CN112921370A - 纳米双晶铜金属层及其制备方法及包含其的基板 - Google Patents

纳米双晶铜金属层及其制备方法及包含其的基板 Download PDF

Info

Publication number
CN112921370A
CN112921370A CN202011140407.6A CN202011140407A CN112921370A CN 112921370 A CN112921370 A CN 112921370A CN 202011140407 A CN202011140407 A CN 202011140407A CN 112921370 A CN112921370 A CN 112921370A
Authority
CN
China
Prior art keywords
nano
metal layer
substrate
copper metal
twinned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011140407.6A
Other languages
English (en)
Other versions
CN112921370B (zh
Inventor
白志虹
陈耀宗
陈宗诠
钟时俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianhong Technology Co ltd
Original Assignee
Tianhong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianhong Technology Co ltd filed Critical Tianhong Technology Co ltd
Publication of CN112921370A publication Critical patent/CN112921370A/zh
Application granted granted Critical
Publication of CN112921370B publication Critical patent/CN112921370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0726Electroforming, i.e. electroplating on a metallic carrier thereby forming a self-supporting structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本发明提供一种纳米双晶铜层,其50%以上的体积包括多个柱状晶粒,该多个柱状晶粒彼此间互相连接,至少70%的该多个柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成,且相邻的该多个柱状晶粒间的夹角大于20度且小于或等于60度。此外,本发明还提供前述纳米双晶铜层的制备方法及包含前述纳米双晶铜层的基板。

Description

纳米双晶铜金属层及其制备方法及包含其的基板
技术领域
本发明关于一种纳米双晶铜金属层、其制备方法及包含其的基板,特别指一种晶粒特殊排列的纳米双晶铜金属层、其制备方法及包含其的基板。
背景技术
电子组件的可靠度主要是取决于导线的抗电迁移能力(anti-electromigrationability)。目前的研究中,其中一种能够提高导线的抗电迁移能力的方法,是在导线结构中添加纳米双晶金属结构。如此,当金属原子沿着电子流动的方向产生电迁移时,由于纳米双晶金属结构的双晶晶界能够推迟电迁移的金属原子的流失速度,因此可以降低导线中空孔的形成速率,直接地改善电子组件的使用寿命。也就是说,导线结构中含有越多纳米双晶金属结构,导线的抗电迁移能力就会越高。
在目前的纳米双晶铜结构中,纳米双晶晶粒多为由基板垂直成长的柱状晶粒。虽然此种纳米双晶铜结构已有良好的特性,但若能提供一种新颖的纳米双晶铜结构,其能展现有别于目前纳米双晶铜结构的其他特性,则可提供电子组件的另一选择。
发明内容
本发明关于一种纳米双晶铜金属层、其制备方法及包含其的基板,其中纳米双晶铜金属层具有较佳的伸长率,可大幅提升使用纳米双晶铜金属层的电子产品的可靠度。
本发明提供一种纳米双晶铜层,其50%以上的体积包括多个柱状晶粒,该多个柱状晶粒彼此间互相连接,至少70%的该多个柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成,且相邻的该多个柱状晶粒间的夹角大于20度且小于或等于60度。
在现有的(111)柱状晶粒纳米双晶铜层中,相邻柱状晶粒间的夹角多约为0度。在本发明所提供的新颖纳米双晶铜层中,相邻柱状晶粒间的夹角可大于20度且小于或等于60度,而与现有的纳米双晶铜层结构不同。此外,经实验证实,当相邻柱状晶粒间的夹角大于20度且小于或等于60度时,纳米双晶铜层的伸长率较相邻柱状晶粒间的夹角约为0度的纳米双晶铜层要更好。因此,本发明的纳米双晶铜层除了保有现有的纳米双晶铜层(即相邻柱状晶粒间的夹角约为0度的纳米双晶铜层)的优异抗电迁移特性以及机械性质外,更具有较佳的伸长率;故本发明的纳米双晶铜层的应用领域将更为广泛。
在本发明中,至少70%的柱状晶粒具有一纵向轴(longitude axis),其中纵向轴为纳米双晶的堆叠方向(即成长方向),纳米双晶铜金属层具有一厚度方向,厚度方向为垂直纳米双晶铜金属层的表面。其中,柱状晶粒的[111]晶轴与纵向轴夹角为大于或等于0度至小于或等于20度;换言之,柱状晶粒的[111]晶轴与纳米双晶的堆叠方向(即成长方向)的夹角为大于或等于0度至小于或等于20度。此外,柱状晶粒的纵向轴的方向与纳米双晶铜金属层的厚度方向的夹角大于20度且小于或等于60度。在本发明的一实施例中,柱状晶粒的[111]晶轴与纳米双晶的堆叠方向(即成长方向)的夹角实质上约为0度。
在本发明中,纳米双晶铜金属层的厚度可依据需求进行调整。在本发明的一实施例中,纳米双晶铜金属层的厚度可介于0.1μm至500μm之间。在本发明的另一实施例中,纳米双晶铜金属层的厚度可介于0.8μm至200μm之间。在本发明的再一实施例中,纳米双晶铜金属层的厚度可介于1μm至20μm之间。然而,本发明并不仅限于此。
在本发明中,纳米双晶铜金属层中的至少70%的柱状晶粒由多个纳米双晶堆叠而成。在本发明的一实施例中,纳米双晶铜金属层中的至少90%的柱状晶粒由多个纳米双晶堆叠而成。在本发明的另一实施例中,纳米双晶铜金属层中的每一柱状晶粒由多个纳米双晶堆叠而成。
在本发明中,纳米双晶铜金属层中的至少70%的柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成。在本发明的一实施例中,纳米双晶铜金属层中的至少90%的柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成。在本发明的另一实施例中,纳米双晶铜金属层中的每一柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成。
在本发明中,纳米双晶铜金属层中的柱状晶粒的短轴长度可分别介于0.1μm至50μm之间。在本发明的一实施例中,柱状晶粒的短轴长度可分别介于0.1μm至30μm之间。在本发明的另一实施例中,柱状晶粒的短轴长度可分别介于0.1μm至20μm之间。在本发明的再一实施例中,柱状晶粒的短轴长度可分别介于0.1μm至10μm之间。在本发明中,所谓的柱状晶粒的短轴长度是指与柱状晶粒堆叠方向实质上垂直的方向上的柱状晶粒的长度。此外,所谓的实质上垂直的方向是指两方向的夹角可介于85度至90度之间,且较佳为90度。再者,在本发明的一实施例中,柱状晶粒的短轴长度也可称为柱状晶粒的宽度。
在本发明中,纳米双晶铜金属层中的柱状晶粒的厚度可分别介于0.01μm至500μm之间。在本发明的一实施例中,柱状晶粒的厚度可分别介于0.1μm至200μm之间。在本发明的另一实施例中,柱状晶粒的厚度可分别介于0.1μm至150μm之间。在本发明的再一实施例中,柱状晶粒的厚度可分别介于0.1μm至100μm之间。在本发明的更一实施例中,柱状晶粒的厚度可分别介于1μm至50μm之间。
本发明的纳米双晶铜金属层是透过电镀的方式制备而得。在此,本发明提供一种形成前述纳米双晶铜金属层的方法,包括下列步骤:提供一电镀装置,该装置包括一阳极、一阴极、一电镀液、以及一电力供应源,该电力供应源分别与该阳极及该阴极连接,且该阳极及该阴极浸泡于该电镀液中﹔以一第一电流密度进行电镀,其中该第一电流密度介于一系统极限电流密度的0.8至1.0倍之间;以及以一第二电流密度进行电镀,其中该第二电流密度介于该系统极限电流密度的0.1至0.6倍之间,以于该阴极的一表面成长前述的纳米双晶铜金属层。其中,电镀液包括有:一铜离子来源、一酸、以及一氯离子来源。
在本发明的制备方法中,先以一电流密度较高的第一电流密度进行电镀,其为一成核优于成长的电镀条件。而后,再以一电流密度较低的第二电流密度进行电镀,其为一成长优于成核的电镀条件。如此,可得到本发明的相邻柱状晶粒间的夹角大于20度且小于或等于60度的纳米双晶铜金属层。
特别是,当以一电流密度较高的第一电流进行电镀时,阴极表面附近的电镀液中的铜离子来源会快速聚集在阴极表面,而形成一晶种层,该晶种层可包括多个铜核(甚至是纳米双晶铜核)。当铜离子来源快速聚集在阴极表面形成铜核时,在电解槽中的电镀液会形成一铜离子浓度梯度,其中,铜离子浓度为铜核表面最低,而远离阴极表面逐渐增加。此外,由于铜核成颗粒状,故铜离子浓度梯度会呈现一球形分布。当形成包括铜核的晶种层后,以一电流密度较低的第二电流密度进行电镀,而纳米双晶铜晶粒则由铜核的表面成长堆叠;此时,纳米双晶铜晶粒的成长会沿着球形铜离子浓度梯度的法线方向进行,使得相邻晶粒间的夹角较大。而后,当持续以电流密度较低的第二电流进行电镀时,随着时间过去,电解槽内不同区域的铜离子浓度相差不大(甚至相同),而可稳定且持续的成长出纳米双晶铜晶粒。
在电镀溶液中,铜离子补充至阴极表面的最大速率,即为可以产生电镀铜的最大电流,称为极限电流密度(Limiting Current Density)。此极限电流密度与溶液中铜离子浓度、搅拌速率、电镀液温度有关。为造成阴极表面铜离子浓度梯度,所需施加的电流可随不同电镀槽铜离子浓度、搅拌速率、电镀液温度有很大的差异,和极限电流密度大小有较大的相关性,故以极限电流密度的比值做为所需电流密度的定义。
在本发明的制备方法中,第一电流密度对系统极限电流密度的比值可介于0.8至1.0之间。在本发明的一实施例中,第一电流密度对系统极限电流密度的比值可介于0.8至0.95之间。
在本发明的制备方法中,第二电流密度对系统极限电流密度的比值可介于0.1至0.6之间。在本发明的一实施例中,第二电流密度对系统极限电流密度的比值可介于0.2至0.6之间。
在本发明的制备方法中,第一电流密度的电镀时间可介于1秒至20秒之间。在本发明的一实施例中,第一电流密度的电镀时间可介于1秒至10秒之间。在此,第一电流密度的电镀时间不宜太长,否则不易成长出相邻柱状晶粒间的夹角大于20度且小于或等于60度的纳米双晶铜金属层。至于第二电流密度的电镀时间,则根据所需要的纳米双晶铜金属层厚度进行调整,而无特殊限制。
在本发明的制备方法中,当以一电流密度较高的第一电流密度进行电镀时,可形成一晶种层。因此,本发明的纳米双晶铜金属层可还包括一晶种层,其占纳米双晶铜金属层的1%至50%、1%至30%或1%至10%的体积。
在本发明的制备方法中,氯离子可用以微调整晶粒成长方向,使纳米双晶铜晶粒具有优选方向。酸可为一有机或无机酸,以增加电解质浓度而提高电镀速度,例如可使用硫酸、甲基磺酸、或其混合;且电镀液中的酸的浓度可介于80g/L至120g/L之间。此外,铜离子来源可为铜的盐化物,例如,硫酸铜或甲基磺酸铜;且电镀液中的铜离子浓度可介于20g/L至100g/L之间。在本发明的一实施例中,铜离子浓度可介于30g/L至80g/L之间。在本发明的另一实施例中,铜离子浓度可介于40g/L至70g/L之间。当铜离子浓度过高时,则不易成长出相邻柱状晶粒间的夹角大于20度且小于或等于60度的纳米双晶铜金属层。再者,电镀液可更选择性的包括一添加物,例如:明胶(gelatin)、界面活性剂、或晶格修整剂(latticemodification agent)。
在本发明的制备方法中,电镀可以直流电镀、高速脉冲电镀、或直流电镀与高速脉冲电镀二者交互使用。
在本发明的制备方法中,在电镀时,阴极或电镀液可以50到1500rpm的转速旋转,以帮助晶粒的成长方向及速率。
在本发明的制备方法中,阴极可为一表面具有一金属层的基板、或一金属基板。例如,基板可为一硅基板、一玻璃基板、一石英基板、一金属基板、一塑料基板、一印刷电路板、一三五族材料基板、或其层叠基板。
因此,本发明还提供一种具有纳米双晶铜金属层的基板,包括:一基板;以及如前述的纳米双晶铜金属层,设置于基板的表面或内部。在此,基板的例子如前所述,而不再赘述。
在本发明中,由于纳米双晶铜金属层具有优异的机械特性、抗电迁移特性、及伸长率等,而可应用于制备三维集成电路(3D-IC)的直通硅晶穿孔、封装基板的引脚通孔、各种金属导线、或基板线路等处,对于集成电路工业的应用发展非常有贡献。
附图说明
下文将配合图式并详细说明,使本发明的特征更明显;
图1为本发明所使用的电镀装置的示意图;
图2为本发明所使用电镀装置的电压-电流曲线以量测该系统的极限电流密度(Limiting Current Density);
图3为本发明实施例1的纳米双晶铜金属层的聚焦离子束(Focused Ion Beam)剖面图;
图4为本发明比较例1的纳米双晶铜金属层的聚焦离子束剖面图;
图5为本发明实施例1与比较例1的纳米双晶铜金属层的应变拉伸曲线图;
图6为本发明所使用的另一电镀装置的示意图;
图7为本发明比较例3的纳米双晶铜金属层的聚焦离子束剖面图;
图8为本发明实施例6与比较例3的纳米双晶铜金属层的应变拉伸曲线图。
符号说明:
1-电镀装置;11-阳极;12-阴极;13-电镀液;14-纳米双晶铜金属层;15-直流电供应源。
具体实施方式
以下通过具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点与功效。本发明也可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可针对不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
应注意的是,在本文中,除了特别指明之外,具备一组件不限于具备单一的该组件,而可具备一或更多的该组件。
此外,在本文中,除了特别指明之外,第一、第二等序数,只是用于区别具有相同名称的多个组件,并不表示它们之间存在位阶、层级、执行顺序、或制程顺序。一第一组件与一第二组件可能一起出现在同一构件中,或分别出现在不同构件中。序数较大的一组件的存在不一定表示序数较小的另一组件的存在。
此外,在本文中,所谓的上、下、左、右、前、后、或之间等用语,只是用于描述多个组件之间的相对位置,并在解释上可推广成包括平移、旋转、或镜射的情形。
此外,在本文中,除了特别指明之外,一组件在另一组件上或类似叙述不必然表示该组件接触该另一组件。
此外,在本文中,约一数值是指包括该数值的±10%的范围,特别是该数值±5%的范围。
实施例1
图1为本实施例1所使用的电镀装置的示意图。其中,电镀装置1包括有阳极11、阴极12,浸泡于电镀液13中并分别连接至一直流电供应源15。在此,阳极11为可溶性磷铜块﹔阴极12则为一钛基板。电镀液13包括有硫酸铜(铜离子浓度为30g/L)、氢氯酸(氯离子浓度为50mg/L)、以及硫酸(浓度为100g/L)。
接着,以20ASD的电流密度的直流电进行电镀6秒。而后,再以12ASD的电流密度的直流电进行电镀300秒,由阴极12表面开始成长纳米双晶铜。阳极11或电镀液13施加约800rpm的搅拌转速。此外,成长出的纳米双晶铜金属层14的厚度约为10μm。
本电镀系统在800rpm转速下,将电压持续增加纪录电流,量测极限电流密度(Limiting Current Density)为21.6ASD,如图2所示。
图3为本实施例的纳米双晶铜金属层的聚焦离子束(Focused Ion Beam)剖面图。如图3所示,成长完成的纳米双晶铜金属层的50%以上的体积包括多个柱状晶粒,这些柱状晶粒彼此间互相连接。如图3所示,这些柱状晶粒是由多个层状的纳米双晶铜所组成,纳米双晶延伸到纳米双晶铜金属层表面,因此纳米双晶铜金属层表面所显露的为双晶的(111)面。在本实施例中,纳米双晶铜金属层的所有表面几乎均为(111)面。此外,[111]晶轴为垂直(111)面的轴,故70%以上的柱状晶粒是由纳米双晶沿着[111]晶轴方向堆叠而成。在本实施例中,几乎所有的柱状晶粒均由纳米双晶沿着[111]晶轴方向堆叠而成。
特别是,如图3所示,在本实施例中,相邻的柱状晶粒间的夹角不为0度,而是大于20度且小于或等于60度。此外,柱状晶粒的短轴长度分别介于0.5μm至3μm之间,且柱状晶粒的厚度分别介于2μm至5μm之间。
比较例1
在此,除了直接以12ASD的电流密度的直流电进行电镀300秒外,其余使用与实施例相同的条件成长纳米双晶铜金属层。
图4为本比较例的纳米双晶铜金属层的聚焦离子束剖面图。如图3及图4所示,实施例与比较例的纳米双晶铜金属层的最大差异在于,实施例的纳米双晶铜金属层中相邻的柱状晶粒间的夹角大于20度且小于或等于60度,而比较例的纳米双晶铜金属层中相邻的柱状晶粒间的夹角接近0度。
应变拉伸试验
将电镀铜层自基板剥离,并依IPC-TM-650拉伸测试规范进行测试,将电镀铜层裁切成12.7mm宽、150mm长的长条状试片,拉伸试验机为INSTRON 4465,gauge length为50mm,拉伸速度为5mm/min。
Figure BDA0002738086030000071
表1
如表1及图5所示,将较于比较例的纳米双晶铜金属层,实施例的纳米双晶铜金属层具有较大的伸长率。
实施例2-5
同实施例1的电镀系统,调整电镀液铜离子浓度、搅拌转速、电镀温度,可以得到不同极限电流密度,并应用分段电流电镀参数,电镀出铜层并以聚焦离子束剖面观察相邻柱状晶粒间夹角是否在20度到60度间。
Figure BDA0002738086030000081
表2
实施例6及比较例3
图6为本实施例及比较例所使用的电镀装置的示意图。其中,电镀装置包括有阳极11、阴极12,浸泡于电镀液中并分别连接至一直流电供应源15。在此,阳极11为一尺寸安定性阳极(Dimensional stable anode,DSA),其为一在钛网筛上涂布IrO2的网状结构。阴极12则为一旋转钛轮。当进行电镀时,阴极12转速为800rpm,电镀液包括有硫酸铜(铜离子浓度为60g/L)、氢氯酸(氯离子浓度为30mg/L)、硫酸(90g/L)及晶粒修整剂(2ml/L),电镀温度为50℃。至于电镀的电流密度及电镀时间则列于下表3。
在电镀后,阴极12表面开始成长纳米双晶铜,且成长出的纳米双晶铜金属层的厚度约为12μm。将所得到的纳米双晶铜金属层撕下后,以前述方式进行拉伸试验及金相观察。拉伸试验的结果如下表3及图8所示,而比较例3纳米双晶铜金属层的聚焦离子束剖面图如图7所示。
Figure BDA0002738086030000082
表3
实施例6所制得的纳米双晶铜金属层,其聚焦离子束检测结果(图未示)显示,纳米双晶铜金属层中相邻的柱状晶粒间的夹角大于20度且小于或等于60度,且晶粒内有纳米双晶。反观比较例3所制得的纳米双晶铜金属层,其聚焦离子束检测结果(图7)显示,虽然晶粒内有纳米双晶,但所得的为非柱状晶型无方向性晶粒。此外,根据表3及图8的拉伸试验结果显示,实施例6的纳米双晶铜柱状晶粒具有高角度相交的结构,相比比较例3的无特定方向且非柱状晶纳米双晶铜,有更佳的拉伸强度与伸长率。
本发明的纳米双晶铜金属层具有相邻的柱状晶粒间的夹角大于20度且小于或等于60度的特征。此外,本发明的纳米双晶铜金属层更具有较大的伸长率;故本发明的纳米双晶铜金属层的应用领域可更加广泛。
尽管本发明已通过多个实施例来说明,应理解的是,只要不背离本发明的精神及申请专利范围主张的,可作出许多其他可能的修饰及变化。

Claims (12)

1.一种纳米双晶铜金属层,其特征在于,该纳米双晶铜金属层的50%以上的体积包括多个柱状晶粒,该多个柱状晶粒彼此间互相连接,至少70%的该多个柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成,且相邻的该多个柱状晶粒间的夹角大于20度且小于或等于60度。
2.根据权利要求1所述的纳米双晶铜金属层,其特征在于,该纳米双晶铜金属层的厚度介于0.1μm至500μm之间。
3.根据权利要求1所述的纳米双晶铜金属层,其特征在于,每一该多个柱状晶粒由多个纳米双晶沿着[111]晶轴方向堆叠而成。
4.根据权利要求1所述的纳米双晶铜金属层,其特征在于,该多个柱状晶粒的短轴长度分别介于0.1μm至50μm之间。
5.根据权利要求1所述的纳米双晶铜金属层,其特征在于,该多个柱状晶粒的厚度分别介于0.01μm至500μm之间。
6.一种纳米双晶铜金属层的制备方法,其特征在于,包括下列步骤:
提供一电镀装置,该装置包括一阳极、一阴极、一电镀液、以及一电力供应源,该电力供应源分别与该阳极及该阴极连接,且该阳极及该阴极浸泡于该电镀液中﹔
以一第一电流密度进行电镀,其中该第一电流密度介于一系统极限电流密度的0.8至1.0倍之间;以及
以一第二电流密度进行电镀,其中该第二电流密度介于该系统极限电流密度的0.1至0.6倍之间,以于该阴极的一表面成长如权利要求1至5任一项所述的纳米双晶铜金属层。
7.根据权利要求6所述的制备方法,其特征在于,以该第一电流密度的电镀时间介于1秒至20秒之间。
8.根据权利要求6所述的制备方法,其特征在于,电镀为直流电镀、高速脉冲电镀、或直流电镀与高速脉冲电镀二者交互使用。
9.根据权利要求6所述的制备方法,其特征在于,该阴极为一表面具有一金属层的基板、或一金属基板。
10.根据权利要求6所述的制备方法,其特征在于,该基板为一硅基板、一玻璃基板、一石英基板、一金属基板、一塑料基板、一印刷电路板、一三五族材料基板、或其层叠基板。
11.一种具有纳米双晶铜金属层的基板,其特征在于,包括:
一基板;以及
一如权利要求1至5任一项所述的纳米双晶铜金属层,设置于该基板的表面或内部。
12.根据权利要求11所述的基板,其特征在于,该基板为一硅基板、一玻璃基板、一石英基板、一金属基板、一塑料基板、一印刷电路板、一三五族材料基板、或其层叠基板。
CN202011140407.6A 2019-12-06 2020-10-22 纳米双晶铜金属层及其制备方法及包含其的基板 Active CN112921370B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108144788A TWI709667B (zh) 2019-12-06 2019-12-06 奈米雙晶銅金屬層及其製備方法及包含其的基板
TW108144788 2019-12-06

Publications (2)

Publication Number Publication Date
CN112921370A true CN112921370A (zh) 2021-06-08
CN112921370B CN112921370B (zh) 2024-04-19

Family

ID=74202298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011140407.6A Active CN112921370B (zh) 2019-12-06 2020-10-22 纳米双晶铜金属层及其制备方法及包含其的基板

Country Status (5)

Country Link
US (1) US11242619B2 (zh)
JP (1) JP7055183B2 (zh)
KR (1) KR102433117B1 (zh)
CN (1) CN112921370B (zh)
TW (1) TWI709667B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746383B (zh) * 2021-03-05 2021-11-11 國立陽明交通大學 摻雜金屬元素的奈米雙晶銅金屬層、包含其之基板及其製備方法
TWI803857B (zh) * 2021-04-23 2023-06-01 樂鑫材料科技股份有限公司 接合結構及其形成方法
TWI766752B (zh) * 2021-07-08 2022-06-01 國立陽明交通大學 鋰電池電極及包含其的鋰電池
US11634830B2 (en) * 2021-08-25 2023-04-25 Applied Materials, Inc. Electrochemical depositions of nanotwin copper materials
CN114086224B (zh) * 2021-12-21 2023-04-28 中国科学院深圳先进技术研究院 一种孪晶铜材料及制备方法和用途
CN114908386B (zh) * 2022-05-18 2024-05-28 江西理工大学 极薄多层结构型纳米孪晶铜箔及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179297A (ja) * 2002-11-26 2004-06-24 Renesas Technology Corp 半導体集積回路装置
JP2006108464A (ja) * 2004-10-07 2006-04-20 Kyoden:Kk 鉛フリーはんだに対応した銅配線基板
US20130122326A1 (en) * 2011-11-16 2013-05-16 National Chiao Tung University Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same
WO2014030779A1 (ko) * 2012-08-22 2014-02-27 한양대학교 에리카산학협력단 나노쌍정 구조가 형성된 구리재료의 형성방법 및 이에 의해 제조된 구리재료
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
CN108677213A (zh) * 2018-05-31 2018-10-19 中国科学院金属研究所 一种通过改变金属材料梯度纳米孪晶结构提高材料力学性能的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476812B2 (ja) * 2002-11-01 2010-06-09 中国科学院金属研究所 超高強度及び導電率を有するナノ結晶銅材料ならびにその製造方法
TWI476878B (zh) * 2012-05-10 2015-03-11 Univ Nat Chiao Tung 包含有具優選方向成長之CuSn晶粒之電性連接結構及其製備方法
TWI490962B (zh) * 2013-02-07 2015-07-01 Univ Nat Chiao Tung 電性連接結構及其製備方法
US10985378B2 (en) * 2018-09-12 2021-04-20 Industrial Technology Research Institute Electrolyzed copper foil and current collector of energy storage device
TWI731293B (zh) * 2019-01-18 2021-06-21 元智大學 奈米雙晶結構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179297A (ja) * 2002-11-26 2004-06-24 Renesas Technology Corp 半導体集積回路装置
JP2006108464A (ja) * 2004-10-07 2006-04-20 Kyoden:Kk 鉛フリーはんだに対応した銅配線基板
US20130122326A1 (en) * 2011-11-16 2013-05-16 National Chiao Tung University Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same
US20160355940A1 (en) * 2011-11-16 2016-12-08 National Chiao Tung University Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same
WO2014030779A1 (ko) * 2012-08-22 2014-02-27 한양대학교 에리카산학협력단 나노쌍정 구조가 형성된 구리재료의 형성방법 및 이에 의해 제조된 구리재료
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
CN108677213A (zh) * 2018-05-31 2018-10-19 中国科学院金属研究所 一种通过改变金属材料梯度纳米孪晶结构提高材料力学性能的方法

Also Published As

Publication number Publication date
US20210172086A1 (en) 2021-06-10
TW202122639A (zh) 2021-06-16
JP2021105211A (ja) 2021-07-26
KR20210072709A (ko) 2021-06-17
JP7055183B2 (ja) 2022-04-15
US11242619B2 (en) 2022-02-08
CN112921370B (zh) 2024-04-19
KR102433117B1 (ko) 2022-08-16
TWI709667B (zh) 2020-11-11

Similar Documents

Publication Publication Date Title
CN112921370A (zh) 纳米双晶铜金属层及其制备方法及包含其的基板
CN111463185B (zh) 纳米双晶结构
KR101339598B1 (ko) 2층 플렉시블 기판, 및 그 제조에 이용하는 구리전해액
JP2015029027A (ja) プリント配線板
TWI441956B (zh) 電沉積組合物及使用該組合物塗覆半導體基材之方法
TWI521104B (zh) 奈米雙晶鎳金屬層、其製備方法、及包含其之電性連接結構、基板及封裝結構
Lin et al. The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives
US20050087447A1 (en) Electric copper plating liquid and process for manufacturing semiconductor integrated circuit device using same
US11560639B2 (en) Nano-twinned copper layer with doped metal element, substrate comprising the same and method for preparing the same
JP2004250791A (ja) 電気めっき組成物
CN102844472B (zh) 电解铜电镀用高纯度铜阳极、其制造方法及电解铜电镀方法
JP2013053362A (ja) エッチング性に優れた回路形成用銅箔、この銅箔を使用した銅張積層板及びプリント配線板
JP2007182623A (ja) 金属薄体の製造方法
Wang et al. Pulse Electroplating of Nanotwinned Copper using MPS-PEG Two-additive System for Damascene via Filling Process
Yang et al. Self-annealing behavior of electroplated Cu in blind-hole structures
US11578417B2 (en) Nano-twinned crystal film prepared by water/alcohol-soluble organic additives and method of fabricating the same
JP2017503929A (ja) 銅の電析
TWI753971B (zh) 電解鎳(合金)鍍覆液
JP4472673B2 (ja) 銅配線の製造方法及び銅めっき用電解液
US20230220517A1 (en) NANO-TWINNED Cu-Ni ALLOY LAYER AND METHOD FOR MANUFACTURING THE SAME
US20220259754A1 (en) Twinned copper layer, substrate having the same and method for preparing the same
CN109154093B (zh) 电解镍(合金)镀覆液
Liu et al. Influence of macroscale dimension on the electrocrystallization of Cu pad and redistributed layer in advanced packaging
Fu-Long et al. Bottom-Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via
KR20230121992A (ko) 나노 구리 결정입자 전기도금 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant