核、生长,避免畴界形成,降低畴界浓度,以得到赝立方结构LLTO固态电解质陶瓷,即产物钙钛矿型固态电解质钛酸锂镧。
2.根据权利要求1所述的基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:所述步骤(1)中的Li3xLa2/3-xTiO3化学式满足0<x≤0.167。
3.根据权利要求2所述的基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:所述步骤(1)所述原料包括锂源、镧源、钛源,以及M元素来源中的一种或二种以上。
4.根据权利要求3所述的基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:所述锂源包括碳酸锂、氧化锂、氢氧化锂、硝酸锂中的一种或几种。
5.根据权利要求3所述的基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:所述镧源包括碳酸镧、氧化镧、氢氧化镧、硝酸镧中的一种或几种;所述M元素来源包括含有M元素的化合物或单质中的一种或二种以上。
6.根据权利要求3所述的基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法,其特征在于:所述钛源包括氧化钛、氢氧化钛、硝酸钛中的一种或几种。
CN202110594175.XA 2021-05-28 2021-05-28 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法 Active CN113372110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110594175.XA CN113372110B (zh) 2021-05-28 2021-05-28 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110594175.XA CN113372110B (zh) 2021-05-28 2021-05-28 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法

Publications (2)

Publication Number Publication Date
CN113372110A CN113372110A (zh) 2021-09-10
CN113372110B true CN113372110B (zh) 2024-05-17

Family

ID=77574773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110594175.XA Active CN113372110B (zh) 2021-05-28 2021-05-28 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法

Country Status (1)

Country Link
CN (1) CN113372110B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160011B (zh) * 2022-07-26 2024-05-07 浙江固泰动力技术有限公司 一种一步烧结制备直孔固态锂电池陶瓷电解质的方法及其应用
CN115504770B (zh) * 2022-09-13 2023-07-21 景德镇陶瓷大学 一种过渡金属离子与Nd3+共掺杂型固体电解质陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406118A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 一种陶瓷固态电解质及其制备方法
WO2017047939A1 (ko) * 2015-09-18 2017-03-23 한국생산기술연구원 전고체 리튬이차전지용 고체전해질의 제조방법
CN110556570A (zh) * 2018-05-30 2019-12-10 郑州新世纪材料基因组工程研究院有限公司 一种钛酸锂镧复合电解质材料及其制备方法、复合极片、固态锂离子电池
CN110556571A (zh) * 2018-05-30 2019-12-10 郑州新世纪材料基因组工程研究院有限公司 一种钛酸锂镧复合材料及其制备方法、锂离子固态电池
CN110620259A (zh) * 2019-09-04 2019-12-27 成都新柯力化工科技有限公司 一种锂电池高晶界电导钙钛矿固态电解质及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047939A1 (ko) * 2015-09-18 2017-03-23 한국생산기술연구원 전고체 리튬이차전지용 고체전해질의 제조방법
CN105406118A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 一种陶瓷固态电解质及其制备方法
CN110556570A (zh) * 2018-05-30 2019-12-10 郑州新世纪材料基因组工程研究院有限公司 一种钛酸锂镧复合电解质材料及其制备方法、复合极片、固态锂离子电池
CN110556571A (zh) * 2018-05-30 2019-12-10 郑州新世纪材料基因组工程研究院有限公司 一种钛酸锂镧复合材料及其制备方法、锂离子固态电池
CN110620259A (zh) * 2019-09-04 2019-12-27 成都新柯力化工科技有限公司 一种锂电池高晶界电导钙钛矿固态电解质及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Li0.24La0.587TiO3固态电解质材料的掺杂改性及电学性能研究;姚瑞君;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20210115;正文第10,26-27页 *

Also Published As

Publication number Publication date
CN113372110A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
Cao et al. Modeling, preparation, and elemental doping of Li 7 La 3 Zr 2 O 12 garnet-type solid electrolytes: A review
Ruan et al. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions
Chen et al. Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12
Murugan et al. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
CN108832173B (zh) 镓和钼共掺杂的石榴石型锂离子固体电解质及其制备方法
Li et al. Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries
Qin et al. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries
CN112397776B (zh) 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
CN113372110B (zh) 基于高温高压合成制备钙钛矿型固态电解质钛酸锂镧的方法
CN108155413A (zh) 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法
CN112467198B (zh) 一种锂离子电池用氧化物固态电解质及其制备方法
KR20150065180A (ko) 실온 고체 상태 나트륨 이온 전지용 고전도율 나시콘 전해질
Zhao et al. Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12
CN110885246A (zh) 一种溶胶凝胶法制备的高电导固体电解质
CN109148948A (zh) 一种高锂离子电导率的固体电解质及其制备方法
Zhang et al. Characterization of Sr-doped lithium lanthanum titanate with improved transport properties
CN108793987A (zh) 一种新型锂离子传导氧化物固体电解质及其制备方法
Cao et al. Y and Sb co-doped Li 7 La 3 Zr 2 O 12 electrolyte for all solid-state lithium batteries
CN111129580B (zh) 一种硫银锗矿掺杂钙钛矿型固体电解质及其制备方法
Cao et al. Lithium ionic conductivity of Li 7-3x Fe x La 3 Zr 2 O 12 ceramics by the Pechini method
Wakudkar et al. Enhancement of ionic conductivity by addition of LiAlO2 in Li6. 6La3Zr1. 6Sb0. 4O12 for lithium ion battery
CN110128140A (zh) 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN111786014A (zh) 一种超细粒度的石榴石型固体电解质粉体及其制备方法
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
Zheng et al. Lithium ion conductivity in the solid electrolytes (Li0. 25La0. 25) 1− xM0. 5xNbO3 (M= Sr, Ba, Ca, x= 0.125) with perovskite-type structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant