CN113199028B - 一种电阻焊电极用铜基复合材料的制备方法 - Google Patents

一种电阻焊电极用铜基复合材料的制备方法 Download PDF

Info

Publication number
CN113199028B
CN113199028B CN202110472416.3A CN202110472416A CN113199028B CN 113199028 B CN113199028 B CN 113199028B CN 202110472416 A CN202110472416 A CN 202110472416A CN 113199028 B CN113199028 B CN 113199028B
Authority
CN
China
Prior art keywords
powder
ball milling
cucrzr
composite material
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110472416.3A
Other languages
English (en)
Other versions
CN113199028A (zh
Inventor
秦永强
庄翌
吴玉程
罗来马
崔接武
王岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110472416.3A priority Critical patent/CN113199028B/zh
Publication of CN113199028A publication Critical patent/CN113199028A/zh
Application granted granted Critical
Publication of CN113199028B publication Critical patent/CN113199028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种电阻焊电极用铜基复合材料的制备方法,通过碳化、球磨、煅烧还原和放电等离子烧结等工序实现了CuCrZr‑(WC‑Y2O3)复合材料的制备。本发明通过SPS的等离子活化和烧结致密化的共同作用,细化铜基合金晶粒大小,制备出晶粒组织较均匀、致密度高的CuCrZr‑(WC‑Y2O3)复合材料。本发明CuCrZr‑(WC‑Y2O3)复合材料不仅能够大幅度提高材料的耐磨性,提高了材料使用寿命,还能维持材料的导电性在较高水准。

Description

一种电阻焊电极用铜基复合材料的制备方法
技术领域
本发明属于高强高导用铜合金复合材料领域,具体涉及一种电阻焊电极用CuCrZr-(WC-Y2O3)铜基复合材料的制备方法。本发明铜基复合材料主要用于核、电阻焊电极、集成电路引线框架等方面的材料,特别是面向电阻焊电极用材料。
背景技术
铜铬锆合金由于其较好的强度与硬度,以及良好的导电性被广泛应用于电机整流子,点焊机,缝焊机,对焊机用电极上。但其在作为焊接电极材料时,经常出现变形、粘附、使用寿命不长的现象,严重影响工作效率,这是由于在投入使用的过程中强度和硬度还略显不足引起的。目前ODS铜是通过引入硬度高、热稳定性好的第二相质点弥散分布在铜基体上以提高强度的方法,但是常规的添加会引起导电性的下降,无法满足材料的正常使用。因此,综合发挥复合强化和弥散强化两种增强机制,是进一步改善铜合金复合材料性能的重要途径。
发明内容
针对现有材料的缺陷,本发明的目的在于提供一种电阻焊电极用CuCrZr-(WC-Y2O3)铜基复合材料的制备方法。本方法制备的CuCrZr-(WC-Y2O3)铜基复合材料不仅能够大幅度提高材料的耐磨性,还能维持材料的导电性在较高水准,满足使用要求。
为了实现上述目的,本发明采用了以下技术方案:
本发明电阻焊电极用CuCrZr-(WC-Y2O3)铜基复合材料的制备方法,依次包括碳化、球磨、煅烧还原以及放电等离子烧结等工艺过程,具体包括如下步骤:
步骤1:碳化
将W-0.5%Y2O3粉末与碳粉置于球磨机中混粉,其中碳的原子数量为钨的110-120%,球磨转速为400r/min,球磨时间为15h,球料比为10:1,球磨后置于陶瓷烧舟中并置于GSL-1700X高温管式烧结炉中,在氩气气氛下进行碳化得到WC-Y2O3粉末,碳化温度为1200℃,保温时间为2h。
步骤2:球磨
将CuCrZr与WC-Y2O3粉末置于球磨罐中,其中WC-Y2O3的质量分数为1%-5%,在氩气气氛下完成真空手套箱中球磨罐的装配并保证球磨过程是在氩气气氛保护下进行,球磨罐和球磨介质均由不锈钢制成;装配完成后,再将球磨罐置于行星球磨机中,球磨转速为250-350r/min,经过20小时球磨取出后研磨最终得到CuCrZr-(WC-Y2O3)复合粉末。
步骤3:煅烧
为防止CuCrZr粉末在放置与保存期间被氧化,将上述CuCrZr-(WC-Y2O3)复合粉末置于陶瓷烧舟中,将粉末放入GSL-1700X高温管式炉中,在氢气气氛下进行煅烧还原,还原加热温度为550℃-600℃,升温速率为10℃/min,降温速率为10℃/min。
步骤4:烧结
将步骤3得到的CuCrZr-(WC-Y2O3)复合粉末装入到直径为20mm的石墨模具中,再将模具放入放电等离子烧结炉中,炉腔在室温下抽真空,然后升温至600℃并保温5min,升温速率为100℃/min;再升温至900℃并保温5min,保温结束后降至室温,降温速率为100℃/min,即得到CuCrZr-(WC-Y2O3)复合材料。
本发明中,WC和Y2O3不是以单独的粉体形式添加进铜基体,而是通过湿化法得到W-Y2O3粉末,再由碳化工艺得到的WC-Y2O3复合粉末,再以复合第二相的形式添加入铜基体中,WC本身属于硬脆颗粒,Y2O3的掺入不仅能够提升第二相颗粒WC的断裂韧性,增强了WC的稳定性使其与铜基体更好的结合,同时部分Y2O3弥散分布在铜基体上能够提高其力学性能。
Y2O3和WC的协同作用主要体现在Y2O3对WC稳定性的提高,如图4所示,我们将第二相颗粒进行EDS分析,可以看到Y2O3不仅弥散分布于铜基体同时富集在WC颗粒和WC与Cu基体的交界处,使其与铜基体更好的结合,达到强化基体的效果。
本发明的有益效果体现在:
本发明通过碳化、球磨、煅烧还原和放电等离子烧结四道工序实现了CuCrZr-(WC-Y2O3)复合材料的制备。WC和Y2O3都具有较高的硬度,同时WC也是电、热的良好导体。本发明的WC和Y2O3不是以单独粉末形式添加进去,而是通过湿化法制得W-Y2O3粉末再经过碳化得到WC-Y2O3的复合第二相,WC颗粒硬而脆,Y2O3的掺入不仅提升了WC颗粒的断裂韧性使其与铜基体的结合更加稳定,同时还弥散分布于铜基体中提高其力学性能。放电等离子烧结技术加热速度快、温度分度均匀以及工艺效率高。通过SPS的等离子活化和烧结致密化的共同作用,细化铜基合金晶粒大小,制备出晶粒组织较均匀、致密度高的CuCrZr-(WC-Y2O3)复合材料。本发明CuCrZr-(WC-Y2O3)复合材料不仅能够大幅度提高材料的耐磨性,提高了材料使用寿命,还能维持材料的导电性在较高水准。
附图说明
图1是3000倍下CuCrZr-(WC-Y2O3)复合粉末颗粒SEM形貌图,从图1可以看出CuCrZr-(WC-Y2O3)复合粉末颗粒表面镀上了一层WC。
图2是5000倍下CuCrZr-(WC-Y2O3)复合材料拉伸断口SEM形貌图,从图2可以看出CuCrZr-(WC-Y2O3)复合材料在拉伸下发生韧性断裂,韧窝明显。
图3是20000倍下CuCrZr-(WC-Y2O3)复合材料拉伸断口SEM形貌图,从图3可以看出CuCrZr-(WC-Y2O3)复合材料易在WC和Y2O3分布处发生,复合效果好未出现脆性断裂现象。
图4是WC-Y2O3第二相EDS分析,可以看到Y2O3不仅弥散分布于铜基体同时富集在WC颗粒和WC与Cu基体的交界处,使其与铜基体更好的结合,达到强化基体的效果。
具体实施方式
实施例1:
本实施例中CuCrZr-(WC-Y2O3)复合材料,是由一种碳化、球磨、煅烧还原和放电等离子烧结加工制成,其中WC-Y2O3的质量分数是1%。
本实施例中的CuCrZr-(WC-Y2O3)复合材料的制备方法如下:
1、碳化:将W-0.5%Y2O3粉末与碳粉置于QM-QX4全方位行星式球磨机中混粉,其中碳的原子数量为钨的110%,球磨转速为400r/min,球磨时间为15h,球料比为10:1,球磨后置于陶瓷烧舟中并置于GSL-1700X高温管式烧结炉中,在氩气气氛下进行碳化得到WC-Y2O3粉末,碳化温度为1200℃,保温时间为2h。
2、球磨:将CuCrZr与WC-Y2O3粉末置于球磨罐中,其中WC-Y2O3的质量分数为1%,在真空手套箱中在氩气气氛下完成球磨罐的装配保证球磨过程是在氩气气氛保护下进行,球罐和球磨介质均由不锈钢制成,装配完成后,再将球磨罐置于行星球磨机中球磨转速为250r/min,经过20小时球磨取出后研磨最终得到CuCrZr-(WC-Y2O3)复合粉末。
3、煅烧还原:将上述CuCrZr-(WC-Y2O3)复合粉末置于陶瓷烧舟中,将粉末放入GSL-1700X高温管式炉中,在氢气气氛下进行煅烧还原,还原加热温度为550℃,升温速率为10℃/min,降温速率为10℃/min。
4、烧结:将上述得到的CuCrZr-(WC-Y2O3)复合粉末装入到直径为20mm的石墨模具中,再将模具放入放电等离子烧结炉中,炉腔在室温下抽真空,然后升温至600℃并保温5min,升温速率为100℃/min;再升温至900℃并保温5min,保温结束后降至室温,降温速率为100℃/min,即得到CuCrZr-(WC-Y2O3)复合材料。
实施例2:
本实施例中CuCrZr-(WC-Y2O3)复合材料,是由一种碳化、球磨、煅烧还原和放电等离子烧结加工制成,其中WC-Y2O3的质量分数是3%。
本实施例中的CuCrZr-(WC-Y2O3)复合材料的制备方法如下:
1、碳化:将W-0.5%Y2O3粉末与碳粉置于QM-QX4全方位行星式球磨机中混粉,其中碳的原子数量为钨的115%,球磨转速为400r/min,球磨时间为15h,球料比为10:1,球磨后置于陶瓷烧舟中并置于GSL-1700X高温管式烧结炉中,在氩气气氛下进行碳化得到WC-Y2O3粉末,碳化温度为1200℃,保温时间为2h。
2、球磨:将CuCrZr与WC-Y2O3粉末置于球磨罐中,其中WC-Y2O3的质量分数为3%,在真空手套箱中在氩气气氛下完成球磨罐的装配保证球磨过程是在氩气气氛保护下进行,球罐和球磨介质均由不锈钢制成,装配完成后,再将球磨罐置于行星球磨机中球磨转速为300r/min,经过20小时球磨取出后研磨最终得到CuCrZr-(WC-Y2O3)复合粉末。
3、煅烧还原:将上述CuCrZr-(WC-Y2O3)复合粉末置于陶瓷烧舟中,将粉末放入GSL-1700X高温管式炉中,在氢气气氛下进行煅烧还原,还原加热温度为580℃,升温速率为10℃/min,降温速率为10℃/min。
4、烧结:将上述得到的CuCrZr-(WC-Y2O3)复合粉末装入到直径为20mm的石墨模具中,再将模具放入放电等离子烧结炉中,炉腔在室温下抽真空,然后升温至600℃并保温5min,升温速率为100℃/min;再升温至900℃并保温5min,保温结束后降至室温,降温速率为100℃/min,即得到CuCrZr-(WC-Y2O3)复合材料。
实施例3:
本实施例中CuCrZr-(WC-Y2O3)复合材料,是由一种碳化、球磨、煅烧还原和放电等离子烧结加工制成,其中WC-Y2O3的质量分数是5%。
本实施例中的CuCrZr-(WC-Y2O3)复合材料的制备方法如下:
1、碳化:将W-0.5%Y2O3粉末与碳粉置于QM-QX4全方位行星式球磨机中混粉,其中碳的原子数量为钨的120%,球磨转速为400r/min,球磨时间为15h,球料比为10:1,球磨后置于陶瓷烧舟中并置于GSL-1700X高温管式烧结炉中,在氩气气氛下进行碳化得到WC-Y2O3粉末,碳化温度为1200℃,保温时间为2h。
2、球磨:将CuCrZr与WC-Y2O3粉末置于球磨罐中,其中WC-Y2O3的质量分数为5%,在真空手套箱中在氩气气氛下完成球磨罐的装配保证球磨过程是在氩气气氛保护下进行,球罐和球磨介质均由不锈钢制成,装配完成后,再将球磨罐置于行星球磨机中球磨转速为350r/min,经过20小时球磨取出后研磨最终得到CuCrZr-(WC-Y2O3)复合粉末。
3、煅烧还原:将上述CuCrZr-(WC-Y2O3)复合粉末置于陶瓷烧舟中,将粉末放入GSL-1700X高温管式炉中,在氢气气氛下进行煅烧还原,还原加热温度为600℃,升温速率为10℃/min,降温速率为10℃/min。
4、烧结:将上述得到的CuCrZr-(WC-Y2O3)复合粉末装入到直径为20mm的石墨模具中,再将模具放入放电等离子烧结炉中,炉腔在室温下抽真空,然后升温至600℃并保温5min,升温速率为100℃/min;再升温至900℃并保温5min,保温结束后降至室温,降温速率为100℃/min,即得到CuCrZr-(WC-Y2O3)复合材料。
经过烧结后CuCrZr-(WC-Y2O3)复合材料的维氏硬度达到128~152HV,高于CuCrZr的89HV,抗拉强度最高达到307MPa。
下表1是CuCrZr-(WC-Y2O3)与CuCrZr的各项性能对比,从表1中我们可以看出强度硬度大大提升且导电性维持在较高水平。
表1
Figure BDA0003045990360000051

Claims (7)

1.一种电阻焊电极用铜基复合材料的制备方法,其特征在于包括如下步骤:
步骤1:碳化
将W-Y2O3粉末与碳粉置于球磨机中混粉,球磨后置于陶瓷烧舟中并置于高温管式烧结炉中,在氩气气氛下进行碳化得到WC-Y2O3粉末;
步骤2:球磨
将CuCrZr与WC-Y2O3粉末置于球磨罐中,在氩气气氛下完成真空手套箱中球磨罐的装配并保证球磨过程是在氩气气氛保护下进行,球磨罐和球磨介质均由不锈钢制成;装配完成后,再将球磨罐置于行星球磨机中,球磨转速为250-350r/min,经过20小时球磨取出后研磨最终得到CuCrZr-(WC-Y2O3)复合粉末;
步骤3:煅烧
为防止CuCrZr粉末在放置与保存期间被氧化,将步骤2获得的CuCrZr-(WC-Y2O3)复合粉末置于陶瓷烧舟中,将粉末放入高温管式炉中,在氢气气氛下进行煅烧还原;
步骤4:烧结
将步骤3得到的CuCrZr-(WC-Y2O3)复合粉末装入石墨模具中,再将模具放入放电等离子烧结炉中,炉腔在室温下抽真空,然后升温至600℃并保温5min,再升温至900℃并保温5min,保温结束后降至室温,即得到CuCrZr-(WC-Y2O3)复合材料。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1中,W-Y2O3粉末中Y2O3的质量百分比为0.5%。
3.根据权利要求1所述的制备方法,其特征在于:
步骤1中,球磨转速为400r/min,球磨时间为15h,球料比为10:1。
4.根据权利要求1所述的制备方法,其特征在于:
步骤1中,碳化温度为1200℃,保温时间为2h。
5.根据权利要求1所述的制备方法,其特征在于:
步骤2中,将CuCrZr与WC-Y2O3粉末置于球磨罐中时,WC-Y2O3的质量分数为1%-5%。
6.根据权利要求1所述的制备方法,其特征在于:
步骤3中,还原加热温度为550℃-600℃,升温速率为10℃/min,降温速率为10℃/min。
7.根据权利要求1所述的制备方法,其特征在于:
步骤4中,升温速率为100℃/min,降温速率为100℃/min。
CN202110472416.3A 2021-04-29 2021-04-29 一种电阻焊电极用铜基复合材料的制备方法 Active CN113199028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110472416.3A CN113199028B (zh) 2021-04-29 2021-04-29 一种电阻焊电极用铜基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110472416.3A CN113199028B (zh) 2021-04-29 2021-04-29 一种电阻焊电极用铜基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN113199028A CN113199028A (zh) 2021-08-03
CN113199028B true CN113199028B (zh) 2022-03-15

Family

ID=77027777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110472416.3A Active CN113199028B (zh) 2021-04-29 2021-04-29 一种电阻焊电极用铜基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN113199028B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112722A (en) * 1978-02-24 1979-09-03 Inoue Japax Res Inc Electrode material for electrical working
DE2808392A1 (de) * 1978-02-27 1979-09-06 Kabel Metallwerke Ghh Elektrode bzw. elektrodenkappe fuer die elektrische widerstandsschweissung
JPS61149449A (ja) * 1984-12-24 1986-07-08 Sumitomo Electric Ind Ltd 半導体装置用リ−ドフレ−ム複合材料およびその製造方法
JPS6483629A (en) * 1987-09-24 1989-03-29 Toshiba Corp Production of dispersion strengthened copper alloy
EP0364295A2 (en) * 1988-10-13 1990-04-18 Kabushiki Kaisha Toshiba Dispersion strengthened copper alloy and a method of manufacturing the same
CN1806999A (zh) * 2004-10-22 2006-07-26 奥托库姆普铜产品公司 一种焊接电极材料以及由该材料制备的电极
CN106282643A (zh) * 2015-06-12 2017-01-04 济南大学 一种铜基电接触复合材料及其真空热压工艺
CN106834791A (zh) * 2017-01-16 2017-06-13 江西理工大学 一种稀土氧化物颗粒强化高导铜合金的制备方法
CN109136615A (zh) * 2018-10-30 2019-01-04 江西理工大学 一种多步球磨与多步气相还原制备纳米陶瓷颗粒弥散强化铜基复合材料的制备方法
CN110029246A (zh) * 2019-05-13 2019-07-19 大连理工大学 一种三氧化二钇弥散强化铜合金的制备方法
CN111979462A (zh) * 2020-08-21 2020-11-24 合肥工业大学 一种具有高硬度的WC-MoC-Co-Y2O3硬质合金及其制备方法
CN112410597A (zh) * 2020-09-29 2021-02-26 南昌大学 一种纳米wc弥散强化铜的制备方法
CN112553499A (zh) * 2020-12-04 2021-03-26 天津大学 一种CuCrZr/WC复合材料、制备方法及其应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112722A (en) * 1978-02-24 1979-09-03 Inoue Japax Res Inc Electrode material for electrical working
DE2808392A1 (de) * 1978-02-27 1979-09-06 Kabel Metallwerke Ghh Elektrode bzw. elektrodenkappe fuer die elektrische widerstandsschweissung
JPS61149449A (ja) * 1984-12-24 1986-07-08 Sumitomo Electric Ind Ltd 半導体装置用リ−ドフレ−ム複合材料およびその製造方法
JPS6483629A (en) * 1987-09-24 1989-03-29 Toshiba Corp Production of dispersion strengthened copper alloy
EP0364295A2 (en) * 1988-10-13 1990-04-18 Kabushiki Kaisha Toshiba Dispersion strengthened copper alloy and a method of manufacturing the same
CN1806999A (zh) * 2004-10-22 2006-07-26 奥托库姆普铜产品公司 一种焊接电极材料以及由该材料制备的电极
CN106282643A (zh) * 2015-06-12 2017-01-04 济南大学 一种铜基电接触复合材料及其真空热压工艺
CN106834791A (zh) * 2017-01-16 2017-06-13 江西理工大学 一种稀土氧化物颗粒强化高导铜合金的制备方法
CN109136615A (zh) * 2018-10-30 2019-01-04 江西理工大学 一种多步球磨与多步气相还原制备纳米陶瓷颗粒弥散强化铜基复合材料的制备方法
CN110029246A (zh) * 2019-05-13 2019-07-19 大连理工大学 一种三氧化二钇弥散强化铜合金的制备方法
CN111979462A (zh) * 2020-08-21 2020-11-24 合肥工业大学 一种具有高硬度的WC-MoC-Co-Y2O3硬质合金及其制备方法
CN112410597A (zh) * 2020-09-29 2021-02-26 南昌大学 一种纳米wc弥散强化铜的制备方法
CN112553499A (zh) * 2020-12-04 2021-03-26 天津大学 一种CuCrZr/WC复合材料、制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effect of Y2O3 on microstructure and mechanical properties of WC-Co-cemented carbides prepared via solid-liquid doping method and spark plasma sintering;Yong-Qiang Qin 等;《Materials Today Communications》;20200331;第24卷;第101096条第1-9页 *
Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites;Yong–Qiang Qin等;《Journal of Alloys and Compounds》;20200723;第848卷;第156475条第1-14页 *
Synthesis of Y2O3-doped WC-Co powders by wet chemical method and its effect on the properties of WC-Co cemented carbide alloy;Yu Yang 等;《International Journal of Refractory Metals and Hard Materials》;20200704;第92卷;第105324条第1-11页 *

Also Published As

Publication number Publication date
CN113199028A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN101956094B (zh) 一种高强高导弥散强化铜合金的制备方法
CN113122747B (zh) 一种具有优异力学性能的Cu-(WC-Y2O3)复合材料制备方法
CN110157932A (zh) 一种基于原位合成的石墨烯改性铜基电触头材料的制备方法
WO2011114657A1 (ja) スパッタリングターゲット及びその製造方法
CN111118325B (zh) 一种细晶铌钛合金的制备方法
CN113355550B (zh) 一种掺杂Y2O3增强CuCrZr合金的制备方法
CN113061762B (zh) 一种提高钨铼合金高温摩擦性能的方法
CN110819842A (zh) 基于还原氧化石墨烯和铜复合材料的成型件制备方法
CN112813397A (zh) 一种钼钠合金板状靶材的制备方法
CN114574728B (zh) 一种Cu-Y3Zr4O12复合材料制备方法
CN114752838A (zh) 铜基氧化物弥散强化的Cu-Y2O3复合材料制备方法
CN112391565A (zh) 一种ZrC弥散强化钨铜复合材料的制备方法
CN109837442B (zh) 金属元素Ti/Cr与硬质相WC原位共掺杂的纳米晶钨铜基复合材料的制备方法
CN114210982B (zh) 一种制备纳米结构的Cu-Cr2Nb合金的方法
CN113199028B (zh) 一种电阻焊电极用铜基复合材料的制备方法
CN112410597B (zh) 一种纳米wc弥散强化铜的制备方法
Li et al. Effect of short-time hot repressing on a Ag-SnO2 contact material containing CuO additive
CN117051279A (zh) 一种镍铂铈合金靶材及其制备方法
CN113249755B (zh) 一种惰性阳极材料及其制备方法和应用
CN115094265A (zh) 一种钨/金属氧化物颗粒复相强化铜基复合材料及其制备方法
CN115070042A (zh) 一种稀土氧化物改性硬质合金车刀片及其制备方法
CN113186437A (zh) 一种含铒的氧化物弥散强化钨基合金及其制备方法与应用
CN115896517B (zh) 铼和碳化铪复合钨渗铜耐烧蚀材料的制备方法
CN113215462B (zh) 一种基于悬浮感应熔炼制备W-Ta单相固溶体材料
CN114635052B (zh) 一种掺杂TiCN耐磨钨铜复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant