CN112920599A - 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法 - Google Patents

一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法 Download PDF

Info

Publication number
CN112920599A
CN112920599A CN202110414702.4A CN202110414702A CN112920599A CN 112920599 A CN112920599 A CN 112920599A CN 202110414702 A CN202110414702 A CN 202110414702A CN 112920599 A CN112920599 A CN 112920599A
Authority
CN
China
Prior art keywords
preparation
conductive composite
composite hydrogel
solution
polyaniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110414702.4A
Other languages
English (en)
Other versions
CN112920599B (zh
Inventor
张卫英
肖进辉
李晓
逄述博
孙雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110414702.4A priority Critical patent/CN112920599B/zh
Publication of CN112920599A publication Critical patent/CN112920599A/zh
Application granted granted Critical
Publication of CN112920599B publication Critical patent/CN112920599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于导电高分子功能材料领域,具体涉及一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法,制备过程包括:以V2O5和H2O2为原料通过水热反应制备V2O5纳米线,然后以V2O5纳米线为氧化剂和模板剂原位聚合苯胺,最后引入强亲水性的PAMPS水凝胶制得导电复合水凝胶。本发明制备的导电复合水凝胶材料电化学性能优异,同时具备良好的循环稳定性,是一种潜在的柔性超级电容器电极材料。而且制备过程中充分利用了V2O5自身的多功能性,无需额外添加氧化剂,节约资源。

Description

一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法
技术领域
本发明属于柔性电子材料领域,具体涉及一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法。
背景技术
随着可穿戴设备的快速发展,超级电容器等柔性储能器件备受关注。柔性电极是柔性超级电容器的关键,柔性电极材料已成为研究的重点。水凝胶是一类具有亲水基团、能够吸收大量的水但不溶于水的三维网络聚合物,性质柔软。聚苯胺(PANI)是一种典型的导电聚合物,而且相比传统的碳材料拥有更大的理论比电容。将聚苯胺与水凝胶相结合形成的导电水凝胶兼具柔性和导电性,可作为柔性电极材料。通常以过硫酸铵氧化聚合制备聚苯胺导电水凝胶,但是常规聚合方式得到的聚苯胺易团聚,且往往生长于水凝胶的表面,使聚苯胺的利用率低下,而且使导电水凝胶的循环稳定性较差。
发明内容
本发明的目的在于针对现有技术的不足,提供一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法。本发明以V2O5和H2O2为原料通过水热反应制备V2O5纳米线,然后以V2O5纳米线为氧化剂和模板剂使苯胺原位聚合,在不额外添加氧化剂的情况下,简便制备有益于增强电化学性能和稳定性的纳米核壳结构V2O5/PANI导电复合材料;同时以2-丙烯酰胺-2-甲基丙磺酸(AMPS)制备水凝胶,其中的磺酸基团是强亲水性基团,可以促使苯胺溶液更好地进入水凝胶内部,同时磺酸基团可以解离出H+,增加水凝胶网络内部的载流子传输通道,在保持水凝胶的柔性的同时提高水凝胶的电化学性能。
为实现上述目的,本发明采取的技术方案是:
(1)制备V2O5纳米线:将V2O5和双氧水加入去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72h;其中溶液的总体积为60 mL,V2O5与H2O2的摩尔比为1:5-1:15;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0154 g-0.0616g N,N-亚甲基双丙烯酰胺(MBA)交联剂,0.007 g-0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60℃水浴加热3h引发聚合形成水凝胶;其中MBA与AMPS单体的摩尔比为(0.01-0.04):1,KPS与AMPS单体的摩尔比为(0.0005-0.01):1;
(3)制备聚苯胺基导电复合水凝胶柔性电极材料:将步骤(1)所得的V2O5纳米线超声分散于40 mL的0.1 mol/L盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,将一定量的苯胺单体加至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液,待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5h得到导电复合水凝胶;其中,V2O5与苯胺的摩尔比为2:1-1:2。
本发明采用以上技术方案,首先通过水热反应以V2O5和双氧水为原料制备V2O5纳米线,然后以V2O5纳米线为氧化剂和模板剂原位聚合苯胺,最后与强亲水性PAMPS水凝胶有机结合得到具有优异电化学性能的导电复合水凝胶。
与现有技术相比,本发明具有以下优点:
(1)本发明引入V2O5纳米线作为氧化剂和模板剂,通过苯胺的界面原位聚合,制备具有特定纳米核壳结构的V2O5/PANI导电复合材料,增强导电复合水凝胶电化学性能的同时也增强了其稳定性。
(2)本发明引入强亲水性PAMPS水凝胶,在提供柔性的同时能促使苯胺溶液更好地进入水凝胶内部,而且磺酸基团解离出H+可以增加水凝胶网络内部的载流子传输通道,从而共同提高水凝胶的电化学性能;此外,PAMPS还可以通过氢键作用增强其与V2O5-PANI复合导电填料的结合,进一步增强导电复合水凝胶的稳定性。
(3)本发明的主要原料简单易得,成本低廉,无需额外添加氧化剂,节约资源,而且制备方法简单易操作。
附图说明
图1为V2O5原料(上)与V2O5纳米线(下)的扫描电镜图;
图2为导电复合水凝胶的扫描电镜图;
图3为实施例1所制导电复合水凝胶使LED灯发光的照片。
具体实施方式
为了使本发明所述的内容更加便于理解,以下实施例将对本发明做进一步说明,但本发明的保护范围并不仅限于这些实施例。
本发明通过电化学工作站采用恒电流充放电(GCD)测定所述导电复合水凝胶的质量比电容。测试体系为三电极体系,以所制备的导电复合水凝胶作为工作电极,铂电极和Ag/AgCl电极分别作为辅助电极和参比电极,电解液为1mol·L-1的硫酸溶液。比电容的计算公式为:
Figure 424114DEST_PATH_IMAGE001
式中,Cm为质量比电容,F/g;I为充放电电流,A;ΔV为电位窗口,V;Δt为放电时间,s;m为活性物质的量,g。
实施例1
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.09 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶。将所得导电复合水凝胶洗涤干净,冷冻干燥后用扫描电镜观察其结构,如图2所示。通常情况下,溶液聚合法制备的聚苯胺多呈球形颗粒的团聚状态,而本发明中以V2O5纳米线作为氧化剂和模板剂,形成的是相互穿透、缠结的连续结构,这样的结构能够提供更大的表面积和更完整的导电通路。将所得导电复合水凝胶洗涤干净后接入如图3所示的电路,可看到LED灯发出明显的亮光,说明具有优良的导电性。以该导电复合水凝胶为工作电极,在电流密度为1 A/g下测其质量比电容为405.3 F/g;在电流密度为5 A/g下充放电循环2000次,电容保持率为82%。
对比例1
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.09 g V2O5超声分散于40 mL的0.1M盐酸溶液中,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于20 mL盐酸溶液中,将前后两溶液快速混合后置于冰箱,0-4 ℃下保持5 h,得到导电复合水凝胶。以该导电复合水凝胶为工作电极,在电流密度为1 A/g下测其质量比电容为137.2 F/g。
对比例2
(1)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(2)制备导电复合水凝胶:将0.112 g过硫酸铵(APS)溶于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶。以该导电复合水凝胶为工作电极,在电流密度为1 A/g下测其质量比电容为189.2 F/g。
对比例3
(1)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(2)制备导电复合水凝胶:将0.09 g V2O5原料溶于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶。以该导电复合水凝胶为工作电极,在电流密度为1 A/g下测其质量比电容为301 F/g。
对比例4
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;
(2)制备V2O5/PANI粉末:将步骤(1)所得的0.09 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h,待反应完全后收集墨绿色产物,并用大量去离子水和乙醇洗涤。以该复合材料为工作电极,在电流密度为1 A/g下测其质量比电容为366.8 F/g;在电流密度为5 A/g下充放电循环1000次,电容保持率为72%。
对比例1不含聚苯胺,对比例2不含V2O5,对比例3以V2O5原料取代V2O5纳米线,对比例4为V2O5/PANI粉末而非复合水凝胶。实施例1所制导电水凝胶质量比电容(405.3 F/g)远高于对比例1的质量比电容(137.2 F/g),说明在体系中V2O5/PANI复合材料表现出的电化学性能要显著优于单独使用的V2O5;同时对比例2的质量比电容(189.2 F/g)和对比例3的质量比电容(301 F/g)明显低于实施例1,说明了V2O5纳米线作为苯胺原位聚合模板剂对提高导电水凝胶电化学性能的重要性;对比例4的质量比电容(366.8 F/g)与实施例1较接近,但在相同电流密度下的充放电循环性能远低于实施例1,说明V2O5/PANI与PAMPS水凝胶的复合显著增加了体系的循环稳定性。
实施例2
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.09 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加22 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶,在电流密度为1 A/g下测试其比电容为292.8 F/g。
实施例3
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0616 g N,N-亚甲基双丙烯酰胺(MBA),0.027 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.045 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶,在电流密度为1 A/g下测试其比电容为341.3 F/g。
实施例4
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0308 g N,N-亚甲基双丙烯酰胺(MBA),0.014 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.045 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶,在电流密度为1 A/g下测试其比电容为346.8 F/g。
实施例5
(1)制备V2O5纳米线:将1.08 g V2O5和5 mL H2O2加入55 mL去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至100 mL反应釜中,180 ℃反应72 h;;
(2)制备PAMPS凝胶:将2.07 g 2-丙烯酰胺-2-甲基丙磺酸(AMPS)溶于10 mL去离子水中,加入0.0154 g N,N-亚甲基双丙烯酰胺(MBA),0.007 g过硫酸钾(KPS),磁力搅拌充分溶解后,60 ℃下聚合3 h;
(3)制备导电复合水凝胶:将步骤(1)所得的0.045 g V2O5超声分散于40 mL的0.1M盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中,加44 μL的苯胺单体至20 mL盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液。待温度冷却至0-4 ℃后,将A、B两溶液快速混合,保持反应5 h得到导电复合水凝胶,在电流密度为1 A/g下测试其比电容为338.6 F/g。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:以五氧化二钒纳米线为模板剂和氧化剂,原位聚合苯胺,再结合聚2-丙烯酰胺-2-甲基丙磺酸水凝胶制备聚苯胺基导电复合水凝胶柔性电极材料。
2.根据权利要求1所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:所述制备方法具体包括以下步骤:
(1)制备V2O5纳米线:将V2O5和双氧水加入去离子水中,冰水浴下磁力搅拌直至完全溶解,将所得溶液转移至反应釜中,置于180℃反应72h;
(2)制备PAMPS凝胶:将 2-丙烯酰胺-2-甲基丙磺酸溶于去离子水中,加入N,N’-亚甲基双丙烯酰胺交联剂、过硫酸钾,磁力搅拌充分溶解后,60℃聚合3h得到PAMPS凝胶;
(3)制备导电复合水凝胶:将步骤(1)所得的V2O5纳米线超声分散于盐酸溶液中,记为A溶液,将步骤(2)所得PAMPS凝胶切成均匀小块,分散于A溶液中;将苯胺加至的盐酸溶液中,冰水浴下磁力搅拌至完全溶解,记为B溶液,待温度冷却至0-4℃后,将A、B两溶液快速混合,保持反应5h得到聚苯胺基导电复合水凝胶柔性电极材料。
3.根据权利要求2所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:步骤(1)中,V2O5与H2O2的摩尔比为1:5-1:15。
4.根据权利要求2所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:步骤(1)中,溶液的总体积为60 mL。
5.根据权利要求2所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:步骤(2)中,所述N,N’-亚甲基双丙烯酰胺与2-丙烯酰胺-2-甲基丙磺酸的摩尔比为0.01-0.04:1。
6.根据权利要求2所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:步骤(2)中,所述过硫酸钾与2-丙烯酰胺-2-甲基丙磺酸的摩尔比为0.0005-0.01:1。
7.根据权利要求2所述的聚苯胺基导电复合水凝胶柔性电极材料的制备方法,其特征在于:步骤(3)中,V2O5与苯胺的摩尔比为2:1-1:2。
8.根据权利要求1-7任一项所述制备方法得到的聚苯胺基导电复合水凝胶柔性电极材料。
CN202110414702.4A 2021-04-17 2021-04-17 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法 Active CN112920599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110414702.4A CN112920599B (zh) 2021-04-17 2021-04-17 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110414702.4A CN112920599B (zh) 2021-04-17 2021-04-17 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112920599A true CN112920599A (zh) 2021-06-08
CN112920599B CN112920599B (zh) 2022-05-10

Family

ID=76174561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110414702.4A Active CN112920599B (zh) 2021-04-17 2021-04-17 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112920599B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593927A (zh) * 2021-07-27 2021-11-02 辽宁大学 Ti3C2Tx/聚吡咯复合电极材料及其制备方法和作为超级电容器电极材料的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076016A2 (en) * 2004-05-21 2006-07-20 Krzysztof Matyjaszewski Conducting polymers
CN107455388A (zh) * 2017-11-09 2017-12-12 中国海洋大学 一种明暗场杀菌的ZnO/V2O5复合材料及其制备方法
CN109942747A (zh) * 2019-04-01 2019-06-28 福州大学 一种柔性导电水凝胶及其制备方法
CN110016148A (zh) * 2019-03-27 2019-07-16 澳门大学 高分子导电水凝胶材料及其制备方法
CN110437487A (zh) * 2019-08-16 2019-11-12 广州大学 一种具有宽线性电阻应变范围的导电水凝胶及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076016A2 (en) * 2004-05-21 2006-07-20 Krzysztof Matyjaszewski Conducting polymers
CN107455388A (zh) * 2017-11-09 2017-12-12 中国海洋大学 一种明暗场杀菌的ZnO/V2O5复合材料及其制备方法
CN110016148A (zh) * 2019-03-27 2019-07-16 澳门大学 高分子导电水凝胶材料及其制备方法
CN109942747A (zh) * 2019-04-01 2019-06-28 福州大学 一种柔性导电水凝胶及其制备方法
CN110437487A (zh) * 2019-08-16 2019-11-12 广州大学 一种具有宽线性电阻应变范围的导电水凝胶及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周堃: ""导电聚合物介观网络结构及超级电容器应用研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技II辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593927A (zh) * 2021-07-27 2021-11-02 辽宁大学 Ti3C2Tx/聚吡咯复合电极材料及其制备方法和作为超级电容器电极材料的应用

Also Published As

Publication number Publication date
CN112920599B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN108933047A (zh) 一种用于锂离子电容器的预锂化凝胶电解质及其制备方法
Ma et al. Three-dimensional hierarchical walnut kernel shape conducting polymer as water soluble binder for lithium-ion battery
CN110416530A (zh) 一种花状二氧化锰/碳复合材料及其制备方法和应用
CN112920599B (zh) 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法
CN109273271B (zh) 一种高导电柔性自支撑的全固态超级电容器及其制备方法
CN112694080B (zh) 一种具有嵌入式导电网络结构的炭微球、制备方法及其储能应用
CN112952077A (zh) 柔性锌离子电池及其制备方法
CN109950503A (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN114122394B (zh) 一种聚嗪类材料及其制备方法和应用
CN110970606B (zh) 氮掺杂中空球形碳包覆硫正极材料及其制备方法和应用
CN113921812B (zh) 一种超高功率密度钠离子电池及其制备方法
CN114639813B (zh) 一种钒b位掺杂烧绿石型聚锑酸材料及其制备方法和应用
CN114566628B (zh) 一种植酸掺杂聚吡咯@钒酸盐水系锌离子电池正极材料的制备方法
CN108597909A (zh) 超级电容器用三维石墨烯/氧化铁复合电极材料及其制备方法
CN102924715A (zh) 一种双介孔的有序介孔碳/聚苯胺纳米线复合材料的制备方法及其应用
Xu et al. Preparation of polyaniline/FeFe (CN) 6 composite and its electrochemical performance as cathode material of lithium ion battery
CN116885144B (zh) 一种用于锂电池负极材料的硅碳复合材料及其制备方法
Zhijiang Study on a novel polymer-based secondary battery system
CN114050266B (zh) 二硫化硒复合氮掺杂还原氧化石墨烯正极材料及其制备方法、锂-二硫化硒电池和涉电设备
CN112850794B (zh) 一种Zn掺杂分级球状Fe2O3材料的制备方法及其储能应用
CN116979135A (zh) 一种异质纳米线复合固态电解质及其制备方法与应用
CN109860529B (zh) 一种高性能多孔碳-氧化锡单分散复合球负极材料及其制备方法和应用
CN108232134B (zh) 一种长循环寿命锂硫电池正极材料、正极及其制备与应用
CN116314706A (zh) 一种聚乙烯二氧噻吩包覆二硒化铁的制备方法和应用
CN116606394A (zh) 一种paa基凝胶准固态电解质及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant