CN113015338B - Circuit board with crossed blind holes and processing method thereof - Google Patents

Circuit board with crossed blind holes and processing method thereof Download PDF

Info

Publication number
CN113015338B
CN113015338B CN202110218398.6A CN202110218398A CN113015338B CN 113015338 B CN113015338 B CN 113015338B CN 202110218398 A CN202110218398 A CN 202110218398A CN 113015338 B CN113015338 B CN 113015338B
Authority
CN
China
Prior art keywords
hole
core
copper
board
core board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110218398.6A
Other languages
Chinese (zh)
Other versions
CN113015338A (en
Inventor
王劲
林立明
周亮
李琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU TOMORROW HIGH TECHNOLOGY INDUSTRY CO LTD
Original Assignee
CHENGDU TOMORROW HIGH TECHNOLOGY INDUSTRY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU TOMORROW HIGH TECHNOLOGY INDUSTRY CO LTD filed Critical CHENGDU TOMORROW HIGH TECHNOLOGY INDUSTRY CO LTD
Priority to CN202110218398.6A priority Critical patent/CN113015338B/en
Publication of CN113015338A publication Critical patent/CN113015338A/en
Application granted granted Critical
Publication of CN113015338B publication Critical patent/CN113015338B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating

Abstract

The invention relates to the technical field of circuit board processing, and discloses a circuit board with crossed blind holes and a processing method thereof, wherein the processing method comprises the following steps; drilling a first through hole on the second core plate, depositing copper, electroplating, and plugging with resin; laminating one surface of the second core plate and the first semi-solidified sheet together and pressing; after pressing, one surface of the first semi-cured sheet, which is far away from the second core board, is plated with a copper foil; after pressing, drilling a second through hole and depositing copper for electroplating; laminating the first core board, the second prepreg and the other surface of the second core board after copper deposition and electroplating together and pressing; and drilling a third through hole in the laminated first core plate and the second solidified sheet, and depositing copper for electroplating, wherein the third through hole corresponds to the first through hole in position. According to the invention, a mode of drilling the through hole first and then drilling the deep hole is adopted, the depth of the generated blind hole is shallow, subsequent copper deposition and electroplating cannot be influenced, and the yield of the circuit board is further ensured.

Description

Circuit board with crossed blind holes and processing method thereof
Technical Field
The invention belongs to the technical field of circuit board processing, and particularly relates to a circuit board with crossed blind holes and a processing method thereof.
Background
The crossed blind holes refer to two different blind holes in the same layer of the circuit board. The arrangement of the crossed blind holes can improve the welding density, and the crossed blind holes are mainly used for reducing the transmission of signal lines, reducing the cost and simultaneously reducing the physical space and the weight.
The current processing method of the circuit board cross blind hole comprises the steps of carrying out press fitting on a multilayer core board and a prepreg and then drilling holes at one time through laser drilling to form the circuit board cross blind hole, wherein in the copper deposition process of the formed deep blind hole, liquid medicine cannot be fully exchanged to cause incomplete copper deposition, and further to cause generation of sand holes. In addition, in the deep blind hole copper electroplating process, the thickness of a plating layer can not reach the standard due to insufficient exchange of liquid medicine, and the circuit board is scrapped.
Disclosure of Invention
Therefore, an object of the present invention is to provide a method for processing a circuit board having crossed blind holes, so as to solve the problem that the circuit board is easily scrapped due to incomplete chemical solution exchange in the copper deposition and copper plating process of the current deep blind holes formed by drilling at one time. By adopting the processing method of the circuit board with the crossed blind holes, the mode of firstly drilling the through holes and then drilling the through holes is adopted, the depth of the generated blind holes is shallow, subsequent copper deposition and electroplating cannot be influenced, and the yield of the circuit board is further ensured.
The specific content is as follows:
the processing method of the circuit board with the crossed blind holes is characterized in that the circuit board is formed by integrally processing a first core board and a second core board in a pressing mode, and comprises the following steps:
s1 first core plate
The first core board is a double-sided copper-clad board;
s2 second core board
The second core plate is a double-sided copper-clad plate, and the second core plate is drilled with a first through hole, plated with copper, plated with resin and plugged with holes;
s3 second core board lamination
Laminating one surface of the second core plate and the first semi-solidified sheet in the step S2 together and laminating; after pressing, one surface of the first semi-cured sheet, which is far away from the second core plate, is plated with copper foil; after pressing, drilling a second through hole and depositing copper for electroplating;
s4, laminating the first core plate and the second core plate
Overlapping the first core board in the step S1, the second prepreg and the other surface layer of the second core board plated with the copper in the step S3, and pressing; and drilling a third through hole on the first core plate and the second solidified sheet after pressing, and depositing copper for electroplating, wherein the third through hole corresponds to the first through hole.
The beneficial effects of the invention are as follows:
the invention converts the circuit board pressing into the batch pressing, converts the crossed blind holes into through holes for processing, and specifically, first makes first through holes on a second core board, then makes second through holes with a first semi-solidified sheet, and then presses the pressed second core board with the first core board and a second semi-solidified sheet again; and after lamination, the first core plate and the second curing sheet are provided with a third through hole, and the third through hole is communicated with the first through hole, so that the first through hole is converted into a blind hole. And, the copper plating is carried out in advance at the first through hole, so that the feasibility of deep drilling during the manufacturing of the third through hole can be ensured, and the processing technology of the crossed blind hole is further realized. The mode of drilling through holes first and then controlling the depth is adopted, the depth of the produced blind holes is shallow, subsequent copper deposition and electroplating cannot be influenced, and the yield of the circuit board is further ensured.
Drawings
Fig. 1 is a schematic structural diagram of a circuit board with cross blind holes in an embodiment.
Reference numerals are as follows:
100-a first core board, 200-a second core board, 300-a first prepreg, 400-a second prepreg, 510-a first through hole, 520-a second through hole, 530-a third through hole, 540-a fourth through hole.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention more apparent, the technical solutions of the embodiments of the present invention will be clearly and completely described below. The examples, in which specific conditions are not specified, were carried out according to conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
Examples
The embodiment provides a processing method of a circuit board with crossed blind holes, the processed circuit board is formed by integrally pressing a first core board 100 and a second core board 200, and the specific processing method is as follows:
s1 first core plate
The first core board 100 is a double-sided copper clad board, that is, the copper foil layers are coated on both sides of the first core board 100. Before the first core board 100 is processed, the thickness of the copper foil layer is electroplated to the processing thickness. In the first core plate 100, the copper foil layer has a thickness of 25 μm.
The first core board 100 is subjected to laser coding, film pattern exposure, inner layer etching, optical inspection, and browning.
S2 second core board
The second core board 200 is a double-sided copper clad board, that is, the copper foil layers are coated on both sides of the second core board 200. In the second core board 200, the thickness of the copper foil layer is 18 μm.
Before the second core board 200 is processed, the copper reduction processing is performed to reduce the copper to 10 μm. This is because the two sides of the second core board 200 are mostly made by chemical etching, and in the etching process, since the chemical etching has no directionality, there is also lateral etching in the longitudinal etching process, so that the line precision is not controlled, and therefore, copper reduction processing is required. Copper reduction adopts a chemical reaction mode to reduce the thickness of the copper foil, but the thickness of the copper foil is not easy to be too thin, because if the thickness is too thin, the situation of scratching and breaking lines in the subsequent processing process is easy to occur.
After the copper reduction treatment, drilling a first through hole 510 on the second core board 200, and carrying out copper deposition, backlight detection, pre-plating of hole copper to 25 mu m, hole plugging, curing and polishing, film pattern exposure, electroplating, inner layer etching, inspection and browning treatment.
S3 second core board lamination
Laminating one surface of the second core board 200 subjected to the browning treatment in the step S2 and the first semi-cured sheet 300 together and pressing, wherein one surface of the first semi-cured sheet 300 away from the second core board 200 is plated with a copper foil; after the pressing, the copper reduction treatment is performed to reduce the copper to 18 μm, because the copper thickness of the surface of the second core board 200 after the copper deposition and electroplating treatment of the second core board 200 in S2 is too large, which may exceed 35 μm, and is not beneficial to the manufacture of high-precision copper lines, so the copper reduction treatment is required. The copper is reduced to 18 mu m, the purpose is that the thickness of the copper foil which is commonly used for printing plates is 18 mu m, and if the thickness is thinner, the copper foil is easy to scratch and discard in the subsequent manufacturing process.
After the copper reduction treatment, drilling a second through hole 520 for the second core plate 200 and the second prepreg 400 after pressing, and performing copper deposition, pre-plating hole copper to 25 μm, film pattern exposure, electroplating, inner layer etching, optical inspection and browning treatment after drilling.
S4, laminating the first core plate and the second core plate
Overlapping and pressing the first core board 100, the second prepreg 400 in the step S1 and the other surface of the second core board 200 subjected to the browning treatment in the step S3; and drilling a third through hole 530 and depositing copper for electroplating on the laminated first core board 100 and the second solidified sheet, wherein the third through hole 530 corresponds to the first through hole 510, so that the first through hole 510 is communicated with the third through hole 530.
The copper plate surface of the first core plate 100 far from the second prepreg 400 is subjected to copper reduction treatment after lamination and before drilling the third through hole 530, and the copper is reduced to 25 micrometers, so that the copper reduction treatment aims to manufacture a high-fineness circuit, and a thicker cladding copper layer needs to be formed at the hole opening due to the existence of a blind hole layer for resin hole plugging, and the copper reduction treatment needs to be carried out to 25 micrometers (the thickness of copper in the hole is required to reach 25 micrometers) for subsequent welding, which can resist the high-temperature impact of a column.
After the third through hole 530 is drilled, the fourth through hole 540 is drilled on the first core board 100, the second half-board curing sheet, the second core board 200 and the first half-curing sheet 300, and outer layer process processing is performed, wherein the outer layer process includes pattern transfer, development, electroplating, etching, semi-finished product detection, solder resist ink printing, exposure development, character printing, baking, hot air leveling, molding, detection and other printed circuit board outer layer processing technologies.
In this embodiment, the first through hole 510 to the third through hole 530 are all formed by laser depth control drilling.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (8)

1. The processing method of the circuit board with the crossed blind holes is characterized in that the circuit board is formed by integrally processing a first core board and a second core board in a pressing mode, and comprises the following steps:
s1 first core plate
The first core board is a double-sided copper-clad board;
s2 second core board
The second core plate is a double-sided copper-clad plate, and the second core plate is drilled with a first through hole, plated with copper, plated with resin and plugged with holes;
s3 second core board lamination
Laminating one surface of the second core plate and the first semi-solidified sheet in the step S2 together and laminating; after pressing, one surface of the first semi-cured sheet, which is far away from the second core board, is plated with a copper foil; after pressing, drilling a second through hole and depositing copper for electroplating;
s4, laminating the first core plate and the second core plate
Overlapping the first core board in the step S1, the second prepreg and the other surface layer of the second core board subjected to copper deposition and electroplating in the step S3, and pressing; drilling a third through hole on the laminated first core plate and the second solidified sheet, and depositing copper for electroplating, wherein the third through hole corresponds to the first through hole;
and S2, before the second core board is pressed, the thickness of the copper foil layers on the two surfaces of the second core board is reduced through microetching.
2. The method as claimed in claim 1, wherein in S1, the first core board is processed by laser coding, pattern exposure, inner layer etching, inspection and browning.
3. The method for processing a circuit board having intersecting blind vias as defined in claim 1, wherein in S2, the copper reduction treatment is performed by a chemical reaction.
4. The method as claimed in claim 1, wherein in step S2, the second core board is subjected to a back light detection after copper deposition.
5. The method for processing the circuit board with the cross blind hole according to claim 1, wherein in S2, the second core board is subjected to resin hole plugging treatment, curing polishing, film pattern exposure, electroplating, inner layer etching, optical inspection and browning treatment.
6. The method for processing the circuit board with the crossed blind holes according to claim 1, wherein in S4, the copper reduction treatment is performed on the copper plate surface of the first core plate away from the second prepreg after the pressing and before the third through hole is drilled.
7. The method as claimed in claim 1, wherein in step S4, after drilling the third through hole, drilling a fourth through hole in the first core board, the second semi-board cured sheet, the second core board, and the first semi-cured sheet, and performing outer layer processing.
8. A circuit board having intersecting blind holes, produced by the method of any one of claims 1 to 7.
CN202110218398.6A 2021-02-26 2021-02-26 Circuit board with crossed blind holes and processing method thereof Active CN113015338B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110218398.6A CN113015338B (en) 2021-02-26 2021-02-26 Circuit board with crossed blind holes and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110218398.6A CN113015338B (en) 2021-02-26 2021-02-26 Circuit board with crossed blind holes and processing method thereof

Publications (2)

Publication Number Publication Date
CN113015338A CN113015338A (en) 2021-06-22
CN113015338B true CN113015338B (en) 2023-01-10

Family

ID=76386458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110218398.6A Active CN113015338B (en) 2021-02-26 2021-02-26 Circuit board with crossed blind holes and processing method thereof

Country Status (1)

Country Link
CN (1) CN113015338B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630984A (en) * 2021-07-13 2021-11-09 广东世运电路科技股份有限公司 Method for filling copper plating hole with high thickness-diameter ratio and core plate
CN114286541B (en) * 2021-11-16 2023-08-11 苏州浪潮智能科技有限公司 Processing method of HDI board, HDI board and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523704A (en) * 2011-12-15 2012-06-27 深圳崇达多层线路板有限公司 Production method of multi-stage HDI plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459824C (en) * 2005-09-20 2009-02-04 陈文祺 High-layer circuit board and its manufacturing method
KR20090099712A (en) * 2008-03-18 2009-09-23 (주)유현전자 Manufacture method of both side printed circuit board, using single side copper clad laminate
CN206775815U (en) * 2017-02-24 2017-12-19 昆山苏杭电路板有限公司 Intersect the HDI printed boards of blind hole conduction beneficial to detection
CN108235601A (en) * 2017-12-04 2018-06-29 深南电路股份有限公司 PCB intersects method for processing blind hole and with the PCB for intersecting blind hole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523704A (en) * 2011-12-15 2012-06-27 深圳崇达多层线路板有限公司 Production method of multi-stage HDI plate

Also Published As

Publication number Publication date
CN113015338A (en) 2021-06-22

Similar Documents

Publication Publication Date Title
CN113015338B (en) Circuit board with crossed blind holes and processing method thereof
CN107484356B (en) Manufacturing method of thick copper sandwich aluminum substrate
CN105934110A (en) Sandwich structure for ultrathin laminated board processing and laminated board manufacturing method
KR20010075646A (en) Copper-clad plate and laser machining for copper-clad plate
CN105704948A (en) Manufacturing method of ultra-thin printed circuit board and ultra-thin printed circuit board
CN112312662A (en) Manufacturing method of fine circuit printed circuit board
CN102802367A (en) Multilayer board manufacturing method for improving bonding force of hole wall of PTH slot
CN107592735A (en) Thick desired ladder board manufacturing method more than a kind of high accuracy
CN111741617B (en) Production process of multi-layer stepped blind slot high-frequency microwave antenna board
CN108495486A (en) A kind of production method and High speed rear panel of High speed rear panel
CN105830542B (en) The production method of ladder copper post in a kind of PCB
CN105208777A (en) Manufacturing method for circuit board with metallization back drilled hole
CN112867292A (en) Manufacturing method of high-order HDI printed circuit board
CN115003039B (en) Thick copper HDI circuit board and manufacturing method of fine circuit thereof
WO2020220680A1 (en) High-precision forming method for rigid-flex printed circuit board
CN103917052A (en) Method for processing circuit board by means of laser direct structuring technology
JP4976766B2 (en) Circuit board manufacturing method
CN103140033A (en) Production method of blind holes for printed circuit board
CN114554702A (en) Manufacturing method of ultrathin copper-thick printed circuit board
CN108401385A (en) A kind of production method and PCB of the stepped groove that side wall is non-metallic
CN112654164A (en) Blind hole and circuit pattern high-precision alignment mode
CN110933876A (en) Manufacturing method of stepped groove
CN110572948A (en) laser-engraved circuit board and manufacturing method thereof
CN109413857A (en) A kind of manufacture craft of high-frequency high-speed plate
CN114132886B (en) Five-layer buried-capacitor MEMS (micro-electromechanical systems) packaging loading plate with high hole filling ratio and manufacturing process thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant