CN110016148A - 高分子导电水凝胶材料及其制备方法 - Google Patents

高分子导电水凝胶材料及其制备方法 Download PDF

Info

Publication number
CN110016148A
CN110016148A CN201910239903.8A CN201910239903A CN110016148A CN 110016148 A CN110016148 A CN 110016148A CN 201910239903 A CN201910239903 A CN 201910239903A CN 110016148 A CN110016148 A CN 110016148A
Authority
CN
China
Prior art keywords
polymer
conductive polymer
hydrogel
monomer
hydrogel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910239903.8A
Other languages
English (en)
Other versions
CN110016148B (zh
Inventor
孙国星
胡小赛
李宗津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACAO UNIV
Original Assignee
MACAO UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MACAO UNIV filed Critical MACAO UNIV
Priority to CN201910239903.8A priority Critical patent/CN110016148B/zh
Publication of CN110016148A publication Critical patent/CN110016148A/zh
Application granted granted Critical
Publication of CN110016148B publication Critical patent/CN110016148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/04Acids; Metal salts or ammonium salts thereof
    • C08F120/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F138/00Homopolymers of compounds having one or more carbon-to-carbon triple bonds
    • C08F138/02Acetylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2449/00Characterised by the use of homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及高分子水凝胶领域,具体而言,涉及一种高分子导电水凝胶材料及其制备方法。其包括导电高分子、高分子聚合物和交联剂,所述高分子聚合物通过交联剂与聚合物单体原位聚合形成网状水凝胶骨架,而后所述导电高分子通过高分子导电单体原位聚合沉积于所述网状水凝胶骨架上;所述交联剂为硅酸钙盐与水反应后形成的纳米材料该水凝胶材料具有优异的机械性能和高的导电性能,在柔性可拉伸传感器等领域有广阔的发展前景。

Description

高分子导电水凝胶材料及其制备方法
技术领域
本发明涉及高分子水凝胶领域,具体而言,涉及一种高分子导电水凝胶材料及其制备方法。
背景技术
高分子聚合物导电水凝胶(CPHs)是集高分子水凝胶和有机导体的优点于一体的新型高分子材料。三维纳米结构CPH由于其潜在的应用,包括柔性电子器件、燃料电池、超级电容器、染料敏化太阳能电池和可充电锂电池,近年来引起了广泛的研究兴趣。CPH的3D网络能够促进电子沿着导电骨架的快速和有效的传输,并且纳米结构框架进一步缩短了电荷扩散路径,从而改善了导电性。此外,CPH的3D多孔结构可以提供大的传输通道,促进各种反应物之间的有效界面,并且还可以适应反应期间发生的体积变化。此外,CPH优异的力学性能使其特别适合作为轻型和柔性器件的候选材料。因此,具有三维多孔连续纳米结构骨架的CPH由于其潜在的应用前景而成为研究热点。然而,机械性能差使得在柔性装置中应用困难。
发明内容
本发明提供了一种高分子导电水凝胶材料,该水凝胶材料具有优异的机械性能和高的导电性能,在柔性可拉伸传感器等领域有广阔的发展前景。
本发明提供了一种高分子导电水凝胶材料的制备方法,该方法操作简单,能够保证制备得到的高分子导电水凝胶材料具有良好的性能。
本发明是这样实现的:
本发明提供一种高分子导电水凝胶材料,其包括导电高分子、高分子聚合物和交联剂,所述高分子聚合物通过交联剂与聚合物单体原位聚合形成网状水凝胶骨架,而后所述导电高分子通过高分子导电单体原位聚合沉积于所述网状水凝胶骨架上;所述交联剂为硅酸钙盐与水反应后形成的纳米材料。
本发明还提供一种上述高分子导电水凝胶材料的制备方法,包括以下步骤:将硅酸钙盐分散在水中形成纳米材料分散液;
将所述纳米材料分散液与聚合物单体、第一引发剂和催化剂原位聚合形成高分子水凝胶基体;
而后将所述高分子水凝胶基体与高分子导电单体的溶液和第二引发剂原位聚合形成高分子导电水凝胶材料;
优选,所述硅酸钙盐的用量为聚合物单体用量的0.25-2.5wt%。
本发明的有益效果包括:本发明提供的高分子导电水凝胶材料通过硅酸钙盐、高分子聚合物和导电高分子相互作用使得该凝胶材料具有优异的机械性能和导电性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例中所需要使用的附图作简单地介绍。
图1是本发明实施例1提供的纳米材料分散液的TEM图;
图2是本发明实施例1提供的高分子水凝胶基体的SEM图;
图3是本发明实施例1提供的高分子导电水凝胶材料的SEM图;
图4是本发明实施例1提供的高分子导电水凝胶材料的SEM放大图;
图5是本发明实施例1提供的高分子导电水凝胶材料的FTIR图;
图6是本发明实施例1提供的高分子导电水凝胶材料的XRD图;
图7是本发明实施例1提供的高分子导电水凝胶材料的UV-vis图;
图8是本发明实施例1提供的高分子导电水凝胶材料的聚苯胺和聚丙烯酸相互作用机理图;
图9是实验例1提供的拉伸性能检测中单轴拉伸性能曲线图;
图10是实验例1提供的拉伸性能检测中单轴循环拉伸性能曲线图;
图11是实验例2中不同苯胺用量对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图;
图12是实验例2中不同盐酸用量对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图;
图13是实验例2中不同温度对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图;
图14是实验例3中高分子导电水凝胶材料在不同拉伸形变条件下相对阻抗变化曲线图;
图15是实验例3中高分子导电水凝胶材料拉伸条件下时间-电流变化曲线图;
图16是实验例4中高分子导电水凝胶材料监测手指关节慢速运动电阻变化曲线图;
图17是实验例4中高分子导电水凝胶材料监测手指关节快速运动电阻变化曲线图;
图18是实施例1提供的高分子导电水凝胶材料单轴压缩性能曲线图;
图19是实施例1提供的高分子导电水凝胶材料在不同压缩形变条件下相对阻抗变化曲线图;
图20是实施例1提供的高分子导电水凝胶材料的压缩条件下时间-电流变化曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的高分子导电水凝胶材料及其制备方法进行具体说明。
本发明实施例提供一种高分子导电水凝胶材料,其包括导电高分子、高分子聚合物和交联剂,高分子聚合物通过交联剂与聚合物单体原位聚合形成网状水凝胶骨架,而后所述导电高分子通过高分子导电单体原位聚合沉积于所述网状水凝胶骨架上。该交联剂为硅酸钙盐与水反应后形成的纳米材料。
硅酸钙盐与水反应后能够与聚合物单体原位聚合构建一种新型的3D网状水凝胶骨架,该3D水凝胶骨架具有多孔结构,且对水凝胶材料的导电性能和机械性能有至关重要的影响。而高分子导电单体原位聚合形成导电高分子沉积到该网状水凝胶骨架上后,能够增强该高分子导电是凝胶材料的导电性能,同时,不会影响3D网状水凝胶骨架的机械性能,继而保证水凝胶材料具有良好的机械性能。
进一步地,聚合物单体、所述高分子导电单体和所述硅酸钙盐的质量比300:(19-28):(0.75-7.5)。进一步地限定各个物质的含量能够进一步保证制备得到的高分子导电水凝胶材料同时具有良好地导电性能和机械性能。
进一步地,高分子聚合物是聚合物单体通过聚合反应得到的聚合物,优选,所述聚合物单体为水溶性单体,更优选,所述水溶性单体选自丙烯酰胺、N-异丙基丙烯酰胺、丙烯酸盐或者丙烯酸、2-丙烯酰胺-2-甲基丙磺酸中的任意一种。采用上述物质作为3D水凝胶网络骨架形成的原料,能够保证水凝胶网络骨架的机械性能和导电性能。
进一步地,导电高分子为高分子导电单体形成的聚合物,优选,所述聚合物选自聚苯胺、聚吡咯、聚噻吩、聚3,4-乙撑二氧噻吩和聚乙炔中的任意一种。采用上述导电高分子能够保证其能够与3D高分子水凝胶网络骨架良好地作用,继而保证高分子导电水凝胶材料同时具有良好地导电性能和机械性能。
进一步地,硅酸钙盐选自硅酸三钙、硅酸二钙、硅酸钙中的任意一种或多种,所述硅酸钙来源于波特兰水泥或者白水泥。采用上述硅酸钙盐能够保证硅酸钙盐反应后形成的物质能够良好地与高分子聚合物作用,保证3D高分子水凝胶网状骨架的形成。
进一步地,纳米材料为纳米球晶,优选,所述纳米球晶的直径为2-10纳米,纳米球晶是描述纳米材料的形状为纳米球状晶体。控制纳米材料的粒径更有利于保证高分子导电水凝胶材料的性能。
本发明还提供一种高分子导电水凝胶材料的制备方法,包括以下步骤:
S1、制备纳米材料分散液;
将硅酸钙盐分散在水中形成纳米材料分散液,具体地,在-10至50℃的条件下将硅酸钙盐与水混合并从超声分散后,再在-10至50℃的条件下保存0.5-5天后得到的所述纳米材料分散液。
硅酸钙盐分散在水能够形成纳米级的氢氧化钙,而纳米级的氢氧化钙提供足够的交联位点,从而水凝胶的三维网络相对稳定,机械性能得到提升。同时,超声能减轻水泥颗粒的聚集,而钙离子从水泥表面释放是一个缓慢过程,通过水泥溶液保存0.5-5天,得到的纳米材料分散液中纳米氢氧化钙的含量在40ppm-200ppm。通过上述条件能够保证硅酸钙盐能够充分地水进行反应,并保证反应后得到的产物能够在溶剂中充分进行分散,保证后续水凝胶材料的形成。
S2、制备高分子水凝胶基体;
将所述纳米材料分散液与聚合物单体、第一引发剂和催化剂混合形成高分子水凝胶基体。具体地,在-10至50℃条件下,将纳米材料分散液中加入聚合物单体、第一引发剂和催化剂制备得到高分子水凝胶基体。此时聚合物单体反应得到3D高分子水凝胶网络骨架,保证后续高分子导电水凝胶材料的制备。
第一引发剂的添加量为聚合物单体用量的0.5-10wt%和催化剂的添加量为聚合物单体用量的0.05-5wt%。
进一步地,上述硅酸钙盐的用量为聚合物单体用量的0.25-2.5wt%。通过控制硅酸钙盐和聚合物单体的用量保证交联剂与高分子聚合物的作用效果。
进一步地,在制备所述高分子水凝胶基体时加入纳米颗粒,所述纳米颗粒选自锂蒙脱石、蒙脱石、纤维素晶须、氧化石墨烯、钛酸盐纳米片和可控活性纳米凝胶中的任意一种或者至少两种。且纳米颗粒的添加量为聚合物单体用量的0.1-0.5wt%。额外添加纳米颗粒能够进一步交联高分子单体,继而保证制备得到的高分子导电水凝胶材料具有良好地性能。
进一步地,催化剂为N,N,N',N'-四甲基-乙二胺、亚硫酸钠、亚硫酸氢钠和硫代硫酸钠。
S3、制备高分子导电水凝胶材料;
而后将所述高分子水凝胶基体与高分子导电单体溶液和第二引发剂混合形成高分子导电水凝胶材料。具体地,在-10-50℃条件下,将所述高分子水凝胶基体与所述高分子导电溶液混合并保持1-6天,使得导电高分子充分吸附包裹在水凝胶基体骨架上。而后加入第二引发剂进行反应得到所述高分子导电水凝胶材料。
进一步地,第一引发剂和第二引发剂均选自水溶性引发剂,优选为过硫酸铵、过硫酸钾、过硫酸钠或2,2'-偶氮二异丁基脒二盐酸盐中的任意一种。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种高分子导电水凝胶材料,其包括聚苯胺、聚丙烯酸和交联剂,聚丙烯酸通过交联剂形成网状水凝胶骨架,而后聚苯胺沉积于所述网状水凝胶骨架上。交联剂为硅酸三钙和波特兰水泥的混合物和水反应后得到的纳米材料。其中,纳米材料为纳米球晶,其粒径为2-10nm。所述聚合物单体、高分子导电单体和所述硅酸钙盐的质量比300:25:7.5。
本实施例还提供一种高分子导电水凝胶材料的制备方法,包括以下步骤:
S1、制备纳米材料分散液;
在0℃条件下,将硅酸三钙和波特兰水泥的混合物与水混合搅拌30分钟,然后保存3天,整个制备过程保持稳定均为0℃,得到纳米材料分散液。其中,硅酸三钙和波兰特水泥的混合物和水的质量比为0.25:100,纳米材料分散液中纳米氢氧化钙的含量在200ppm。
S2、制备高分子水凝胶基体;
在0℃冰浴中和氮气保护下,将6g丙烯酸和3g氢氧化钠加入上述纳米材料分散液中,磁力搅拌30min。接着加入0.24g过硫酸铵和0.19g N,N,N',N'-四甲基-乙二胺,在氮气保护下磁力搅拌2h。然后在室温下保存3天,得到聚丙烯酸水凝胶基体。硅酸钙盐的用量为聚合物单体用量的2.5wt%。
S3、制备高分子导电水凝胶材料;
在0℃下,将2g聚丙烯酸水凝胶基体浸泡在100mL浓度为0.5M苯胺溶液,使苯胺渗透浸入水凝胶基体3D网格结构内。接着加入过硫酸铵,使得苯胺在水凝胶骨架上原位聚合得到聚苯胺/聚丙烯酸高分子导电水凝胶材料。
实施例2-实施例4
实施例2-实施例4提供的高分子导电水凝胶材料与实施例提供的高分子导电水凝胶材料结构类似,区别在于采用的原料不同。实施例2-实施例4提供的高分子导电水凝胶材料的制备方法与实施例1提供的高分子导电水凝胶材料的制备方法操作基本一致,区别在于具体地操作条件不同。
实施例2:
高分子聚合物的聚合物单体为丙烯酰胺,导电高分子为聚噻吩,交联剂为硅酸三钙反应后得到的纳米材料,纳米材料的粒径为2-10nm,所述聚合物单体、高分子导电单体和所述硅酸钙盐的质量比300:19:0.75。
高分子导电水凝胶材料的制备方法:
S1、制备纳米材料分散液;温度为负10℃,硅酸三钙与水的质量比为100:0.025,纳米材料分散液中纳米氢氧化钙的含量在40ppm。
S2、制备高分子水凝胶基体;聚合物单体为丙烯酰胺,其用量为6g,温度为0℃,催化剂为N,N,N',N'-四甲基-乙二胺,催化剂用量为0.3g,第一引发剂为过硫酸钾,第一引发剂用量为0.03g,硅酸钙盐的用量为聚合物单体用量的0.25wt%。添加的纳米颗粒为氧化石墨烯,添加量为聚合物单体用量的0.1wt%。
S3、制备高分子导电水凝胶材料;温度为0℃,噻吩单体溶液的浓度为0.6M,第二引发剂为过硫酸钾,第二引发剂用量为8g。
实施例3
高分子聚合物的聚合物单体为丙烯酸,导电高分子为聚吡咯,交联剂为硅酸三钙、硅酸二钙和白水泥的混合物反应后得到的纳米材料,纳米材料的粒径为2-10nm,聚合物单体、高分子导电单体和所述硅酸钙盐的质量比的质量比300:23:1.5。
高分子导电水凝胶材料的制备方法:
S1、制备纳米材料分散液;温度为15℃,硅酸三钙、硅酸二钙和白水泥的混合物与水的质量比为0.05:100,纳米材料分散液中纳米氢氧化钙的含量在80ppm。
S2、制备高分子水凝胶基体;温度为0℃,聚合物单体为丙烯酸,其用量为6g,催化剂为亚硫酸氢钠,催化剂用量为0.003g,第一引发剂为过硫酸钠,第一引发剂用量为0.6g,硅酸钙盐的用量为聚合物单体用量的0.5wt%。添加的纳米颗粒为钛酸盐纳米片和纤维素晶须的混合物,添加量为聚合物单体用量的0.5wt%。
S3、制备高分子导电水凝胶材料;温度为0℃,吡咯单体溶液的浓度为0.5M,第二引发剂为过硫酸钠,第二引发剂用量为10g。
实施例4
高分子聚合物的聚合物单体为丙烯酸,导电高分子为聚乙炔,交联剂为硅酸三钙和硅酸二钙的混合物反应后得到的纳米材料,纳米材料的粒径为2-10nm,聚合物单体、高分子导电单体和所述硅酸钙盐的质量比300:28:4.5。
高分子导电水凝胶材料的制备方法:
S1、制备纳米材料分散液;温度为50℃,硅酸三钙和硅酸二钙的混合物与水的质量比为0.15:100,纳米材料分散液中纳米氢氧化钙的含量在160ppm。
S2、制备高分子水凝胶基体;温度为0℃,聚合物单体为丙烯酸,其用量为6g,催化剂为硫代硫酸钠,催化剂用量为0.05g,第一引发剂为2,2'-偶氮二异丁基脒二盐酸盐,第一引发剂用量为0.18g,硅酸钙盐的用量为聚合物单体用量的1.5wt%。添加的纳米颗粒为钛酸盐纳米片、蒙脱石和纤维素晶须的混合物,添加量为0.01g。
S3、制备高分子导电水凝胶材料;温度为0℃,乙炔单体溶液的浓度为0.6M,第二引发剂为2,2'-偶氮二异丁基脒二盐酸盐,第二引发剂用量为10g。
检测
对实施例1制备得到的纳米材料分散液进行透视电镜扫描,检测结果参见图1,表明氢氧化钙的粒径在2-10nm;对实施例1制备得到的高分子水凝胶基体进行扫描电镜检测,检测结果参见图2,表明高分子水凝胶基体是网格结构;对实施例1制备得到的高分子导电水凝胶材料进行扫面电镜检测、傅里叶红外检测、紫外分析检测以及X射线衍射,检测结果参见图3-图7。其中图3和图4为SEM图,表明导电高分子均匀包覆在水凝胶基体表面;图5为红外检测图,图6为XRD分析图,图7为紫外分析图,表明导电高分子与水凝胶基体有化学或者物理作用,从而改变导电高分子的晶型结构和共轭构象;且聚苯胺和聚丙烯酸的相互作用机理图参见图8,表明导电高分子和水凝胶基体之间可能存在的作用力;根据上述分析图能够表明成功制备得到高分子导电水凝胶材料。
实验例1
对实施例1制备得到的高分子导电水凝胶材料进行拉伸性能检测,将实施例1提供的高分子导电水凝胶材料切成长4厘米、宽7毫米、厚3毫米的长条形,在E44型MTS试验机上,采用50N测力传感器,在室温(25℃)下以1mm/s的速度进行拉伸试验,应变应力曲线见图9。同时在1mm/s的应变速度下,进行了500%应变的循环加载卸载试验,应变应力曲线见图10。
根据图9和图10可知,高分子导电水凝胶材料的显示出高的机械性能(拉伸应变的1086%、拉伸强度的138KPa、韧性的0.493MJ/m3)、优良的自恢复性(拉伸应力在50KPa左右时抗伸长率高达500%的高恢复性、小滞后能的0.007MJ/m3)。
实验例2:
对实施例1制备得到的高分子导电水凝胶材料进行导电性能检测,检测结果参见图11-图13,图11为不同苯胺用量对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图,图12为不同盐酸用量对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图,图13为不同温度对聚苯胺/聚丙烯酸导电水凝胶材料导电性能影响图。
根据图11-图13可知,该高分子导电水凝胶材料的电导率高达20830S/m。
实验例3
将实施例1制备得到的高分子导电水凝胶材料用于拉伸传感器,将实施例1的高分子导电水凝胶材料剪成长条形,测试其在不同应变条件下的相对阻抗,见图14;拉伸条件下时间-电流实时变化曲线图见图15。根据图14可知,高分子导电水凝胶材料在100%-500%应变下的相对阻抗由0.38增加到1.96,而响应因子为0.418,具有较高的灵敏系数。根据图15可知,电流随着应变的增加而减小。随着应变增加至500%,电流减小到2.1mA。当水凝胶材料返回至原点,通过的电流恢复至原始值。
实验例4
将实施例1制备得到的高分子导电水凝胶材料用于监测手指关节活动,将实施例1的高分子导电水凝胶材料剪成长条形,贴敷在手指关节处,监测手指关节活动。手指关节不同运动速度下的时间-电流实时变化曲线图见图16和图17。根据图16和图17可知,手指关节运动时,会有不同的响应电流。并且不同的手指关节运动速度,高分子导电水凝胶材料也具有高度的灵敏性。
实验例5:
对实施例1制备得到的高分子导电水凝胶材料进行压缩性能检测,将实施例1提供的高分子导电水凝胶材料切成1.5厘米、宽1.2毫米、厚3毫米的长条形,在E44型MTS试验机上,采用50kN测力传感器,在室温(25℃)下以0.2mm/s的速度进行循环压缩加载卸载试验,应变应力曲线见图18。根据图18可知,在70%压缩应变内,高分子导电水凝胶材料具有良好的机械性能,可用于大的压缩应变条件下的压缩传感器。
实验例6
将实施例1制备得到的高分子导电水凝胶材料用于压力传感器,将实施例1提供的高分子导电水凝胶材料剪成长条形,测试其在不同压力应变条件下的相对阻抗,见图19;在10%压缩形变下,时间-电流实时变化曲线图见图20。根据图19和图20可知,高分子导电水凝胶材料在5%、10%、20%、30%、40%、50%、60%和70%压缩应变条件下的相对阻抗分别为2.19、1.53、1.08、2.72、2.25、1.75、2.26和3.88。表明高分子导电水凝胶材料可以用于监测不同的压缩应变。在10%压缩形变下,经过16次循环压缩应变,高分子导电水凝胶材料仍然具有良好的响应特性,证明其循环稳定性较好。
通过上述实验例可以证明高分子导电水凝胶材料电导率高达20830S/m。此外,这种水凝胶显示出高的机械性能(拉伸应变的1086%、拉伸强度的138KPa、韧性的0.493MJ/m3)、优良的自恢复性(拉伸应力在50KPa左右时抗伸长率高达500%的高恢复性、小滞后能的0.007MJ/m3)。此外,该高分子导电水凝胶材料被证明可用于制造拉伸和压力传感器,以检测各种机械变形。所得到的高分子导电水凝胶材料具有优异的电学和机械性能,使其有望成为各种柔性可伸缩器件的候选材料。
综上所述,本发明的高分子导电水凝胶材料通过硅酸钙盐、高分子聚合物和导电高分子相互作用使得该凝胶材料具有优异的机械性能和导电性能。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高分子导电水凝胶材料,其包括导电高分子、高分子聚合物和交联剂,所述高分子聚合物通过交联剂与聚合物单体原位聚合形成网状水凝胶骨架,而后所述导电高分子通过高分子导电单体原位聚合沉积于所述网状水凝胶骨架上;所述交联剂为硅酸钙盐与水反应后形成的纳米材料。
2.根据权利要求1所述的高分子导电水凝胶材料,其特征在于,所述聚合物单体、所述高分子导电单体和所述硅酸钙盐的质量比300:(19-28):(0.75-7.5)。
3.根据权利要求1所述的高分子导电水凝胶材料,其特征在于,所述高分子聚合物是所述聚合物单体通过聚合反应得到的聚合物,优选,所述聚合物单体为水溶性单体,更优选,所述水溶性单体选自丙烯3酰胺、N-异丙基丙烯酰胺、丙烯酸盐或者丙烯酸、2-丙烯酰胺-2-甲基丙磺酸中的任意一种。
4.根据权利要求1所述的高分子导电水凝胶材料,其特征在于,所述导电高分子为所述高分子导电单体形成的聚合物,优选,所述聚合物选自聚苯胺、聚吡咯、聚噻吩、聚3,4-乙撑二氧噻吩和聚乙炔中的任意一种。
5.根据权利要求1所述的高分子导电水凝胶材料,其特征在于,所述纳米材料为纳米球晶,优选,所述纳米球晶的直径为2-10纳米。
6.根据权利要求1所述的高分子导电水凝胶材料,其特征在于,所述硅酸钙盐选自硅酸三钙、硅酸二钙、硅酸钙中的任意一种或多种,所述硅酸钙来源于波特兰水泥或者白水泥。
7.一种权利要求1所述的高分子导电水凝胶材料的制备方法,其特征在于,包括以下步骤:将硅酸钙盐分散在水中形成纳米材料分散液;
将所述纳米材料分散液与聚合物单体、第一引发剂和催化剂原位聚合形成高分子水凝胶基体;
而后将所述高分子水凝胶基体与高分子导电单体的溶液和第二引发剂原位聚合形成高分子导电水凝胶材料,
优选,所述硅酸钙盐的用量为聚合物单体用量的0.25-2.5wt%。
8.根据权利要求7所述的制备方法,其特征在于,在-10至50℃的条件下将硅酸钙盐与水混合并从超声分散后,再在-10至50℃的条件下保存0.5-5天后得到的所述纳米材料分散液,优选,所述纳米材料分散液中纳米氢氧化钙的含量在40ppm-200ppm。
9.根据权利要求7所述的制备方法,其特征在于,在-10至50℃条件下,将所述高分子水凝胶基体与所述高分子导电单体溶液混合并保持1-6天,而后加入第二引发剂进行反应得到所述高分子导电水凝胶材料。
10.根据权利要求7所述的制备方法,其特征在于,在制备所述高分子水凝胶基体时加入纳米颗粒,所述纳米颗粒选自锂蒙脱石、蒙脱石、纤维素晶须、氧化石墨烯、钛酸盐纳米片和可控活性纳米凝胶中的任意一种或者至少两种。
CN201910239903.8A 2019-03-27 2019-03-27 高分子导电水凝胶材料及其制备方法 Active CN110016148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910239903.8A CN110016148B (zh) 2019-03-27 2019-03-27 高分子导电水凝胶材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910239903.8A CN110016148B (zh) 2019-03-27 2019-03-27 高分子导电水凝胶材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110016148A true CN110016148A (zh) 2019-07-16
CN110016148B CN110016148B (zh) 2022-05-17

Family

ID=67190152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910239903.8A Active CN110016148B (zh) 2019-03-27 2019-03-27 高分子导电水凝胶材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110016148B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437487A (zh) * 2019-08-16 2019-11-12 广州大学 一种具有宽线性电阻应变范围的导电水凝胶及其制备和应用
CN110437777A (zh) * 2019-08-21 2019-11-12 江苏省特种设备安全监督检验研究院 一种功能化石墨烯量子点改性凝胶粘结剂的制备方法及其应用
CN112111073A (zh) * 2020-09-18 2020-12-22 苏州凝智新材料发展有限公司 一种抗疲劳的全水凝胶复合材料及其制备方法和应用
CN112159536A (zh) * 2020-10-16 2021-01-01 江苏省特种设备安全监督检验研究院 一种高导电性聚丙烯酸复合水凝胶的制备方法
CN112920599A (zh) * 2021-04-17 2021-06-08 福州大学 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法
CN113461971A (zh) * 2021-06-28 2021-10-01 广州大学 一种导电水凝胶及其制备方法和应用
CN113527599A (zh) * 2020-04-16 2021-10-22 南京理工大学 可自愈离子液凝胶电解质、制备方法及其应用
CN114806056A (zh) * 2022-05-25 2022-07-29 太原理工大学 一种导电纳米复合水凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266692A (zh) * 2017-05-12 2017-10-20 李宗津 纳米复合水凝胶材料及制备方法
CN107602763A (zh) * 2017-09-30 2018-01-19 西南交通大学 一种具有抗冻/抗热性能的导电自粘附水凝胶的制备方法
CN108794773A (zh) * 2018-06-29 2018-11-13 四川理工学院 一种导电水凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266692A (zh) * 2017-05-12 2017-10-20 李宗津 纳米复合水凝胶材料及制备方法
CN107602763A (zh) * 2017-09-30 2018-01-19 西南交通大学 一种具有抗冻/抗热性能的导电自粘附水凝胶的制备方法
CN108794773A (zh) * 2018-06-29 2018-11-13 四川理工学院 一种导电水凝胶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐群委等: "聚丙烯酸盐/聚苯胺导电水凝胶的合成研究", 《第六届中国功能材料及其应用学术会议论文集(9)》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437487A (zh) * 2019-08-16 2019-11-12 广州大学 一种具有宽线性电阻应变范围的导电水凝胶及其制备和应用
CN110437777A (zh) * 2019-08-21 2019-11-12 江苏省特种设备安全监督检验研究院 一种功能化石墨烯量子点改性凝胶粘结剂的制备方法及其应用
CN113527599A (zh) * 2020-04-16 2021-10-22 南京理工大学 可自愈离子液凝胶电解质、制备方法及其应用
CN113527599B (zh) * 2020-04-16 2022-11-18 南京理工大学 可自愈离子液凝胶电解质、制备方法及其应用
CN112111073A (zh) * 2020-09-18 2020-12-22 苏州凝智新材料发展有限公司 一种抗疲劳的全水凝胶复合材料及其制备方法和应用
CN112111073B (zh) * 2020-09-18 2023-09-12 苏州凝智新材料发展有限公司 一种抗疲劳的全水凝胶复合材料及其制备方法和应用
CN112159536A (zh) * 2020-10-16 2021-01-01 江苏省特种设备安全监督检验研究院 一种高导电性聚丙烯酸复合水凝胶的制备方法
CN112920599A (zh) * 2021-04-17 2021-06-08 福州大学 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法
CN112920599B (zh) * 2021-04-17 2022-05-10 福州大学 一种聚苯胺基导电复合水凝胶柔性电极材料及其制备方法
CN113461971A (zh) * 2021-06-28 2021-10-01 广州大学 一种导电水凝胶及其制备方法和应用
CN113461971B (zh) * 2021-06-28 2023-12-26 广州大学 一种导电水凝胶及其制备方法和应用
CN114806056A (zh) * 2022-05-25 2022-07-29 太原理工大学 一种导电纳米复合水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN110016148B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN110016148A (zh) 高分子导电水凝胶材料及其制备方法
Chen et al. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor
Wang et al. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
Chen et al. Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors
Shanmuganathan et al. Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers
Wang et al. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding
Song et al. Super tough, ultrastretchable hydrogel with multistimuli responsiveness
Wu et al. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine
Liu et al. Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing
Huang et al. Environment stable ionic organohydrogel as a self-powered integrated system for wearable electronics
Li et al. Tough and conductive nanocomposite hydrogels for human motion monitoring
Ying et al. Facile fabrication of elastic conducting polypyrrole nanotube aerogels
CN113462169B (zh) 一种基于MXene的导电有机硅弹性体及其制备方法与应用
Veeralingam et al. Low-density, stretchable, adhesive PVDF-polypyrrole reinforced gelatin based organohydrogel for UV photodetection, tactile and strain sensing applications
CN106971862A (zh) 能量储存装置中的聚合电解质、产品及其用途
Wan et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels
CN110172161A (zh) 一种三重网状结构水凝胶的制备方法及其应用
CN111877019B (zh) 一种导电水凝胶的制备方法
CN113683788B (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用
Zhao et al. Robust and ultra-fast self-healing elastomers with hierarchically anisotropic structures and used for wearable sensors
CN108659237B (zh) 一种导电性能随温度调谐的纳米纤维复合水凝胶及其制备方法和应用
Cai et al. High performance flexible silk fabric electrodes with antibacterial, flame retardant and UV resistance for supercapacitors and sensors
CN110540658A (zh) 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
Chen et al. Dual-network sodium alginate/polyacrylamide/laponite nanocomposite hydrogels with high toughness and cyclic mechano-responsiveness
Sun et al. Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant