CN112853282A - 一种C掺杂TiAlSiN涂层的制备方法 - Google Patents

一种C掺杂TiAlSiN涂层的制备方法 Download PDF

Info

Publication number
CN112853282A
CN112853282A CN202011642922.4A CN202011642922A CN112853282A CN 112853282 A CN112853282 A CN 112853282A CN 202011642922 A CN202011642922 A CN 202011642922A CN 112853282 A CN112853282 A CN 112853282A
Authority
CN
China
Prior art keywords
coating
tialsin
substrate
doped
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011642922.4A
Other languages
English (en)
Inventor
黄彪
张而耕
周琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202011642922.4A priority Critical patent/CN112853282A/zh
Publication of CN112853282A publication Critical patent/CN112853282A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开了一种C掺杂TiAlSiN涂层的制备方法,依次包括Ti、TiN、TiAlN、TiAlSiN和TiSiCN梯度复合涂层,其中,所述的TiSiCN层的制备方法包括以下步骤:温度420℃,N2流量160‑200sccm,C2H2流量12‑48sccm,真空度3.5‑4.2pa,基体偏压‑60至‑80V,TiSi靶电流为140‑160A,沉积时间20‑25min,得到C含量逐渐增加的TiSiCN梯度层。该C掺杂TiAlSiN涂层能够有效提高TiAlSiN涂层的切削寿命和加工工件表面质量。

Description

一种C掺杂TiAlSiN涂层的制备方法
技术领域
本发明属于涂层刀具技术领域,具体涉及一种C掺杂TiAlSiN涂层的制备方法。
背景技术
随着工业的不断发展以及对零部件性能要求的提高,机加工工具再次面临新挑战,寻求既能适应高温加工环境又能切削高硬材料的涂层刀具成为工业发展关注的热点。此外,为了获得优良表面质量的工件,抗粘附性涂层刀具也成为了关键突破技术。
TiAlSiN涂层刀具作为经典的超硬氮化物类涂层,具有优良的抗氧化性和耐磨性,被广泛用于加工不锈钢以及高温合金,并且具有较好的切削性能,但是,由于其对加工材料的抗粘附性较弱并且内应力较大,不能沉积太厚的TiAlSiN层,在切削加工时经常会有切削材料粘附在刀具表面,降低了加工工件的表面质量,同时TiAlSiN涂层刀具的切削寿命也受到影响。
在上述背景下,本发明提供了一种C掺杂TiAlSiN涂层的制备工艺。该工艺制备的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层不仅具备了TiAlSiN涂层的耐氧化性、超硬性以及耐磨性同时也具有良好的润滑效果,在切削不锈钢、高温合金以及HRC45-65度的脆硬钢时表现出优异的切削寿命和良好的抗粘附性,同时C元素的引入并没有增加整个膜层的内应力。
发明内容
本发明针对TiAlSiN涂层内应力高、抗粘附性弱的问题,提供可一种C掺杂TiAlSiN涂层的制备方法,该方法采用C掺杂且辅助低能粒子轰击的C掺杂TiAlSiN涂层,该方法的涂层具有低内应力,良好的抗粘附性,优良的耐氧化性、超硬性以及耐磨性。
本发明的技术方案如下:
本发明公开了一种C掺杂TiAlSiN涂层的制备方法,依次包括Ti、TiN、TiAlN、TiAlSiN和TiSiCN梯度复合涂层,其中,所述的TiSiCN层的制备方法包括以下步骤:
(1)温度420℃,N2流量160-200sccm,C2H2流量12-48sccm,真空度3.5-4.2pa,基体偏压-60至-80V,TiSi靶电流为140-160A,沉积时间20-25min,得到C含量逐渐增加的TiSiCN梯度层。
在本发明的一实施例,所述的TiSiCN层的制备方法还包括:关闭N2和C2H2气体,通入200sccm的Ar,真空度0.5-0.8pa,基体偏压为-300V至-350V,Ti靶通入120A电流,挡板置于Ti靶与基体之间,防止Ti靶出来的粒子之间沉积到基体表面,轰击制备完成的涂层表面15-20min,得到内应力低,表面光滑的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层。
在本发明的一实施例,所述的Ti层的制备方法为:Ti靶接通120A电流,通入200sccm的Ar,真空度0.5pa在-650至-750V偏压下刻蚀基体6-7min,去除基体表面氧化皮和达到表面活化的效果,同时Ti与基体之间形成混合层,增强涂层与基体之间的机械咬合强度和键合概率。
在本发明的一实施例,所述的TiN的制备方法为:保持温度420℃,关闭氩气,通入200sccm的N2,真空度0.8-1.2pa,基体偏压为-150-180V,Ti靶电流为180-200A,沉积15-20min,得到氮元素含量逐渐增加的TiN梯度层。
在本发明的一实施例,所述的TiAlN的制备方法为:温度420℃,N2流量160-200sccm,真空度0.8-1.2pa,基体偏压-100至-120V,Ti靶电流为140-180A,AlTi靶电流为120-180A,沉积时间60-75min,得到AlN相完全析出而且硬度逐渐增加的TiAlN梯度层。
在本发明的一实施例,所述的TiAlSiN的制备方法为:温度420℃,N2流量160-200sccm,真空度1.8-3.5pa,基体偏压-60至-100V,AlTi靶电流为120-180A,TiSi靶电流为160-180A,沉积时间45-50min,得到Si含量逐渐增加,SiNx非晶包裹微晶的纳米复合结构。
在本发明的一实施例,还包括先将基体放入真空腔体中加热至450-500℃,保温20-30min,使基体受热均匀。
在本发明的一实施例,还包括先在电流120A,真空度0.5Pa,基体偏压-800V下,通入200sccm的Ar,分别按顺序将Ti、AlTi以及TiSi靶对着挡板清洁4-8min,去除靶材表面的杂质。
与现有技术相比,本发明的有益效果如下:
本发明采用低能离子轰击制备完成的涂层,降低整个膜层的内应力,改善了涂层的内部结构及表面质量;改善了TiAlSiN涂层的抗粘附性,提高了TiAlSiN涂层刀具的切削寿命和加工工件的表面质量。
本发明的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层不仅具备了TiAlSiN涂层的耐氧化性、超硬性以及耐磨性同时也具有良好的润滑效果,在切削不锈钢、高温合金以及HRC45-65度的脆硬钢时表现出优异的切削寿命和良好的抗粘附性,同时C元素的引入并没有增加整个膜层的内应力。
附图说明
图1为本发明实施例1制备的C掺杂TiAlSiN涂层的截面形貌图;
图2为本发明实施例1制备的C掺杂TiAlSiN涂层的结合力图,其中,(a)为未刻蚀的C掺杂TiAlSiN涂层;(b)有刻蚀的C掺杂TiAlSiN涂层。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
实施例1
本发明的实施例公开了一种C掺杂TiAlSiN涂层的制备方法,如图1所示,包括以下步骤:
(1)预处理完成的基体放入真空腔体中加热到450℃保温20min,使基体心部和表面受热均匀,所述基体可以为高速钢;
(2)0.5Pa真空度,基体偏压-800V,通入200sccm的Ar,Ti、AlTi以及TiSi靶在120A电流下按照顺序对着挡板各自清洁4-8min,去除靶材表面的杂质;
(3)自清洁完成的Ti靶接通120A电流,通入200sccm的Ar,真空度0.5pa在-650至-750V偏压下刻蚀基体6-7min,去除基体表面氧化皮和达到表面活化的效果,同时Ti与基体之间形成混合层,增强涂层与基体之间的机械咬合强度和键合概率;
(4)制备梯度TiN层。保持温度420℃,关闭氩气,通入200sccm的N2,真空度0.8-1.2pa,基体偏压为-150至-180V,Ti靶电流为180-200A,沉积15-20min,得到氮元素含量逐渐增加的TiN梯度层;
(5)制备梯度TiAlN层。温度420℃,N2流量160-200sccm,真空度0.8-1.2pa,基体偏压-100至-120V,Ti靶电流为140-180A,AlTi靶电流为120-180A,沉积时间60-75min,得到AlN相完全析出而且硬度逐渐增加的TiAlN梯度层;
(6)制备梯度TiAlSiN层。温度420℃,N2流量160-200sccm,真空度1.8-3.5pa,基体偏压-60至-100V,AlTi靶电流为120-180A,TiSi靶电流为160-180A,沉积时间45-50min,得到Si含量逐渐增加,SiNx非晶包裹微晶的纳米复合结构;
(7)制备梯度C掺杂层。温度420℃,N2流量160-200sccm,C2H2流量12-48sccm,真空度3.5-4.2pa,基体偏压-60至-80V,TiSi靶电流为140-160A,沉积时间20-25min,得到C含量逐渐增加的TiSiCN梯度层;
(8)关闭N2,C2H2气体,通入200sccm的Ar,真空度0.5-0.8pa,基体偏压为-300V至-350V,Ti靶通入120A电流,挡板置于Ti靶与基体之间,防止Ti靶出来的粒子之间沉积到基体表面,轰击制备完成的涂层表面15-20min,得到内应力低,表面光滑的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层。
结合力实验:
采用压痕法测试涂层与基体的结合力,仪器为洛式硬度计(型号:HRS-150),在样品表面随机选取3个点,测试涂层的结合力,如图2所示。注:该压痕法是由德国工业技术协会提出,根据压痕边缘形貌判别涂层结合力好坏的方法,其标准号为VDI-31981992,涂层的结合力等级由好到坏依次为HF1~HF6。HF1~HF4表示有足够的结合强度,而HF5~HF6表示结合力强度不够。
硬度实验:
C掺杂TiAlSiN涂层由于C元素的引入形成了固溶强化,涂层的硬度从TiAlSiN涂层的40.14Gpa提升到49.37Gpa。
切削性能实验:
C掺杂TiAlSiN涂层由于C元素的引入增加了涂层表面的化学惰性,在切削不锈钢、高温合金时具有良好的抗粘性。此外,硬度的提升使其具有良好的耐磨性,在切削HRC45~65度的淬硬钢时也就有优异的切削性能和使用寿命。C掺杂TiAlSiN涂层在切削不锈钢、高温合金等材料时使用寿命对比TiAlSiN涂层提高了30%以上,切削出来的工件表面质量也优于TiAlSiN涂层。
实施例2
本发明的实施例公开了一种C掺杂TiAlSiN涂层的制备方法,包括以下步骤:
(1)预处理完成的基体放入真空腔体中加热到450℃保温20min,使基体心部和表面受热均匀,所述基体可以为硬质合金,如钨钴类、钨钛钴类等;
(2)0.5Pa真空度,基体偏压-800V,通入200sccm的Ar,Ti、AlTi以及TiSi靶在120A电流下按照顺序对着挡板各自清洁4-8min,去除靶材表面的杂质;
(3)自清洁完成的Ti靶接通120A电流,通入200sccm的Ar,真空度0.5pa在-650至-750V偏压下刻蚀基体6-7min,去除基体表面氧化皮和达到表面活化的效果,同时Ti与基体之间形成混合层,增强涂层与基体之间的机械咬合强度和键合概率;
(4)制备梯度TiN层。保持温度420℃,关闭氩气,通入200sccm的N2,真空度0.8-1.2pa,基体偏压为-150至-180V,Ti靶电流为180-200A,沉积15-20min,得到氮元素含量逐渐增加的TiN梯度层;
(5)制备梯度TiAlN层。温度420℃,N2流量160-200sccm,真空度0.8-1.2pa,基体偏压-100至-120V,Ti靶电流为140-180A,AlTi靶电流为120-180A,沉积时间60-75min,得到AlN相完全析出而且硬度逐渐增加的TiAlN梯度层;
(6)制备梯度TiAlSiN层。温度420℃,N2流量160-200sccm,真空度1.8-3.5pa,基体偏压-60至-100V,AlTi靶电流为120-180A,TiSi靶电流为160-180A,沉积时间45-50min,得到Si含量逐渐增加,SiNx非晶包裹微晶的纳米复合结构;
(7)制备梯度C掺杂层。温度420℃,N2流量160-200sccm,C2H2流量12-48sccm,真空度3.5-4.2pa,基体偏压-60至-80V,TiSi靶电流为140-160A,沉积时间20-25min,得到C含量逐渐增加的TiSiCN梯度层;
(8)关闭N2,C2H2气体,通入200sccm的Ar,真空度0.5-0.8pa,基体偏压为-300V至-350V,Ti靶通入120A电流,挡板置于Ti靶与基体之间,防止Ti靶出来的粒子之间沉积到基体表面,轰击制备完成的涂层表面15-20min,得到内应力低,表面光滑的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (8)

1.一种C掺杂TiAlSiN涂层的制备方法,其特征在于,依次包括Ti、TiN、TiAlN、TiAlSiN和TiSiCN梯度复合涂层,其中,所述的TiSiCN层的制备方法包括以下步骤:
(1)温度420℃,N2流量160-200sccm,C2H2流量12-48sccm,真空度3.5-4.2pa,基体偏压-60至-80V,TiSi靶电流为140-160A,沉积时间20-25min,得到C含量逐渐增加的TiSiCN梯度层。
2.根据权利要求1所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,所述的TiSiCN层的制备方法还包括:关闭N2和C2H2气体,通入200sccm的Ar,真空度0.5-0.8pa,基体偏压为-300V至-350V,Ti靶通入120A电流,挡板置于Ti靶与基体之间,防止Ti靶出来的粒子之间沉积到基体表面,轰击制备完成的涂层表面15-20min,得到内应力低,表面光滑的Ti/TiN/TiAlN/TiAlSiN/TiSiCN梯度复合涂层。
3.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,所述的Ti层的制备方法为:Ti靶接通120A电流,通入200sccm的Ar,真空度0.5pa在-650至-750V偏压下刻蚀基体6-7min,去除基体表面氧化皮和达到表面活化的效果,同时Ti与基体之间形成混合层,增强涂层与基体之间的机械咬合强度和键合概率。
4.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,所述的TiN的制备方法为:保持温度420℃,关闭氩气,通入200sccm的N2,真空度0.8-1.2pa,基体偏压为-150-180V,Ti靶电流为180-200A,沉积15-20min,得到氮元素含量逐渐增加的TiN梯度层。
5.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,所述的TiAlN的制备方法为:温度420℃,N2流量160-200sccm,真空度0.8-1.2pa,基体偏压-100至-120V,Ti靶电流为140-180A,AlTi靶电流为120-180A,沉积时间60-75min,得到AlN相完全析出而且硬度逐渐增加的TiAlN梯度层。
6.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,所述的TiAlSiN的制备方法为:温度420℃,N2流量160-200sccm,真空度1.8-3.5pa,基体偏压-60至-100V,AlTi靶电流为120-180A,TiSi靶电流为160-180A,沉积时间45-50min,得到Si含量逐渐增加,SiNx非晶包裹微晶的纳米复合结构。
7.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,还包括先将基体放入真空腔体中加热至450-500℃,保温20-30min,使基体受热均匀。
8.根据权利要求2所述的C掺杂TiAlSiN涂层的制备方法,其特征在于,还包括先在电流120A,真空度0.5Pa,基体偏压-800V下,通入200sccm的Ar,分别按顺序将Ti、AlTi以及TiSi靶对着挡板清洁4-8min,去除靶材表面的杂质。
CN202011642922.4A 2020-12-30 2020-12-30 一种C掺杂TiAlSiN涂层的制备方法 Pending CN112853282A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011642922.4A CN112853282A (zh) 2020-12-30 2020-12-30 一种C掺杂TiAlSiN涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011642922.4A CN112853282A (zh) 2020-12-30 2020-12-30 一种C掺杂TiAlSiN涂层的制备方法

Publications (1)

Publication Number Publication Date
CN112853282A true CN112853282A (zh) 2021-05-28

Family

ID=76000790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011642922.4A Pending CN112853282A (zh) 2020-12-30 2020-12-30 一种C掺杂TiAlSiN涂层的制备方法

Country Status (1)

Country Link
CN (1) CN112853282A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529016A (zh) * 2021-09-16 2021-10-22 山东天瑞重工有限公司 TiSiCN纳米涂层及其制备方法以及活塞

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435071A (zh) * 2008-10-15 2009-05-20 西安交通大学 耐磨损和抗氧化TiAlSiCN薄膜的制备方法
US20120052276A1 (en) * 2010-08-30 2012-03-01 Hon Hai Precision Industry Co., Ltd. Coating, article coated with coating, and method for manufacturing article
CN104087898A (zh) * 2014-07-18 2014-10-08 上海理工大学 一种具有超高硬度、低摩擦系数的TiSiCN纳米复合涂层及制备方法
CN104870691A (zh) * 2012-12-21 2015-08-26 埃克森美孚研究工程公司 制备具有低摩擦涂层以减少泥包和摩擦的钻具的方法
CN104862652A (zh) * 2015-05-11 2015-08-26 上海应用技术学院 一种TiAlSiN超硬梯度涂层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435071A (zh) * 2008-10-15 2009-05-20 西安交通大学 耐磨损和抗氧化TiAlSiCN薄膜的制备方法
US20120052276A1 (en) * 2010-08-30 2012-03-01 Hon Hai Precision Industry Co., Ltd. Coating, article coated with coating, and method for manufacturing article
CN104870691A (zh) * 2012-12-21 2015-08-26 埃克森美孚研究工程公司 制备具有低摩擦涂层以减少泥包和摩擦的钻具的方法
CN104087898A (zh) * 2014-07-18 2014-10-08 上海理工大学 一种具有超高硬度、低摩擦系数的TiSiCN纳米复合涂层及制备方法
CN104862652A (zh) * 2015-05-11 2015-08-26 上海应用技术学院 一种TiAlSiN超硬梯度涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢新明等: "TiSi(CN)系列涂层的结构和性能研究进展", 《表面技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529016A (zh) * 2021-09-16 2021-10-22 山东天瑞重工有限公司 TiSiCN纳米涂层及其制备方法以及活塞

Similar Documents

Publication Publication Date Title
EP2017366B1 (en) A method for the manufacture of a hard material coating on a metal substrate and a coated substrate
CN103160783B (zh) 一种TiCuN纳米复合涂层及其制备方法
JPH07310173A (ja) 密着性に優れた硬質皮膜被覆工具および硬質皮膜被覆部材
CN110373639B (zh) 切削工具复合涂层及其制备方法
CN108165925B (zh) 一种低负偏压高能Ar+刻蚀清洗改善AlTiSiN涂层性能的方法
CN102321873A (zh) 一种TiAlN涂层硬质合金刀片
CN110042350B (zh) 一种多层纳米复合刀具涂层及其制作方法
CN107058948A (zh) 一种软硬复合涂层刀具及其制备方法
CN112853282A (zh) 一种C掺杂TiAlSiN涂层的制备方法
JP2004043837A (ja) 機械部品及びその製造方法並びに電気機械製品
CN108977775B (zh) 一种TiAlSiN涂层刀具制备工艺
CN112708852B (zh) 一种原位高能Ar+刻蚀后处理改善AlCrN涂层刀具性能的方法
CN114231901A (zh) 一种CrAlSiN梯度复合涂层及其制备方法
CN106868450A (zh) 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法
CN112853281B (zh) 碳基多层薄膜及其制备方法和应用
CN114196912A (zh) 一种周期性多层纳米结构氮化物硬质涂层带锯条及其制备方法和应用
JP2001001202A (ja) 被覆工具
EP1226030A1 (en) Forming members for shaping a reactive metal and methods for their fabrication
CN108179393A (zh) 一种CrAlSiCON纳米复合涂层及其制备方法
US11338370B2 (en) Cutting tool and method for manufacturing the same
CN106756821A (zh) 一种Ti‑Ag‑N纳米复合涂层及其制备方法
CN109898056B (zh) 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用
GB2385062A (en) Method of Applying Hard Coatings
JP2017031445A (ja) サーメットおよび切削工具
CN203144507U (zh) 一种TiCuN纳米复合涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528