CN110526707A - 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用 - Google Patents

一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN110526707A
CN110526707A CN201910576976.6A CN201910576976A CN110526707A CN 110526707 A CN110526707 A CN 110526707A CN 201910576976 A CN201910576976 A CN 201910576976A CN 110526707 A CN110526707 A CN 110526707A
Authority
CN
China
Prior art keywords
thick film
ceramic
acid lanthanum
stannic acid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910576976.6A
Other languages
English (en)
Inventor
鲁圣国
王世斌
黄明峰
钟米昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910576976.6A priority Critical patent/CN110526707A/zh
Publication of CN110526707A publication Critical patent/CN110526707A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于电介质材料领域,公开了一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用。该锆钛锡酸镧铅厚膜陶瓷Pb0.97La0.02(Zr0.46‑xSn0.54Tix)O3;x=0.04~0.18;是将PbO、La2O3、ZrO2、SnO2、TiO2混合球磨,制得粉体A;将粉体A烘干和过筛,制得陶瓷粉体B;将陶瓷粉粉体B在900~980℃预烧;再进行二次球磨和烘干过筛,制得陶瓷粉体C;将陶瓷粉体C加入辛基酚聚氧乙烯醚和溶剂,经滚磨得到预混浆料;加入聚乙烯醇缩丁醛并经滚磨,再加入溶剂、粘结剂和邻苯二甲酸二辛酯并球磨得到流延浆料;将流延浆料在流延机膜带上制得锆钛锡酸镧铅厚膜陶瓷胚体;将该陶瓷胚体在400~600℃排胶,在1250~1300℃煅烧制得。

Description

一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
技术领域
本发明属于电介质材料技术领域,更具体地,涉及一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用。
背景技术
随着5G时代的来临,电子技术的发展速度越来越快,对电子器件所用材料提出的要求也越来越高,制备出性能优异的材料是我们材料工作者的共同目标。目前,广泛使用的电容器向高储能、小型化的方向发展。相比于燃料电池、锂离子电池,陶瓷电容器具有耐高压和超高的功率密度,可用于大功率武器、新能源汽车的功率储能和脉冲电容器等。但陶瓷电容器存在储能密度偏低的缺点。因此,提高其能量密度,进而达到小型化,一直是研究者们努力的方向。
可用作陶瓷电容器的介质材料主要有线性陶瓷、铁电陶瓷和反铁电陶瓷三类。(1)线性介质材料:介电常数通常很小(<150),且几乎不随电场强度变化;具有低场下线性可逆、重复多次充放电,在电压、温度、频率变化环境中稳定性好等优点,但储能密度较低(在安全电场强度范围内仅0.01J/cm3量级);常用线性介质材料包括SiO2、Al2O3、ZrO2、MgO、TiO2等。(2)铁电材料:铁电材料具有自发极化并且其自发极化强度可因外电场作用而转向,其重要特征就是具有电滞回线。无外加电场存在时,铁电材料的总电矩为零,具有很高的介电常数(>1000)。当电场施加于材料时,极化强度随外电场增加最终达到饱和。在这个过程中,材料的介电常数随电场增加而明显降低,导致铁电材料在高场下储能密度并不大(通常<1J/cm3)。铁电材料常用体系包括BaTiO3、Pb(Zr,Ti)O3体系等。(3)反铁电材料:与铁电材料不同,反铁电材料的晶格中偶极子成对地按反平行方向排列,宏观上无自发极化,总电矩为零。反铁电陶瓷的重要特征是具有双电滞回线。在外电场较低时,反铁电陶瓷与线性介质一样,极化强度与电场呈线性关系。当电场升高至一定数值后,反铁电材料晶胞内部与电场方向相反的部分偶极子在电场作用下开始发生反转,同时这部分反铁电晶胞也转变成铁电晶胞,材料的极化强度和介电常数随电场增大而增大。在正向转折电场附近,材料的极化强度突然增大,介电常数出现峰值,反铁电相转变为铁电相。之后,电场继续增大,材料的极化强度逐渐饱和,介电常数随电场增大而减小。电场撤去时,材料的极化强度随电场减小而减小,在反向转折电场附近突然减小,介电常数又出现峰值,材料由铁电相又回到反铁电相。电场降到零时,反铁电陶瓷的极化强度降为零。由于介电常数在一定电场下随电场增大而增大,故反铁电陶瓷的储能密度最高,成为脉冲电容器应用中十分重要的候选材料。
传统的制冷方式是基于蒸汽压缩技术来实现的,多以氟利昂作为制冷剂的气液制冷方式,一旦氟利昂进入到大气中,臭氧层会被破坏,不但带来环境问题还威胁人类健康。制冷问题又涉及到工业生产和人民生活很多方面,其重要性不言而喻。尤其是针对当前迅猛发展的集成电路等微电子领域,电子元器件的散热是一个迫切需要解决的问题。因此,探索和研究新型的固态制冷方式是当前研究的一个重要方向。磁制冷技术是一种基于磁卡效应的新型固态制冷技术,但磁制冷需要永磁体阵列产生的大磁场来驱动制冷器件工作,其制冷效率强烈依赖于磁场强度,或者说是磁体大小,这在很大程度上限制了磁制冷技术的应用。基于电卡效应的铁电制冷是类比于磁卡效应的磁制冷演变而来。电卡制冷是利用极性材料在施加或者移去电场而引起材料极化状态发生改变,极化状态有序度的变化会诱导材料产生场致熵变及温变而实现制冷。
基于Pb,La(Zr,Ti)O3(PLZT)极化响应的电卡效应也是近几年厚膜、薄膜材料研究的热点问题。电卡效应是热释电效应的逆效应,电卡制冷是利用极性材料在施加或者移去电场而引起材料极化状态有序度发生改变,会诱导材料产生等温熵变或者绝热温变,进而实现电卡制冷。基于极性材料的电卡制冷是有望实现固态制冷一种新途径。厚膜具有尺寸小且能与集成电路兼容性好等优势。利用厚膜的电卡效应实现集成电路等微电子器件制冷具有重大意义。因此,如何优化厚膜的电卡效应以实现高效率制冷便成为需要迫切解决的科学问题。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供一种高锡含量的锆钛锡酸镧铅厚膜陶瓷。
本发明的另一目的在于提供一种上述高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法。
本发明的再一目的在于提供一种上述高锡含量的锆钛锡酸镧铅厚膜陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高锡含量的锆钛锡酸镧铅厚膜陶瓷,所述的锆钛锡酸镧铅厚膜陶瓷的化学式为Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3;其中,x=0.04~0.18;所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷是将PbO、La2O3、ZrO2、SnO2、TiO2按化学计量比混合球磨,制得粉体A;将粉体A烘干和过筛,制得陶瓷粉体B;将陶瓷粉粉体B在 900~980℃预烧;再进行二次球磨和烘干过筛,制得陶瓷粉体C;将陶瓷粉体C 加入分散剂辛基酚聚氧乙烯醚和溶剂;经滚磨I得到预混浆料;然后加入粘结剂聚乙烯醇缩丁醛并经滚磨Ⅱ,而后加入溶剂、粘结剂和塑化剂邻苯二甲酸二辛酯并球磨得到混合均匀的流延浆料;将流延浆料在流延机膜带上制得锆钛锡酸镧铅厚膜陶瓷胚体;将该陶瓷胚体在400~600℃排胶,在1250~1300℃煅烧制得。
优选地,所述的锆钛锡酸镧铅厚膜陶瓷的厚度为37~43μm。
优选地,所述陶瓷粉体C、分散剂辛基酚聚氧乙烯醚、粘结剂聚乙烯醇缩丁醛、塑化剂邻苯二甲酸二辛酯和溶剂的质量比为(40~50):(0.9~1.2):(5~6): (1.5~2.5):(55~65)。
优选地,所述溶剂为无水乙醇和丁酮混合溶液,所述无水乙醇和丁酮的质量比为(0.8~1.2):1。
优选地,所述预烧的时间为2~3h;所述排胶的时间为4~6h;所述煅烧的时间为1~2h。
所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法,包括如下具体步骤:
S1.将PbO、La2O3、ZrO2、SnO2、TiO2按Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3;其中,x=0.04~0.18的化学计量比混合,采用普通行星球磨机球磨,球磨介质为二氧化锆球,加入乙醇球磨,制得粉体A;
S2.烘干过筛:将粉体A置于60~80℃烘干,过筛,制得陶瓷粉体B;
S3.预烧:将陶瓷粉粉体B在900~980℃预烧2~3h;
S4.同步骤S2进行二次球磨和步骤S3烘干过筛,制得陶瓷粉体C;
S5.流延浆料配制:将陶瓷粉体C加入分散剂辛基酚聚氧乙烯醚和溶剂;经滚磨I得到预混浆料;然后加入粘结剂聚乙烯醇缩丁醛并经滚磨Ⅱ,而后加入溶剂、粘结剂和塑化剂邻苯二甲酸二辛酯并球磨得到混合均匀的流延浆料;
S6.流延成型:将流延浆料在流延机膜带线速度0.15~0.3cm/s,烘干温度35~42℃,温等静压:压力设定值30~60MPa,温度设定60~70℃,保压时间6~12 min,制得锆钛锡酸镧铅厚膜陶瓷胚体;
S7.排胶烧结:将锆钛锡酸镧铅厚膜陶瓷胚体在400~600℃排胶4~6h,在 1250~1300℃烧结1~2h,制得锆钛锡酸镧铅厚膜陶瓷。
优选地,步骤S1中所述二氧化锆球的直径为3~12mm;所述球磨的转速为 200~250rmp/min,所述球磨的时间为20~24h。
优选地,步骤S2中所述烘干的时间为10~20h;所述筛的孔径为40~80目。
优选地,步骤S5中所述滚磨和球磨的速率为180~220r/min,所述滚磨I的时间为20~24h,所述滚磨Ⅱ和球磨的时间均为12~16h;所述流延浆料的粘度为 600~800mpa·s。
所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷在储能和制冷领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的Pb0.97La0.02(Zr,Sn,Ti)O3体系同时具有高储能密度,高储能效率的PLZST反铁电/铁电陶瓷组分;为反铁电/铁电陶瓷在脉冲功率技术领域应用提供知识积累及理论支持。
2.本发明通过流延成型工艺制备厚度可控的锆钛锡酸镧铅厚膜陶瓷材料,制得的材料致密度较好并具有良好的储能性能及电卡效应。测试结果表明,陶瓷厚膜相对于陶瓷块体能够承受较大的电场。单层厚膜介质材料的一个重要应用就是作为多层陶瓷电容器MLCC的组成部分,制备出性能良好的反铁电单层厚膜对制得多层陶瓷电容器(MLCC)具有重要意义。
3.本发明通过Maxwell关系估算了陶瓷的电卡效应,为反铁电/铁电陶瓷在新型制冷技术的实际应用提供知识积累及理论支持。
附图说明
图1为实施例1-4中980℃煅烧2h的Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3粉体的 XRD图谱。
图2为实施例1-4中PLZST陶瓷在1300℃下烧结3h的SEM图像。其中, (a)x=0.04,(b)x=0.08,(c)x=0.15,and(d)x=0.18。
图3为实施例1-4中Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3厚膜陶瓷在1,10 and 100 kHz的介电常数和介电损耗随温度的变化关系(a)x=0.04,(b)x=0.08,(c)x=0.15, and(d)x=0.18。
图4为实施例1-4中Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3厚膜陶瓷最大极化强度随电场的变化关系。
图5为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷(a)不同电场下的电滞回线;(b)不同温度下的电滞回线。
图6为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷的储能密度和储能效率。
图7为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷(a)极化强度随温度的变化;(b)不同温度下的热释电系数;(c)不同温度下的等温熵变;(d)不同温度下的绝热温变。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。
本发明实施例中的PbO、La2O3、ZrO2、SnO2、TiO2均购于上海阿拉丁生化科技股份有限公司
实施例1
1.配粉:按照化学计量比称(PbO(99.9%)33.4833g、La2O3(99.9%)0.4892g、 ZrO2(99%)7.8413g、SnO2(99.5%)12.2688g、TiO2(99%)0.4841g)取药品置于尼龙球磨罐(250mL)。另外为了补偿高温烧结中Pb的挥发,加入过量3wt%PbO。
2.球磨:球磨介质为二氧化锆球,球直径为3mm和5mm,质量比约1:1;采用普通行星球磨机球磨,转速设定250rmp/min,球磨时间为24h。采用湿法球磨,加入适量酒精。
3.烘干过筛:将球磨后的粉置于烘箱烘干,烘干温度约60℃,烘干时间大于10h。烘干后将陶瓷粉分别过40目和80目筛。
4.预烧:将陶瓷粉置于马弗炉中预烧,预烧温度为980℃,时间为2h。
5.二次球磨:同步骤(2)。
6.烘干过筛:同步骤(3)。
7.流延浆料配制:将经过以上步骤得到的陶瓷粉体(约50g)置于滚磨罐,加入0.9g分散剂(辛基酚聚氧乙烯醚)和40g溶剂(质量比为1:1的无水乙醇和丁酮)。然后,在200r/min的转速下滚磨20h得到预混浆料;而后加入1.5g 粘结剂(聚乙烯醇缩丁醛)并在200r/min的转速下滚磨10h,而后加入18g溶剂(质量比为1:1的无水乙醇和丁酮)、4g粘结剂(聚乙烯醇缩丁醛)和2g 塑化剂(邻苯二甲酸二辛酯)并在200r/min的转速下球磨16h得到混合均匀的流延浆料,粘度为600~800mpa·s。
8.流延成型:流延机膜带线速度约0.21,烘干温度41℃。
9.温等静压:压力设定值30MPa,温度设定60℃,保压时间6min。排胶烧结:400℃排胶,陶瓷烧结温度1300℃,制得锆钛锡酸镧铅厚膜陶瓷 Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 x=0.04,标记为Ti004。
实施例2
1.配粉:严格按照化学计量比称(PbO(99.9%)33.4833g、La2O3 (99.9%)0.4892g、ZrO2(99%)7.0945g、SnO2(99.5%)12.2688g、TiO2(99%)0.9681g) 取药品置于尼龙球磨罐(250mL)。另外为了补偿高温烧结中Pb的挥发,加入过量3wt%PbO。
2.球磨:球磨介质为二氧化锆球,球直径为3mm和5mm,质量比约1:1;采用普通行星球磨机球磨,转速设定250rmp/min,球磨时间为24h。采用湿法球磨,加入适量酒精。
3.烘干过筛:将球磨后的粉置于烘箱烘干,烘干温度约60℃,烘干时间大于10h。烘干后将陶瓷粉分别过40目和80目筛。
4.预烧:将陶瓷粉置于马弗炉中预烧,预烧温度为980℃,时间为2h。
5.二次球磨:同步骤(2)。
6.烘干过筛:同步骤(3)。
7.流延浆料配制:将经过以上步骤得到的陶瓷粉体(约50g)置于滚磨罐,加入0.9g分散剂(辛基酚聚氧乙烯醚)和40g溶剂(质量比为1:1的无水乙醇和丁酮)。然后,在200r/min的转速下滚磨20h得到预混浆料;而后加入1.5g 粘结剂(聚乙烯醇缩丁醛)并在200r/min的转速下滚磨10h,而后加入18g溶剂(质量比为1:1的无水乙醇和丁酮)、4g粘结剂(聚乙烯醇缩丁醛)和2g 塑化剂(邻苯二甲酸二辛酯)并在200r/min的转速下球磨16h得到混合均匀的流延浆料,粘度为600~800mpa·s。
8.流延成型:流延机膜带线速度约0.21,烘干温度41℃。
9.温等静压:压力设定值30MPa,温度设定60℃,保压时间6min。
10.排胶烧结:400℃排胶,陶瓷烧结温度1300℃,制得锆钛锡酸镧铅厚膜陶瓷Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 x=0.08,标记为Ti008。
实施例3
1.配粉:严格按照化学计量比称(PbO(99.9%)33.4833g、La2O3 (99.9%)0.4892g、ZrO2(99%)5.7876g、SnO2(99.5%)12.2688g、TiO2(99%)1.8152g) 取药品置于尼龙球磨罐(250mL)。另外为了补偿高温烧结中Pb的挥发,加入过量3wt%PbO。
2.球磨:球磨介质为二氧化锆球,球直径为3mm和5mm,质量比约1:1;采用普通行星球磨机球磨,转速设定250rmp/min,球磨时间为24h。采用湿法球磨,加入适量酒精。
3.烘干过筛:将球磨后的粉置于烘箱烘干,烘干温度约60℃,烘干时间大于10h。烘干后将陶瓷粉分别过40目和80目筛。
4.预烧:将陶瓷粉置于马弗炉中预烧,预烧温度为980℃,时间为2h。
5.二次球磨:同步骤(2)。
6.烘干过筛:同步骤(3)。
7.流延浆料配制:将经过以上步骤得到的陶瓷粉体(约50g)置于滚磨罐,加入0.9g分散剂(辛基酚聚氧乙烯醚)和40g溶剂(质量比为1:1的无水乙醇和丁酮)。然后,在200r/min的转速下滚磨20h得到预混浆料;而后加入1.5g 粘结剂(聚乙烯醇缩丁醛)并在200r/min的转速下滚磨10h,而后加入18g溶剂(质量比为1:1的无水乙醇和丁酮)、4g粘结剂(聚乙烯醇缩丁醛)和2g 塑化剂(邻苯二甲酸二辛酯)并在200r/min的转速下球磨16h得到混合均匀的流延浆料,粘度为600~800mpa·s。
8.流延成型:流延机膜带线速度约0.21,烘干温度41℃。
9.温等静压:压力设定值30MPa,温度设定60℃,保压时间6min。
10.排胶烧结:400℃排胶,陶瓷烧结温度1300℃,制得锆钛锡酸镧铅厚膜陶瓷Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 x=0.15,标记为Ti015。
实施例4
1.配粉:严格按照化学计量比称(PbO(99.9%)33.4833g、La2O3 (99.9%)0.4892g、ZrO2(99%)5.2275g、SnO2(99.5%)12.2688g、TiO2(99%)2.1783g) 取药品置于尼龙球磨罐(250mL)。另外为了补偿高温烧结中Pb的挥发,加入过量3wt%PbO。
2.球磨:球磨介质为二氧化锆球,球直径为3mm和5mm,质量比约1:1;采用普通行星球磨机球磨,转速设定250rmp/min,球磨时间为24h。采用湿法球磨,加入适量酒精。
3.烘干过筛:将球磨后的粉置于烘箱烘干,烘干温度约60℃,烘干时间大于10h。烘干后将陶瓷粉分别过40目和80目筛。
4.预烧:将陶瓷粉置于马弗炉中预烧,预烧温度为980℃,时间为2h。
5.二次球磨:同步骤(2)。
6.烘干过筛:同步骤(3)。
7.流延浆料配制:将经过以上步骤得到的陶瓷粉体(约50g)置于滚磨罐,加入0.9g分散剂(辛基酚聚氧乙烯醚)和40g溶剂(质量比为1:1的无水乙醇和丁酮)。然后,在200r/min的转速下滚磨20h得到预混浆料;而后加入1.5g 粘结剂(聚乙烯醇缩丁醛)并在200r/min的转速下滚磨10h,而后加入18g溶剂(质量比为1:1的无水乙醇和丁酮)、4g粘结剂(聚乙烯醇缩丁醛)和2g 塑化剂(邻苯二甲酸二辛酯)并在200r/min的转速下球磨16h得到混合均匀的流延浆料,粘度为600~800mpa·s。
8.流延成型:流延机膜带线速度约0.21,烘干温度41℃。
9.温等静压:压力设定值30MPa,温度设定60℃,保压时间6min。
10.排胶烧结:400℃排胶,陶瓷烧结温度1300℃,制得锆钛锡酸镧铅厚膜陶瓷Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 x=0.18,标记为Ti018。
材料结构表征与性能测试:晶体结构分析:日本理学公司DMAX-UltimaIV X射线衍射仪(XRD)。表面形貌分析:日立S-3400(Ⅱ)型扫描电子显微镜(SEM)。介电性能:美国惠普公司HP 4284A精密阻抗分析仪。铁电性能:美国Radiant 公司RT-66A铁电综合测试系统。储能特性:电滞回线积分计算。电卡效应:Maxwell关系估算。
图1为实施例1-4中在980℃煅烧2h的Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3粉体的XRD图谱。与标准卡片的峰吻合,无杂峰,说明已经合成钙钛矿结构的PLZST 粉体。对比不同Ti含量衍射峰的角度发现,随着Ti含量的增加,衍射峰向右偏移,这是由于Ti4+的半径为0.0605nm,要小于Zr4+的半径0.072nm,随着Ti含量的增加,晶胞收缩,体积减小,面间距也会减小,根据布拉格定律定:λ=2dsinθ。其中λ为X射线波长(0.15406nm),d为晶格面间距,θ为布拉格衍射半角。λ为常数时,d减小,在锐角范围内,那么θ会增大,因此衍射峰向右偏移。通过45°衍射峰的的形状来辨别PLZST粉体的相,结合PLZST相图,成分Ti004、Ti008 为四方反铁电相,Ti015、Ti018为铁电菱方相。
图2为实施例1-4中PLZST陶瓷在1300℃下烧结3h的SEM图像。其中, (a)x=0.04,(b)x=0.08,(c)x=0.15,and(d)x=0.18。从图2中可以看出,陶瓷比较致密,晶粒与晶粒之间紧密相连,气孔较少。厚膜陶瓷的晶粒尺寸主要分布在1-2μm 之间。用Archimedes方法测量样品实际密度,通过XRD得到的晶格常数计算其理论密度。图2中(a)的插图为Ti004厚膜的截面SEM照片。从图2(a)中可以看到,厚膜的厚度大约为40μm。
图3为实施例1-4中Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3厚膜陶瓷在1,10and 100 kHz的介电常数和介电损耗随温度的变化关系。其中,(a)x=0.04,(b)x=0.08,(c) x=0.15,and(d)x=0.18。测试电压为1V,测试频率为1,10,100kHz,温度范围为297~473K。介电常数随温度变化的曲线,如图3所示,对于Ti004、Ti008、 Ti015、Ti018厚膜陶瓷,在1kHz时介电常数峰值分别为241、678、1016、3741,随着Ti含量增加,介电常数逐渐增大。随着Ti含量的增加,居里温度点向低温方向移动,原因是部分半径较大的锆离子被半径较小的钛离子取代,使得的晶胞参数发生变化,晶胞体积缩小,使离子的活动范围变小,因此的居里点被前移。介电常数峰值也随着频率增加而减小,这是因为介电常数是极化强度对电场强度的导数,极化包括电子极化、离子极化和偶极子极化,当频率越来越高时,只有电子极化能跟上电场的变化,而离子极化和偶极子极化跟不上电场的变化,因此介电常数会随频率的增加而降低。
图4为实施例1-4中不同Ti含量的PLZST厚膜极化强度随电场的变化关系。从图4中可知,随Ti含量上升材料击穿场强降低,由容差因子可也解释此种现象。同电场下Ti含量越高,其极化强度越大。
图5中左图为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷在不同电场下的电滞回线图。厚膜材料能承受的最大电场为600kV/cm。厚膜在100kV/cm、 200kV/cm、300kV/cm、400kV/cm、500kV/cm、600kV/cm下的极化强度分别为2.23μC/cm2、10.83μC/cm2、18.69μC/cm2、22.17μC/cm2、24.24μC/cm2、25.44 μC/cm2。图5中右图为实施例1中厚膜在540kV/cm电场下极化强度随温度的变化关系图,厚膜在20℃、50℃、80℃、110℃、140℃、170℃下极化强度分别为 24.98μC/cm2、24.12μC/cm2、23.36μC/cm2、22.28μC/cm2、21.20μC/cm2、20.25 μC/cm2。随着温度上升,饱和极化强度逐渐降低。原因是温度升高,晶格振动更加剧烈,使晶体内部电偶极子混乱度增加,而不易趋于电场方向,因此随着温度的升高,饱和极化强度值下降。
图6为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷的储能密度和储能效率随电场的变化关系。随这电场强度逐渐增加,厚膜陶瓷的储能密度逐渐增大。在600kV/cm的电场下,储能密度为5.2J/cm3,储能效率为78%。
图7中(A)为实施例1中Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷极化强度随温度的变化关系。根据Maxwell关系估算材料的等温熵变和绝热温变,图7中(B) 显示了Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜的热释电系数,它是由极化强度P对温度T求微分得到。此处热释电系数是反映由于温度变化而引起反铁电的极化强度发生变化的响应关系的比例系数。图7中(C)显示了根据Maxwell关系估算的等温熵变值,从图中可以看出ΔS和ΔT随温度的提高变化的趋势大体相同。图7 中(D)是Pb0.97La0.02(Zr0.42Sn0.54Ti0.04)O3厚膜陶瓷在不同温度下的绝热温变。由图中 7(D)可知厚膜在540kV/cm的电场下在130℃附近计算得到了2.6℃的温变值。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高锡含量的锆钛锡酸镧铅厚膜陶瓷,其特征在于,所述的锆钛锡酸镧铅厚膜陶瓷的化学式为Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3;其中,x=0.04~0.18;所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷是将PbO、La2O3、ZrO2、SnO2、TiO2按化学计量比混合球磨,制得粉体A;将粉体A烘干和过筛,制得陶瓷粉体B;将陶瓷粉粉体B在900~980℃预烧;再进行二次球磨和烘干过筛,制得陶瓷粉体C;将陶瓷粉体C加入分散剂辛基酚聚氧乙烯醚和溶剂;经滚磨I得到预混浆料;然后加入粘结剂聚乙烯醇缩丁醛并经滚磨Ⅱ,而后加入溶剂、粘结剂和塑化剂邻苯二甲酸二辛酯并球磨得到混合均匀的流延浆料;将流延浆料在流延机膜带上制得锆钛锡酸镧铅厚膜陶瓷胚体;将该陶瓷胚体在400~600℃排胶,在1250~1300℃煅烧制得。
2.根据权利要求1所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷,其特征在于,所述的锆钛锡酸镧铅厚膜陶瓷的厚度为37~43μm。
3.根据权利要求1所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷,其特征在于,所述陶瓷粉体C、分散剂辛基酚聚氧乙烯醚、粘结剂聚乙烯醇缩丁醛、塑化剂邻苯二甲酸二辛酯和溶剂的质量比为(40~50):(0.9~1.2):(5~6):(1.5~2.5):(55~65)。
4.根据权利要求1所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷,其特征在于,所述溶剂为无水乙醇和丁酮混合溶液,所述无水乙醇和丁酮的质量比为(0.8~1.2):1。
5.根据权利要求1所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷,其特征在于,所述预烧的时间为2~3h;所述排胶的时间为4~6h;所述煅烧的时间为1~2h。
6.根据权利要求1-5任一项所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将PbO、La2O3、ZrO2、SnO2、TiO2按Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3;其中,x=0.04~0.18的化学计量比混合,采用普通行星球磨机球磨,球磨介质为二氧化锆球,加入乙醇球磨,制得粉体A;
S2.烘干过筛:将粉体A置于60~80℃烘干,过筛,制得陶瓷粉体B;
S3.预烧:将陶瓷粉粉体B在900~980℃预烧2~3h;
S4.同步骤S2进行二次球磨和步骤S3烘干过筛,制得陶瓷粉体C;
S5.流延浆料配制:将陶瓷粉体C加入分散剂辛基酚聚氧乙烯醚和溶剂;经滚磨I得到预混浆料;然后加入粘结剂聚乙烯醇缩丁醛并经滚磨Ⅱ,而后加入溶剂、粘结剂和塑化剂邻苯二甲酸二辛酯并球磨得到混合均匀的流延浆料;
S6.流延成型:将流延浆料在流延机膜带线速度0.15~0.3cm/s,烘干温度35~42℃,温等静压:压力设定值30~60MPa,温度设定60~70℃,保压时间6~12min,制得锆钛锡酸镧铅厚膜陶瓷胚体;
S7.排胶烧结:将锆钛锡酸镧铅厚膜陶瓷胚体在400~600℃排胶4~6h,在1250~1300℃烧结1~2h,制得锆钛锡酸镧铅厚膜陶瓷。
7.根据权利要求6所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法,其特征在于,步骤S1中所述二氧化锆球的直径为3~12mm;所述球磨的转速为200~250rmp/min,所述球磨的时间为20~24h。
8.根据权利要求6所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法,其特征在于,步骤S2中所述烘干的时间为10~20h;所述筛的孔径为40~80目。
9.根据权利要求6所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷的制备方法,其特征在于,步骤S5中所述滚磨和球磨的速率为180~220r/min,所述滚磨I的时间为20~24h,所述滚磨Ⅱ和球磨的时间均为12~16h;所述流延浆料的粘度为600~800mpa·s。
10.权利要求1-5任一项所述的高锡含量的锆钛锡酸镧铅厚膜陶瓷在储能和制冷领域中的应用。
CN201910576976.6A 2019-06-28 2019-06-28 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用 Pending CN110526707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910576976.6A CN110526707A (zh) 2019-06-28 2019-06-28 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910576976.6A CN110526707A (zh) 2019-06-28 2019-06-28 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110526707A true CN110526707A (zh) 2019-12-03

Family

ID=68659634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910576976.6A Pending CN110526707A (zh) 2019-06-28 2019-06-28 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110526707A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法
CN111718194A (zh) * 2020-07-02 2020-09-29 内蒙古科技大学 一种反铁电材料及其制备方法和含有其的电容器
CN112960981A (zh) * 2021-05-07 2021-06-15 重庆文理学院 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602891A (zh) * 2008-06-12 2009-12-16 通用电气公司 含有反铁电粒子的高温聚合物复合材料及其制备方法
US20090312474A1 (en) * 2008-06-12 2009-12-17 General Electric Company High temperature polymer composites and methods of making the same
US20100067661A1 (en) * 2008-09-15 2010-03-18 Yang Cao Apparatus for a surface graded x-ray tube insulator and method of assembling same
US7989530B2 (en) * 2005-11-23 2011-08-02 General Electric Company Nonlinear polymer composites and methods of making the same
CN102643090A (zh) * 2011-11-07 2012-08-22 同济大学 低居里点的高介电电场双向可调的pzt基反铁电陶瓷材料及其制备
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN104725041A (zh) * 2015-03-12 2015-06-24 中国科学院上海硅酸盐研究所 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
CN105198416A (zh) * 2015-09-30 2015-12-30 中国科学院上海硅酸盐研究所 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN106187181A (zh) * 2016-07-21 2016-12-07 同济大学 一种基于轧膜工艺的pzt基反铁电材料及其制备方法
CN106348754A (zh) * 2016-08-18 2017-01-25 广东工业大学 一种锆钛酸钡陶瓷厚膜及其制备方法和应用
CN106518069A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种掺镧锆钛酸铅铁电厚膜陶瓷材料及其制备方法
CN107459350A (zh) * 2017-08-14 2017-12-12 华中科技大学 一种介电储能反铁电陶瓷材料及其制备方法
CN108439980A (zh) * 2018-03-30 2018-08-24 广东工业大学 一种锆钛酸锰钡陶瓷及其制备方法与应用
CN108929112A (zh) * 2018-09-21 2018-12-04 广东工业大学 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
CN109608194A (zh) * 2018-12-13 2019-04-12 广东工业大学 一种锆钛酸铅厚膜陶瓷及其制备方法和应用
US20190148540A1 (en) * 2017-11-14 2019-05-16 Chang Gung University Floating gate non-volatile memory device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989530B2 (en) * 2005-11-23 2011-08-02 General Electric Company Nonlinear polymer composites and methods of making the same
CN101602891A (zh) * 2008-06-12 2009-12-16 通用电气公司 含有反铁电粒子的高温聚合物复合材料及其制备方法
US20090312474A1 (en) * 2008-06-12 2009-12-17 General Electric Company High temperature polymer composites and methods of making the same
US20100067661A1 (en) * 2008-09-15 2010-03-18 Yang Cao Apparatus for a surface graded x-ray tube insulator and method of assembling same
CN102643090A (zh) * 2011-11-07 2012-08-22 同济大学 低居里点的高介电电场双向可调的pzt基反铁电陶瓷材料及其制备
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN104725041A (zh) * 2015-03-12 2015-06-24 中国科学院上海硅酸盐研究所 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
CN105198416A (zh) * 2015-09-30 2015-12-30 中国科学院上海硅酸盐研究所 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN106187181A (zh) * 2016-07-21 2016-12-07 同济大学 一种基于轧膜工艺的pzt基反铁电材料及其制备方法
CN106348754A (zh) * 2016-08-18 2017-01-25 广东工业大学 一种锆钛酸钡陶瓷厚膜及其制备方法和应用
CN106518069A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种掺镧锆钛酸铅铁电厚膜陶瓷材料及其制备方法
CN107459350A (zh) * 2017-08-14 2017-12-12 华中科技大学 一种介电储能反铁电陶瓷材料及其制备方法
US20190148540A1 (en) * 2017-11-14 2019-05-16 Chang Gung University Floating gate non-volatile memory device
CN108439980A (zh) * 2018-03-30 2018-08-24 广东工业大学 一种锆钛酸锰钡陶瓷及其制备方法与应用
CN108929112A (zh) * 2018-09-21 2018-12-04 广东工业大学 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
CN109608194A (zh) * 2018-12-13 2019-04-12 广东工业大学 一种锆钛酸铅厚膜陶瓷及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Q. W. LOU等: "Effect of Sn:Ti ratio on electric properties in lead lanthanum zirconate stannate titanate ceramics", 《FERROELECTRICS》 *
XIHONG HAO等: "Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *
YU DAN等: "Energy storage characteristics of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with high Sn content", 《APPLIED PHYSICS LETTERS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN111393149B (zh) * 2020-04-01 2022-08-12 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法
CN111718194A (zh) * 2020-07-02 2020-09-29 内蒙古科技大学 一种反铁电材料及其制备方法和含有其的电容器
CN112960981A (zh) * 2021-05-07 2021-06-15 重庆文理学院 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
CN112960981B (zh) * 2021-05-07 2022-07-01 重庆文理学院 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
Ye et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO 3-based ceramics for dielectric capacitor applications
Yang et al. Lead-free BaTiO3-Bi0. 5Na0. 5TiO3-Na0. 73Bi0. 09NbO3 relaxor ferroelectric ceramics for high energy storage
Li et al. Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance
CN110526707A (zh) 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
Jiang et al. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties
Ma et al. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering
Pu et al. High energy storage density of 0.55 Bi0. 5Na0. 5TiO3-0.45 Ba0. 85Ca0. 15Ti0. 9− xZr0. 1SnxO3 ceramics
Han et al. A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO 3 ceramics
Lu et al. Energy storage properties of (Bi0. 5Na0. 5) 0.93 Ba0. 07TiO3 lead-free ceramics modified by La and Zr co-doping
Wang et al. Dielectric and ferroelectric properties of SrTiO3-Bi0. 54Na0. 46TiO3-BaTiO3 lead-free ceramics for high energy storage applications
CN109133915B (zh) 一种高储能钛酸钡基介质材料及其制备方法
Li et al. Giant electrocaloric effect in BaTiO3–Bi (Mg1/2Ti1/2) O3 lead-free ferroelectric ceramics
Niu et al. Enhanced electrocaloric effect at room temperature in Mn 2+ doped lead-free (BaSr) TiO 3 ceramics via a direct measurement
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
Pu et al. Enhanced energy storage density of 0.55 Bi0. 5Na0. 5TiO3-0.45 Ba0. 85Ca0. 15Ti0. 85Zr0. 1Sn0. 05O3 with MgO addition
Chandrasekhar et al. Synthesis and characterizations of NaNbO3 modified BNT–BT–BKT ceramics for energy storage applications
CN112624757B (zh) 一种具有宽温区高电卡效应和低场高电卡强度的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN105753471B (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
Li et al. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors
CN104725042A (zh) 一种多元复合热释电陶瓷材料及其制备方法
Wang et al. Enhanced dielectric relaxation in (1− x) BaTiO3–xBiYO3 ceramics
Joseph et al. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications
CN104725041A (zh) 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
Chen et al. Effect of bismuth excess on the energy storage performance of 0.5 Na0. 5Bi0. 5TiO3–0.5 SrTiO3 ceramics
CN108409319B (zh) 高储能密度及充放电性能的无铅陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191203