CN112844366B - 抗多重中毒的nh3-scr催化剂及其制备方法 - Google Patents
抗多重中毒的nh3-scr催化剂及其制备方法 Download PDFInfo
- Publication number
- CN112844366B CN112844366B CN202110035486.2A CN202110035486A CN112844366B CN 112844366 B CN112844366 B CN 112844366B CN 202110035486 A CN202110035486 A CN 202110035486A CN 112844366 B CN112844366 B CN 112844366B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- tio
- ammonium metavanadate
- poisoning
- ethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 168
- 231100000572 poisoning Toxicity 0.000 title claims abstract description 53
- 230000000607 poisoning effect Effects 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 116
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims abstract description 96
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 54
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 238000010531 catalytic reduction reaction Methods 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 17
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 72
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 54
- 238000006243 chemical reaction Methods 0.000 claims description 53
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 35
- 239000011259 mixed solution Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 25
- 238000003756 stirring Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 20
- 239000012266 salt solution Substances 0.000 claims description 19
- 235000006408 oxalic acid Nutrition 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 18
- 229910052684 Cerium Inorganic materials 0.000 claims description 15
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000011068 loading method Methods 0.000 claims description 15
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 claims description 14
- 238000001354 calcination Methods 0.000 claims description 11
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 abstract description 28
- 239000000203 mixture Substances 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006555 catalytic reaction Methods 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract description 5
- 229910021529 ammonia Inorganic materials 0.000 abstract description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003546 flue gas Substances 0.000 abstract description 3
- 230000001276 controlling effect Effects 0.000 abstract 1
- 208000005374 Poisoning Diseases 0.000 description 55
- 238000012360 testing method Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 22
- 238000001035 drying Methods 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000002243 precursor Substances 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 208000005156 Dehydration Diseases 0.000 description 8
- 230000018044 dehydration Effects 0.000 description 8
- 238000006297 dehydration reaction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 238000002390 rotary evaporation Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 206010027439 Metal poisoning Diseases 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000003804 effect on potassium Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 1
- 208000010501 heavy metal poisoning Diseases 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8472—Vanadium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
本发明公开了一种多重中毒的NH3‑SCR催化剂及其制备方法,涉及一种聚合态可控且具有良好抗多重中毒性能的用于低温氨选择性催化还原氮氧化物的催化剂及其应用,属于烟气脱硝催化技术领域。该催化剂组成为xM/TiO2,其中x为活性金属元素占该催化剂的质量百分数,M为活性组分,载体为锐钛矿相的二氧化钛。所述质量百分数x的取值范围为1‑20.0%,活性组分负载于二氧化钛载体上,作为活性位点。通过三乙胺调控活性组分的聚合状态以得到具有良好脱硝性能和抗多重中毒能力的NH3‑SCR催化剂。本发明利用一种简单的制备方法,制备出聚合态可控、优异的低温活性、高的抗多重中毒性能的催化剂,可大范围应用于低温选择性催化还原氮氧化物领域。
Description
技术领域
本发明涉及大气污染控制技术领域,主要应用于烟气中氮氧化物的治理及氨选择性催化还原技术领域,具体涉及一种新型调控催化剂聚合态用于抗多重中毒的NH3-SCR催化剂的制备方法和应用。
背景技术
氮氧化物(NOx)是主要的大气污染物之一,会引起酸雨、光化学烟雾、低空臭氧、雾霾等影响生态环境和危害人体健康等环境问题。近年来,国家对燃煤电厂及移动源NOx排放控制标准愈发严格,但我国NOx排放量仍居高不下,其有效治理是打赢蓝天保卫战的重中之重。
在现有的氮氧化物排放控制技术中,氨选择性催化还原氮氧化物(NH3-SCR)生成环境友好的氮气和水,是已取得明显效果的氮氧化物净化技术,并获得了广泛的应用,其中催化剂是该技术的核心。商业上广泛使用的负载型V2O5-WO3(MoO3)/TiO2催化剂在300-400℃具有近90%的氮氧化物转化效率,并具有一定的抗水、抗二氧化硫中毒的能力,但是在较高温度下其氮气选择性显著下降,且五氧化二钒具有较强的生物毒性。与此同时,非电行业如钢铁、水泥等排放的烟气成分十分复杂,含有碱金属、重金属等催化剂毒物,易导致催化剂中毒失活。因此,为了进一步实现非电行业的氮氧化物减排,迫切需要开发新型的抗多重中毒氮氧化物净化催化剂。
近年来,为得到具有优异抗中毒能力的NH3-SCR催化剂,研究大多集中在对催化剂进行载体优化、元素掺杂、形貌调控等方面,从而增多表面酸性位点或提升其氧化还原能力。然而,这些方法虽然在一定程度上提升了活性物种的抗中毒能力,提高了NH3-SCR性能,但是仍旧存在催化剂组分复杂、试剂浪费、成本高等问题,尤其是仅能对单一中毒组分起到抵抗作用。如中国专利申请CN103097006A公开一种Cu/丝光沸石催化剂,相比于商业V-W/Ti催化剂对碱中毒表现出高抗性;中国专利申请CN110548521A中也公开了一种用于低温NH3-SCR的Fe-Mn/CexAl1-x催化剂,其具有优异的中低温活性、良好的抗水抗硫性能,但两者有关抗碱金属、重金属及二氧化硫等多重中毒因子的性能未知。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种抗多重中毒的NH3-SCR催化剂及其制备方法,尤其是通过调控活性物种聚合状态使其具有良好氧化还原性能和酸性,从而具有优异低温活性和抗中毒能力。本发明利用一种简单的制备方法,制备出聚合态可控、高低温活性、优异的抗多重中毒性能催化剂,可大范围应用于低温选择性催化还原氮氧化物领域。本发明提出了一种新型的通过调控催化剂活性物种聚合态用于抗多重中毒NH3-SCR催化剂的制备方法及其在脱硝领域的应用。
为达到上述发明创造目的,本发明采用如下技术方案:
一种抗多重中毒的NH3-SCR催化剂,其组成的化学式为xM/TiO2,其中M为活性组分,x为活性组分中的活性金属元素占所述催化剂的质量百分数,载体为锐钛矿二氧化钛;所述质量百分数x的取值范围为1-20.0%,活性组分负载于二氧化钛载体上,作为活性位点。
优选地,M为活性金属氧化物或金属酸盐,M为CeO2、CeVO4、Fe2O3、FeVO4、CuO、 MnO2中任意一种或几种的混合物。
优选地,抗多重中毒的NH3-SCR催化剂为V/TiO2复合催化剂。进一步优选地,抗多重中毒的NH3-SCR催化剂为Ce-V/TiO2、Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2复合催化剂。
一种本发明抗多重中毒的NH3-SCR催化剂的制备方法,采用偏钒酸铵和前驱体材料制备 V/TiO2复合催化剂,包括如下步骤:
a.按照xM/TiO2的元素化学计量比,对反应过程中所需用到的所有前驱体盐放入真空烘箱中,预先进行脱水处理,并将前驱体盐溶于乙醇,制成金属盐溶液;
b.按照化学计量比,取一定量的草酸、偏钒酸铵和乙醇进行混合、搅拌,待完全溶解后,加入三乙胺(TEA),按照偏钒酸铵和三乙胺的摩尔比为1:1-1:50的比例加入,得到混合溶液;
c.按照xM/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,加入在所述步骤c中得到的产物溶液,反应至少12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2-5℃/min的升温速率升至不低于450℃焙烧至少5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
优选地,在所述步骤a中,脱水处理的温度不低于70℃。
优选地,在所述步骤b中,草酸及偏钒酸铵混合溶液的化学计量比为2:1-5:1。
优选地,在所述步骤b中,溶解过程的温度不低于80℃。
优选地,在所述步骤d中,所述金属盐溶液为含有活性金属元素M的前驱体盐的乙醇溶液。
优选地,在所述步骤d中,偏钒酸铵和活性金属元素M的摩尔比为1:1-1:5。
优选地,在所述步骤e中,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中活性金属元素占总体催化剂的质量百分数为1-20.0%。
优选地,通过调控催化剂活性物种聚合态,将所制备的催化剂用于抗多重中毒的NH3-SCR 催化剂。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明催化剂是一种聚合态可控的用于低温选择性催化还原氮氧化物的催化剂,其中 Ce-V/TiO2催化剂大幅提高了NH3-SCR对NOx的转化效率,且对K、Pb及SO2等具有良好的抗中毒性能;
2.本发明催化剂有较宽的温度窗口,在210-450℃转化率可达90%以上,具有较高的低温活性、高N2选择性和稳定性等优点;
3.本发明催化剂选用普通的金属铈、铁、铜等氧化物或金属酸盐作为活性组分,制备方法简单,快速,成本低廉,可批量生产,可广泛应用于氨的选择性催化还原氮氧化物领域;本发明方法简单易行,成本低,适合推广使用。
附图说明
图1是本发明实施例1所制备的Ce-V/TiO2催化剂及其K中毒样的NO转化率随温度变化曲线图。
图2是本发明实施例2所制备的K-Ce-V/TiO2催化剂在一定温度下,在100ppm SO2气氛下的NO转化率随时间变化曲线图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例1:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,包括如下步骤:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的KNO3溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到K中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,K中毒样中K2O的质量分数为1%。
进行催化剂性能测试:取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60 目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在 250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%, N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O进行检测。在该测试条件下,催化剂脱硝效率如图1所示,在210-450℃转化率可稳定在90%以上。在1%K中毒后,催化剂脱硝性能在240-400℃范围内仍能达到90%以上,证明该催化剂有较强的抗碱金属中毒能力。
实施例2
本实施例与实施例1基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,其步骤如下:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的KNO3溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到K中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,K中毒样中K2O的质量分数为1%。
进行催化剂性能测试:取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60 目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在 250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%, N2作为平衡气,SO2浓度为100ppm(抗硫性能测试时),反应温度为280℃。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O进行检测。在该测试条件下,催化剂抗硫脱硝效率如图2所示,在280℃,100ppm SO2条件下,NO转化率在通硫后仍可稳定在100%左右,且断硫后活性没有影响,证明该催化剂有较强的抗多重中毒能力。
实施例3
本实施例与上述实施例基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,其步骤如下:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备Pb中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的Pb(NO3)2溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到Pb中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,Pb中毒样中PbO的质量分数为3%。
进行催化剂性能测试:
取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%,N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O 进行检测。在该测试条件下,3%PbO中毒后,催化剂脱硝性能在210-450℃范围内仍能达到 90%以上,证明该催化剂有较强的抗重金属中毒能力。
实施例4
本实施例与上述实施例基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,其步骤如下:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K和Pb多重中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的Pb(NO3)2和KNO3溶于适量去离子水,加入一定量本实施例催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到Pb中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为10wt%,K中毒样中K2O的质量分数为1%,Pb中毒样中PbO的质量分数为3%。
进行催化剂性能测试:
取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%,N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O 进行检测。在该测试条件下,1%K2O&3%PbO中毒后,催化剂脱硝性能仍能达到90%,证明该催化剂有较强的抗多重中毒因子中毒能力。
实施例5(新增实施例,对铈元素的负载量为20wt%的保护范围端点值进行举例佐证)
本实施例与上述实施例基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为20wt%,其步骤如下:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为5:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:50的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:2,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的KNO3溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到K中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为20wt%,K中毒样中K2O的质量分数为1%。
进行催化剂性能测试:取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60 目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在 250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%, N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O进行检测。在该测试条件下,在240-450℃转化率可稳定在90%以上。在 1%K中毒后,催化剂脱硝性能在280-400℃范围内仍能达到90%以上,证明该催化剂有较强的抗碱金属中毒能力。
本实施例Ce-V/TiO2催化剂大幅提高了NH3-SCR对NOx的转化效率,且对K、Pb及SO2等具有良好的抗中毒性能。
实施例6
本实施例与上述实施例基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Ce-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为1wt%,其步骤如下:
a.按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:10的比例加入三乙胺(TEA),得到混合溶液;
c.按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K中毒的Ce-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的KNO3溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到K中毒的Ce-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铈元素的负载量为1wt%,K中毒样中K2O的质量分数为1%。
进行催化剂性能测试:取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60 目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在 250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%, N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O进行检测。在该测试条件下,在250-450℃转化率可稳定在90%以上。在 1%K中毒后,催化剂脱硝性能在270-400℃范围内仍能达到90%以上,证明该催化剂有较强的抗碱金属中毒能力。
本实施例Ce-V/TiO2催化剂大幅提高了NH3-SCR对NOx的转化效率,且对K、Pb及SO2等具有良好的抗中毒性能。
实施例7
本实施例与上述实施例基本相同,特别之处在于:
在本实施例中,一种抗多重中毒的Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2催化剂的制备方法,采用偏钒酸铵和前驱体材料制备V/TiO2复合催化剂,所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中铁、铜或锰元素的负载量分别为10wt%、20wt%和1wt%,其步骤如下:
a.按照Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2的元素化学计量比,对反应过程中所需用到的硝酸铁、硝酸铜或硝酸锰和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将金属盐溶于乙醇,制成金属盐溶液;
b.按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺(TEA),得到混合溶液;
c.按照Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d.按照xM/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e.将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
实验测试分析:
制备K中毒的Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2催化剂及其催化剂试样,采用如下方法步骤:
取一定量的KNO3溶于适量去离子水,加入一定量的本实施例方法制备的催化剂搅拌均匀后,于50-60℃下旋蒸干燥,烘干后于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到K中毒的Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2催化剂及其催化剂试样。
本实施例所制备的聚合态可控的用于低温选择性催化还原氮氧化物的催化剂中活性金属元素的负载量为10wt%,K中毒样中K2O的质量分数为1%。
进行催化剂性能测试:取一定量本实施例催化剂压片,进行过筛后得到颗粒大小为40-60 目的催化剂样品,放入固定床石英管反应器,内径为7mm,反应中所有气体总流量控制在 250mL/min左右,反应空速为50000h-1,具体测试条件为:[NO]=[NH3]=500ppm,O2:5vol.%, N2作为平衡气。利用美国Antaris IGS公司的Thermo Fisher Scientific分析仪对进出口反应气NOx、NH3、N2O进行检测。在该测试条件下,所有样品在较宽温窗范围内转化率可稳定在90%以上。在1%K中毒后,催化剂脱硝性能仍能达到90%以上,证明该催化剂有较强的抗碱金属中毒能力。
本实施例Fe-V/TiO2、Cu-V/TiO2或Mn-V/TiO2催化剂大幅提高了NH3-SCR对NOx的转化效率,且对K、Pb及SO2等具有良好的抗中毒性能。
综上所述,上述实施例通过三乙胺(TEA)调控活性组分的聚合状态以得到具有良好脱硝性能和抗多重中毒能力的SCR催化剂。在较高的体积空速下(50000h-1),[NO]=[NH3]=500 ppm,O2:5vol.%,N2作为平衡气条件下,一定温窗范围内NO转化率能够保持在90%以上且N2选择性较高,并具有优异的抗碱金属、重金属以及二氧化硫中毒的能力。上述实施例通过三乙胺(TEA)调控活性组分的聚合状态以得到具有良好脱硝性能和抗多重中毒能力的NH3-SCR催化剂,上述实施例利用一种简单的制备方法,制备出聚合态可控、优异的低温活性、高的抗多重中毒性能的催化剂,可大范围应用于低温选择性催化还原氮氧化物领域。上述实施例通过三乙胺调控活性组分的聚合状态以得到具有良好脱硝性能和抗多重中毒能力的 NH3-SCR催化剂。本发明利用一种简单的制备方法,制备出聚合态可控、优异的低温活性、高的抗多重中毒性能的催化剂,可大范围应用于低温选择性催化还原氮氧化物领域。
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。
Claims (1)
1.一种抗多重中毒的NH3-SCR催化剂的制备方法,其特征在于:所制备的催化剂中铈元素的负载量为10wt%;所述NH3-SCR催化剂的制备方法包括如下步骤:
a. 按照Ce-V/TiO2的元素化学计量比,对反应过程中所需用到的六水合硝酸铈和二水合草酸放入真空烘箱中,在70℃下,预先进行脱水处理,并将六水合硝酸铈溶于乙醇,制成金属盐溶液;
b. 按照草酸及偏钒酸铵混合溶液为2:1的化学计量比,取草酸、偏钒酸铵和乙醇,在80℃下进行混合、搅拌,待完全溶解后,按照偏钒酸铵和三乙胺的摩尔比为1:30的比例加入三乙胺,得到混合溶液;
c. 按照Ce-V/TiO2的元素化学计量比,称取一定质量的二氧化钛载体分散在乙醇中,超声分散5-10分钟,加入在所述步骤b中制备的混合溶液,在搅拌条件下,反应2-3h,得到产物溶液;
d. 按照Ce-V/TiO2的元素化学计量比,取一定量的在所述步骤a中制备的金属盐溶液,偏钒酸铵和活性金属元素的摩尔比为1:1,加入在所述步骤c中得到的产物溶液,反应12h,待反应完成后,移除剩余液体,利用乙醇离心洗涤3-5次后,将收集的固体物质放置于60-80℃的烘箱中烘干,得到固体粉末;
e. 将在所述步骤d中烘干后得到的固体粉末于空气气氛下煅烧,以2℃/min的升温速率升至450℃焙烧5小时,得到聚合态可控的用于低温选择性催化还原氮氧化物的NH3-SCR催化剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110035486.2A CN112844366B (zh) | 2021-01-12 | 2021-01-12 | 抗多重中毒的nh3-scr催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110035486.2A CN112844366B (zh) | 2021-01-12 | 2021-01-12 | 抗多重中毒的nh3-scr催化剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112844366A CN112844366A (zh) | 2021-05-28 |
CN112844366B true CN112844366B (zh) | 2023-02-10 |
Family
ID=76002812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110035486.2A Active CN112844366B (zh) | 2021-01-12 | 2021-01-12 | 抗多重中毒的nh3-scr催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112844366B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113578333B (zh) * | 2021-07-30 | 2022-10-25 | 西安交通大学 | 一种低温脱硝催化剂及其制备方法和应用 |
CN113786841B (zh) * | 2021-09-17 | 2023-11-21 | 重庆科技学院 | 一种抗铅中毒的Fe-Mn-Ce/含钛高炉渣脱硝催化剂 |
CN114632550B (zh) * | 2022-04-11 | 2024-02-09 | 苏州西热节能环保技术有限公司 | 一种mof衍化载体及其制备方法和应用 |
CN116272956B (zh) * | 2023-02-06 | 2024-10-15 | 大唐南京环保科技有限责任公司 | 一种抗铅中毒平板式脱硝催化剂及其制备方法 |
CN116550392A (zh) * | 2023-04-28 | 2023-08-08 | 中国科学院兰州化学物理研究所 | 一种失活脱硝催化剂的再生方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1295598C (en) * | 1986-07-29 | 1992-02-11 | Makoto Imanari | Process for removing nitrogen oxides from exhaust gases |
CN101773837A (zh) * | 2010-02-04 | 2010-07-14 | 环境保护部华南环境科学研究所 | 中低温烟气的负载型scr脱硝催化剂及制备方法和应用 |
CN109225203B (zh) * | 2018-09-30 | 2019-12-17 | 中自环保科技股份有限公司 | 一种钒基氧化物scr催化剂制备方法及其制备的催化剂 |
CN110124661B (zh) * | 2019-04-26 | 2022-03-29 | 昆明贵研催化剂有限责任公司 | 一种室温制备钒基scr催化剂的方法 |
-
2021
- 2021-01-12 CN CN202110035486.2A patent/CN112844366B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112844366A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112844366B (zh) | 抗多重中毒的nh3-scr催化剂及其制备方法 | |
CN101920213B (zh) | 以金属有机框架物为载体的低温scr脱硝催化剂及其制备方法 | |
CN106975492A (zh) | 一种抑制so2氧化的脱硝催化剂及其制备方法和应用 | |
CN101396656A (zh) | 一种抗so3中毒的电厂烟气scr脱硝催化剂及制备方法 | |
CN106582606B (zh) | 一种非钒系低温脱硝催化剂及其制备方法 | |
CN113413904B (zh) | 一种g-C3N4负载型锰铈复合氧化物低温NH3-SCR催化剂及其制备方法与应用 | |
CN106492791A (zh) | 一种中低温脱硝催化剂及其制备方法 | |
CN110773153B (zh) | 一种担载型锰基中低温脱硝催化剂、制备方法及其应用 | |
CN111992203A (zh) | 一种nh3-scr低温脱硝催化剂及其制备方法与应用 | |
CN107262086A (zh) | 用于低温烟气促进硫酸氢铵分解的scr脱硝催化剂、制备方法及应用 | |
MXPA06005460A (es) | Catalizador para gas de escape. | |
CN111203208B (zh) | 一种促abs分解的低温钒钛基scr脱硝催化剂及其制备方法 | |
CN114308088B (zh) | 一种协同转化氮氧化物与含氯挥发性有机物的酸位点分离催化剂、其制备方法及其应用 | |
CN109351358A (zh) | 一种过渡金属氧化物复合催化剂及其制备方法和用途 | |
CN111530475B (zh) | 一种稀土基中低温脱硝催化剂粉体及其制备方法 | |
CN105413715A (zh) | 低温烟气脱硝用复合载体负载型酸化锰钴铈的耐硫催化剂及其制备方法 | |
CN107308944A (zh) | 一种二氧化钛基催化剂及其制备方法和应用 | |
CN103706390B (zh) | 一种用于催化氧化no的钛基载体负载钒磷氧化物催化剂及其制备方法 | |
CN114832829A (zh) | 一种燃气尾气高温脱硝催化剂及其制备方法 | |
CN106984349B (zh) | 一种焦炉烟气脱硝催化剂及其制备方法 | |
CN105727965B (zh) | 一种用于烟气脱硝的铜锆铈钛复合氧化物催化剂及其制法 | |
CN110548521B (zh) | 一种高性能的低温nh3-scr催化剂及其制法和用途 | |
CN108236943A (zh) | 一种钒基氧化物催化剂的制备方法 | |
CN112844365A (zh) | 具有高抗中毒性的非金属掺杂金属氧化物脱硝催化剂、其制备方法和应用 | |
CN114471532B (zh) | 一种谷花状钐锰复合氧化物脱硝催化剂的制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |