CN112960981B - 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法 - Google Patents

一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法 Download PDF

Info

Publication number
CN112960981B
CN112960981B CN202110493437.3A CN202110493437A CN112960981B CN 112960981 B CN112960981 B CN 112960981B CN 202110493437 A CN202110493437 A CN 202110493437A CN 112960981 B CN112960981 B CN 112960981B
Authority
CN
China
Prior art keywords
ball milling
sio
glass
rotating speed
preserving heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110493437.3A
Other languages
English (en)
Other versions
CN112960981A (zh
Inventor
唐华
程江
李璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202110493437.3A priority Critical patent/CN112960981B/zh
Publication of CN112960981A publication Critical patent/CN112960981A/zh
Application granted granted Critical
Publication of CN112960981B publication Critical patent/CN112960981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法,化学式为Pb1‑3x/2Lax[(Zr1‑ySny)zTi1‑z]O3,其中x=0.06、y=0.3、z=0.84,根据化学组成比例,称取氧化物原料,和占氧化物原料0.01~1%的玻璃Al‑Na‑SiO2进行球磨、预烧、二次球磨、排粘和烧结;二次球磨是预烧后的块体粉碎后加入块体质量的10%的浓度为5wt%PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120~150rpm球磨2h,造粒后过60目筛本发明制备的镧、锡掺杂的锆钛酸铅(PLZST)陶瓷块体材料缺陷少、微观组织结构致密性优异,密度达到10g·cm‑3以上;烧结温度从原来的1250℃以上降低至1180℃一下,陶瓷性能稳定,在提高储能密度的同时,降低了介电损耗,在AC电源工作电压500V到3000V下工作性能稳定。

Description

一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
技术领域
本发明涉及电子陶瓷材料技术领域,具体涉及一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法。
背景技术
电容器中每单位体积所包含的电能量,即电容器的储能密度是决定电力电子系统大小的关键因素,而储能密度取决于组成物的电容量和最大安全工作电压。电容器的储能密度越高则电路能传输的能量越大。
反铁电陶瓷的电容器在储能密度上较普通的电容器有很大的提高,而且保有陶瓷的很多优点。目前制约反铁电电容器发展的主要是其较低的击穿强度导致其储能密度低,提高陶瓷的击穿强度,增大储能密度,可以通过改进材料和工艺两种途径。由于固体电介质往往不很均匀、致密,其中的气孔或其他缺陷会使电场畸变,损害固体电介质。电介质厚度越大,使得缺陷越多,会使电场分布不均匀,散热不易,降低击穿场强,因此现有技术中常常将介电质制备成微米级薄膜来降低其内部缺陷,克服上述问题,正如CN108929112A将Sn掺杂的锆钛酸铅镧陶瓷材料制备成厚度为40~60μm的厚膜陶瓷,具有优异的储能密度和击穿场强。若不考虑外界因素对击穿强度的影响,要想提高反铁电电容器的击穿强度,从材料本身来讲,就要减少电介质材料中的缺陷,要使材料更加致密化,组织均匀。固相烧结法制备陶瓷时具有较高的烧结温度1200-1300oC使得氧化铅挥发严重(挥发温度约为1210℃以上),导致性能下降,且污染严重。现有技术中常添加低熔点玻璃或易挥发离子来降低烧结温度,但是同时也会破坏陶瓷的压电性能,如CN107573067A中采用玻璃助烧剂LBBS降低烧结温度,抑制PbO的挥发。另外,普遍用于反铁电电容器的(Pb,La)(Zr,Ti)O3(PLZT)陶瓷材料虽然有很大的储能密度,但是高储能密度以高介电损耗(约15%)和高加载电压为代价,这两点使它很难在AC电源工作电压500V到2000V下工作。此外,若制备成毫米级厚度的块状结构,则由于块体加大,内部缺陷较多,导致其致密性差、储能性能无法提高。
发明内容
本发明目的在于提供一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法。
本发明目的通过如下技术方案实现:
一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法,化学式为Pb1-3x/2Lax[(Zr1-ySny)zTi1-z]O3,其特征在于,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料0.01~1%的玻璃Al-Na-SiO2进行球磨,其中0.02<x<0.06、0.1<y<0.2、0.06<z<0.2;
(2)预烧:将球磨后的混合粉体压制成块体结构,在750~860℃,保温1~2h;
(3)二次球磨:将预烧后的块体粉碎,加入PVA溶液,进行球磨;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温30~40min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1100~1220℃下保温2~3h。
铅元素的原料PbO,锆元素的原料是ZrO2,钛元素的原料是TiO2、镧元素的原料是La2O3,锡元素的原料为SnO2
玻璃掺杂制备陶瓷材料,是利用玻璃较低的熔点,在烧结过程中降低烧结温度。而本发明中加入玻璃Al-Na-SiO2,除了降低烧结温度外,在高温环境下,由于Al3+和 Na+进入晶格,为了维持晶胞的电中性,晶胞中会产生氧空位,氧空位的增加,使得晶胞收缩和扭曲,抑制电畴运动,降低了介电损耗。同时,Al3+和Na+在预烧时固溶量较小,主要聚集在晶界,阻碍晶粒长大,使得气孔有可能沿晶界排除,提高陶瓷材料的致密度。
优选的,上述烧结的温度在1150~1180℃,保温2.5h。
进一步,上述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm左右。
进一步,上述球磨是将上述氧化物原料及玻璃的总量与锆球、无水乙醇按照质量比为1:1.2~1.5:1~1.4混合后,在250~300rpm下球磨3~4h。
进一步,上述二次球磨是将预烧后的块体粉碎后,加入块体质量的10% 的浓度为5wt%PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120~150rpm球磨2h,造粒后过60目筛。
本发明通过加入玻璃Al-Na-SiO2,在较高速率下球磨以冲击为主,高的机械冲击提供足够的能量快速细化原料,使原料颗粒均匀,后续降低转速,使得球磨过程从冲击缓慢相研磨过渡,最后再次降低转速,使得冲击完全转化成研磨,使得球磨过程的不断变化同步适应混合粉体体系在球磨过程中的不断变化,促进了球磨的各成分颗粒充分细化、颗粒分布均匀、粒径均一,提高固溶体的活性,使得粉体表面能高,活性提高,烧结时的驱动力增大,降低烧结温度,同时也有利于气孔或空位从晶界扩散到陶瓷体外,从而提高陶瓷密度。
具体的,一种陶瓷材料Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3的制备方法,其特征在于,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料0.1~1%的玻璃Al-Na-SiO2作为总原料,与锆球、无水乙醇按照质量比为1:1.2~1.5:1~1.4混合后,在250~300rpm下球磨3~4h得混合粉体;
(2)预烧:将球磨后的混合粉体烘干后压制成块体结构,在750~860℃,保温1~2h;
(3)二次球磨:将预烧后的块体粉碎,加入块体质量的10% 的浓度为5wt%的PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120~150rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温30~40min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1100~1220℃下保温2~3h。
优选的,上述玻璃Al-Na-SiO2占氧化物原料质量的0.1~0.2%。
本发明具有如下技术效果:
本发明制备的镧、锡掺杂的锆钛酸铅(PLZST)陶瓷块体材料缺陷少、微观组织结构致密性优异,密度达到10g·cm-3以上;烧结温度从原来的1250℃以上降低至1180℃以下,陶瓷性能稳定,在提高储能密度的同时,降低了介电损耗,在AC电源工作电压500V到3000V下工作性能稳定。
附图说明
图1:本发明制备的陶瓷材料的断面SEM图。
图2:不掺杂玻璃Al-Na-SiO2的PLZST的电滞回线。
图3:玻璃Al-Na-SiO2不同掺杂量对应的PLZST的电滞回线。
图4:本发明制备的PLZST在1000~3000V下的放电曲线。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种陶瓷材料Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3的制备方法,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料1%的玻璃Al-Na-SiO2作为总原料,与锆球、无水乙醇按照质量比为1:1.2:1混合后,在250rpm下球磨4h得混合粉体,所述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm左右;
(2)预烧:将球磨后的混合粉体烘干后压制成块体结构,在750℃,保温2h;
(3)二次球磨:将预烧后的块体粉碎,加入块体质量的10% 的浓度为5wt%的PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温30min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1100℃下保温3h。
本发明通过特定的球磨以及玻璃Al-Na-SiO2,将原来高于1200~1300℃的烧结温度降至1100℃,依然可以烧结出性能优异的陶瓷材料。PbO在固相烧结过程中的挥发温度在1212℃左右,当温度降至该温度以下时,较大程度的避免了PbO的挥发。
实施例2
一种陶瓷材料Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3的制备方法,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料0.4%的玻璃Al-Na-SiO2作为总原料,与锆球、无水乙醇按照质量比为1: 1.5: 1.4混合后,在300rpm下球磨3h得混合粉体,所述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm左右;
(2)预烧:将球磨后的混合粉体烘干后压制成块体结构,在860℃,保温1h;
(3)二次球磨:将预烧后的块体粉碎,加入块体质量的10% 的浓度为5wt%的PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至150rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温40min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1180℃下保温2h。
实施例3
一种陶瓷材料Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3的制备方法,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料0.1%的玻璃Al-Na-SiO2作为总原料,与锆球、无水乙醇按照质量比为1:1.4:1.2混合后,在280rpm下球磨3.5h得混合粉体,所述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm左右;
(2)预烧:将球磨后的混合粉体烘干后压制成块体结构,在820℃,保温1.5h;
(3)二次球磨:将预烧后的块体粉碎,加入块体质量的10% 的浓度为5wt%的PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至140rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温35min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1150℃下保温2.5h。
烧结后的陶瓷材料长度收缩率为12%,晶粒平均尺寸为4μm,为钙钛矿晶体相。
如图1所示,图1(a)为无玻璃Al-Na-SiO2的PLZST,煅烧温度在1300℃,断面存在大量的断面孔洞、缺陷较多,穿晶断面和沿晶断面均存在,图1(b)为本发明制备的添加了玻璃Al-Na-SiO2的PLZST,其断面为较平整,无明显断面气孔、缺陷少,主要呈穿晶断面。
实施例4
将实施例3制备的Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3切割成厚度为1mm,宽度为20mm的正方形方片,经过抛光清洗后烧银制备金属电极面。然后放置在变压器绝缘油中加热到220℃保温0.5小时后自然冷却进行热清洗处理,在热清洗处理过程中用金属片把陶瓷上电极面和下电极面连通。将经过上述处理后的陶瓷焊接导线、包封后就可以作为反铁电陶瓷电容器使用。施加3kV的直流电压充电后,然后做短路条件放电。放电电流呈阻尼振荡,最大电流峰值达到150A。
本发明掺杂玻璃Al-Na-SiO2制备的Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3(PLZT)反铁电陶瓷,提高了陶瓷的极化强度、击穿电场的同时降低了陶瓷的烧结温度,具体如图2-3所示。烧结温度由无玻璃添加的1300oC降低到1180oC以内。本发明反铁电电容器陶瓷材料制备工艺使反铁电陶瓷的微观组织结构致密,陶瓷性能稳定、耐电击穿强度高,介电损耗降低至5%以内。本制作方法与传统电子陶瓷制备方法一致,可以作为一种工序简单、成本低的工业生产方法。

Claims (3)

1.一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法,化学式为Pb1-3x/2Lax[(Zr1-ySny)zTi1-z]O3,其特征在于,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料0.01~1%的玻璃Al-Na-SiO2进行球磨,其中x=0.06、y=0.3、z=0.84,所述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm;
(2)预烧:将球磨后的混合粉体压制成块体结构,在750~860℃,保温1~2h;
(3)二次球磨:预烧后的块体粉碎后加入块体质量的10% 的浓度为5wt%PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120~150rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温30~40min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1100~1220℃下保温2~3h;
铅元素的原料PbO,锆元素的原料是ZrO2,钛元素的原料是TiO2、镧元素的原料是La2O3,锡元素的原料为SnO2
2.如权利要求1所述的一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法,其特征在于:所述球磨是将上述氧化物原料及玻璃的总量与锆球、无水乙醇按照质量比为1:1.2~1.5:1~1.4混合后,在250~300rpm下球磨3~4h。
3.一种陶瓷材料Pb0.91La0.06[(Zr0.70Sn0.30)0.84Ti0.16]O3的制备方法,其特征在于,按如下步骤进行:
(1)球磨:根据化学组成比例,称取氧化物原料,和占氧化物原料质量0.1~0.2%的玻璃Al-Na-SiO2作为总原料,与锆球、无水乙醇按照质量比为1:1.2~1.5:1~1.4混合后,在250~300rpm下球磨3~4h得混合粉体,所述玻璃Al-Na-SiO2中Al、Na和SiO2摩尔比为0.05:0.1:10,球磨后的混合粉体粒径在500nm;
(2)预烧:将球磨后的混合粉体烘干后压制成块体结构,在750~860℃,保温1~2h;
(3)二次球磨:将预烧后的块体粉碎,加入块体质量的10% 的浓度为5wt%的PVA溶液,将转速升至300rpm球磨2h,然后将转速降至200rpm球磨1h,最后降至120~150rpm球磨2h,造粒后过60目筛;
(4)排粘:将二次球磨后的粉体压制形成块体生坯,在1h内升温至120℃,保温30~40min,再在5h内升温至600℃,保温2h,然后自然冷却;
(5)烧结:将预烧后的块体置于富铅和富氧的气氛中,在1100~1220℃下保温2~3h。
CN202110493437.3A 2021-05-07 2021-05-07 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法 Active CN112960981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110493437.3A CN112960981B (zh) 2021-05-07 2021-05-07 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110493437.3A CN112960981B (zh) 2021-05-07 2021-05-07 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN112960981A CN112960981A (zh) 2021-06-15
CN112960981B true CN112960981B (zh) 2022-07-01

Family

ID=76279830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110493437.3A Active CN112960981B (zh) 2021-05-07 2021-05-07 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN112960981B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929454B (zh) * 2021-09-07 2022-07-01 成都宏科电子科技有限公司 一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
CN102826846A (zh) * 2012-09-18 2012-12-19 天津大学 高性能氧化铝基板铌镍酸铅-锆钛酸铅压电厚膜的制备方法
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN104725041A (zh) * 2015-03-12 2015-06-24 中国科学院上海硅酸盐研究所 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
CN106116573A (zh) * 2016-06-22 2016-11-16 成都宏明电子科大新材料有限公司 一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法
CN106518069A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种掺镧锆钛酸铅铁电厚膜陶瓷材料及其制备方法
CN107573067A (zh) * 2017-08-29 2018-01-12 电子科技大学 锆钛酸铅基压电陶瓷片的低温烧结方法
CN110526707A (zh) * 2019-06-28 2019-12-03 广东工业大学 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法
CN111995391A (zh) * 2020-08-11 2020-11-27 同济大学 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027209A (en) * 1975-10-02 1977-05-31 Sprague Electric Company Ceramic capacitor having a silver doped dielectric of (Pb,La)(Zr,Ti)O3
US4706163A (en) * 1987-02-25 1987-11-10 Sprague Electric Company Capacitor with dielectric of PLZT and an intergranular borate
US7781358B2 (en) * 2008-02-15 2010-08-24 Trs Technologies, Inc. Antiferroelectric multilayer ceramic capacitor
EP2411347A1 (de) * 2009-03-25 2012-02-01 Tronox Pigments GmbH Bleizirkonattitanate und verfahren zu deren herstellung
KR20150042075A (ko) * 2013-10-10 2015-04-20 삼성전기주식회사 저온 소결용 압전재료

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
CN102826846A (zh) * 2012-09-18 2012-12-19 天津大学 高性能氧化铝基板铌镍酸铅-锆钛酸铅压电厚膜的制备方法
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN104725041A (zh) * 2015-03-12 2015-06-24 中国科学院上海硅酸盐研究所 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
CN106116573A (zh) * 2016-06-22 2016-11-16 成都宏明电子科大新材料有限公司 一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法
CN106518069A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种掺镧锆钛酸铅铁电厚膜陶瓷材料及其制备方法
CN107573067A (zh) * 2017-08-29 2018-01-12 电子科技大学 锆钛酸铅基压电陶瓷片的低温烧结方法
CN110526707A (zh) * 2019-06-28 2019-12-03 广东工业大学 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法
CN111995391A (zh) * 2020-08-11 2020-11-27 同济大学 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN112960981A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN102476949A (zh) 一种低温制备电性能可控的氧化锌压敏电阻材料的方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN110342925A (zh) 一种反铁电陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN111978082A (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111704463B (zh) 电介质陶瓷材料及其制备方法
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN114349497A (zh) 一种宽温稳定型储能陶瓷材料及其制备方法
CN112960981B (zh) 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN113213925B (zh) 一种基于热等静压法制备铪钛酸铅基陶瓷材料的方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
CN113213923A (zh) 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN105198409B (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
JP2000124058A (ja) 積層型セラミックチップコンデンサ
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN106116573A (zh) 一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法
CN102531579B (zh) 陶瓷介质材料及其制备方法和陶瓷电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant