CN112811891A - 一种尖晶石相高熵热敏电阻材料及其制备方法 - Google Patents

一种尖晶石相高熵热敏电阻材料及其制备方法 Download PDF

Info

Publication number
CN112811891A
CN112811891A CN202011570214.4A CN202011570214A CN112811891A CN 112811891 A CN112811891 A CN 112811891A CN 202011570214 A CN202011570214 A CN 202011570214A CN 112811891 A CN112811891 A CN 112811891A
Authority
CN
China
Prior art keywords
entropy
thermistor
fuel
powder
spinel phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011570214.4A
Other languages
English (en)
Other versions
CN112811891B (zh
Inventor
高家兴
向凤云
唐光明
魏小明
张忠模
徐丽艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Materials Research Institute Co Ltd
Original Assignee
Chongqing Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Materials Research Institute Co Ltd filed Critical Chongqing Materials Research Institute Co Ltd
Priority to CN202011570214.4A priority Critical patent/CN112811891B/zh
Publication of CN112811891A publication Critical patent/CN112811891A/zh
Application granted granted Critical
Publication of CN112811891B publication Critical patent/CN112811891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种尖晶石相高熵热敏电阻材料及其制备方法,其中高熵热敏电阻材料的化学式为(Cox1Fex2Mgx3Mnx4Nix5)Al2O4,所述高熵热敏材料为单一尖晶石相结构。本发明所述材料具有高熵陶瓷的迟滞扩散效应,组织结构在高温下具有很高的稳定性,可提高热敏电阻抗老化性能。

Description

一种尖晶石相高熵热敏电阻材料及其制备方法
技术领域
本发明涉及一种材料,特别涉及一种尖晶石相高熵热敏电阻材料及其制备方法。
背景技术
热敏电阻是温度传感器领域中的重要元件,具有测温精度高,成本低,体积小等优点,在温度测量,温度控制,抑制浪涌电流等方面具有广泛的应用。
NTC热敏电阻一般采用具有尖晶石结构的过渡金属氧化物。早期NTC热敏电阻采用二主元设计,但二主元NTC热敏电阻工艺稳定性差,对烧结温度敏感。后来出现三主元、四主元热敏电阻,其性能较二主元热敏电阻有了较大提高。但热敏电阻的老化性能仍不能让人满意。热敏电阻的老化与热敏电阻在使用过程中的结构演变有关。目前一般认为NTC热敏电阻的导电既不是电子在导带中运动的结果,同时也不是空穴在价带中迁移所造成的,而是电子在能级之间直接转移、跃迁的结果,是电子从某一个原子跃迁到另一个相邻原子位置上的结果。因此阳离子的分布对热敏电阻的导电能力有影响。研究认为热敏电阻晶体内的阳离子导致晶格畸变,增大了晶格的弹性能,为消除或减少晶格内弹性能,阳离子倾向与定向、集束排列,在热敏电阻制备过程中,高温会打破这种定向、集束状态,并在冷却时将这种非平衡状态保留下来。但这种非平衡状态会在使用过程中向平衡态演变,这就导致阳离子分布发生变化,热敏电阻的阻值发生漂移。
高熵陶瓷由于具有动力学的迟滞扩散效应,如果将高熵陶瓷设计为热敏电阻,其阳离子的有效扩散速率会降低,阳离子的分布难以发生变化,高熵热敏电阻的老化性能相比普通热敏电阻将获得极大的提高。
发明内容
本发明的目的是提供一种尖晶石相高熵热敏电阻材料及其制备方法,所述材料具有高熵陶瓷的迟滞扩散效应,使其组织结构保持长期稳定,提高热敏电阻抗老化性能。
实现本发明的技术方案是:
高熵热敏电阻材料,该电阻材料的化学式为(Cox1Fex2Mgx3Mnx4Nix5)Al2O4,所述高熵热敏材料为单一尖晶石相结构。
所述电阻材料的化学式中的x1、x2、x3、x4、x5的值为0.05~0.35,并且x1+x2+x3+x4+x5=1。
上述高熵热敏电阻材料的制备方法,有以下步骤:
按上述配比取Co、Fe、Mg、Mn、Ni、Al的硝酸盐,按照(NO3)-1与燃料的摩尔比1:1称取燃料,加水溶解,混匀,得到硝酸盐和燃料的混合水溶液。
将混合水溶液置于300~500℃下反应0.5~1小时,得到陶瓷粉体。
以2~5℃/min的升温速率将陶瓷粉体加热到1000~1200℃,保温1~3小时得到高熵热敏电阻陶瓷粉体。
所述Co、Fe、Mg、Mn、Ni、Al的硝酸盐分别为Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mg(NO3)2·6H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Al(NO3)3·9H2O。
所述燃料为尿素、乙酸、柠檬酸、草酸、甘氨酸中的一种或几种。
本发明高熵热敏陶瓷是CoAl2O4、FeAl2O4、Mg Al2O4、MnAl2O4和NiAl2O4的固溶体,他们之间相互组合掺杂可形成多种常用热敏电阻,其中Mg2+是不易变价离子,不具有导电性,增加Mg的含量将会降低体系中导电离子的浓度,使材料电阻增加。而Fe2+/Fe3+离子是易变价离子,且电导激活能很低,可提高材料低温段电阻变化率,如需要提高在低温段的测温精度,可通过增加Fe含量实现。通过改变Co、Fe、Mg、Mn、Ni之间的比例即可改变固溶体中各组元的比例,其组分可调整范围大,在较大范围内通过改变元素配比调整材料的性能。高熵陶瓷具有迟滞扩散效应,迟滞扩散效应可以让高熵热敏电阻组织结构保持长期稳定,提高热敏电阻抗老化性能。本发明采用液相方法制备陶瓷粉体,原材料达到分子水平的分散,产物实现化学计量比,粉体粒子直径为纳米级,烧结活性高,利于低温烧结。
本发明所述高熵热敏陶瓷可用于热敏电阻、催化剂等。
附图说明
图1为实施例1的XRD图谱。
图2为本发明实施例1高熵热敏电阻粉体的SEM照片。
图3为本发明实施例1高熵热敏电阻粉体相应Mg元素的EDS图谱。
图4为本发明实施例1高熵热敏电阻粉体相应Mn元素的EDS图谱。
图5为本发明实施例1高熵热敏电阻粉体相应Fe元素的EDS图谱。
图6为本发明实施例1高熵热敏电阻粉体相应Co元素的EDS图谱。
图7为本发明实施例1高熵热敏电阻粉体相应Ni元素的EDS图谱。
图8为本发明实施例1高熵热敏电阻粉体相应Al元素的EDS图谱。
具体实施方式
本实施例所述的试剂均采用市售的分析纯试剂。
实施例1
称取:5.82g Co(NO3)2·6H2O、8.08g Fe(NO3)3·9H2O、5.13g Mg(NO3)2·6H2O、5.02g Mn(NO3)2·4H2O、5.82g Ni(NO3)2·6H2O、75.03g Al(NO3)3·9H2O、57.4g柠檬酸、加入去离子水200g配置成溶液,放入500℃马弗炉中反应1小时,收集反应生成的粉体放入氧化铝坩埚中以5℃每分的升温速率加热到1000℃,保温1小时得到(Co0.2Fe0.2Mg0.2Mn0.2Ni0.2)Al2O4粉体,其XRD图谱参见图1。该图谱表明,所制备高熵热敏电阻为纯尖晶石相,未含其它杂质相。图2~8为粉体的SEM照片和Mg、Mn、Fe、Co、Ni、Al的EDS图普,从图中可以看出,Mg、Mn、Fe、Co、Ni、Al等金属阳离子没有出现明显的偏析或富集。所制备的粉体为高熵陶瓷粉体。
实施例2
称取:2.91g Co(NO3)2·6H2O、12.12g Fe(NO3)3·9H2O、5.13g Mg(NO3)2·6H2O、5.02g Mn(NO3)2·4H2O、5.82g Ni(NO3)2·6H2O、75.03g Al(NO3)3·9H2O、58.1g柠檬酸,加入去离子水200g配置成溶液,放入500℃马弗炉中反应1小时,收集反应生成的粉体放入氧化铝坩埚中以5℃每分的升温速率加热到1000℃,保温1小时得到(Co0.1Fe0.3Mg0.2Mn0.2Ni0.2)Al2O4粉体。

Claims (6)

1.一种高熵热敏电阻材料,其特征在于:该电阻材料的化学式为(Cox1Fex2Mgx3Mnx4Nix5)Al2O4,所述高熵热敏材料为单一尖晶石相结构。
2.根据权利要求1所述的电阻材料,其特征在于:所述电阻材料的化学式中的x1、x2、x3、x4、x5的值为0.05~0.35,并且x1+x2+x3+x4+x5=1。
3.权利要求1所述高熵热敏电阻材料的制备方法,其特征在于,有以下步骤:
按权利要求1或2所述配比取Co、Fe、Mg、Mn、Ni、Al的硝酸盐,按照(NO3)-1与燃料的配比取燃料,加水溶解,混匀,得到硝酸盐和燃料的混合溶液,300~500℃下反应0.5~1小时,得到的粉体,以2~5℃/min的升温速率加热到1000~1200℃,保温1~3小时得到高熵热敏电阻材料粉体。
4.根据权利要求3所述的方法,其特征在于:所述Co、Fe、Mg、Mn、Ni、Al的硝酸盐分别为Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mg(NO3)2·6H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Al(NO3)3·9H2O。
5.根据权利要求3所述的方法,其特征在于:所述燃料为尿素、乙酸、柠檬酸、草酸、甘氨酸中的一种或几种。
6.根据权利要求3所述的方法,其特征在于:所述(NO3)-1与燃料的配比为(NO3)-1:燃料=1:1的摩尔比。
CN202011570214.4A 2020-12-26 2020-12-26 一种尖晶石相高熵热敏电阻材料及其制备方法 Active CN112811891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011570214.4A CN112811891B (zh) 2020-12-26 2020-12-26 一种尖晶石相高熵热敏电阻材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011570214.4A CN112811891B (zh) 2020-12-26 2020-12-26 一种尖晶石相高熵热敏电阻材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112811891A true CN112811891A (zh) 2021-05-18
CN112811891B CN112811891B (zh) 2022-08-02

Family

ID=75853963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011570214.4A Active CN112811891B (zh) 2020-12-26 2020-12-26 一种尖晶石相高熵热敏电阻材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112811891B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658808A (zh) * 2021-07-21 2021-11-16 太原理工大学 一种镁掺杂型钙钛矿结构高熵陶瓷电极材料及其在制备超级电容器中的应用
CN116283231A (zh) * 2023-01-30 2023-06-23 广东风华高新科技股份有限公司 一种ntc热敏电阻材料及其制备方法
CN117865650A (zh) * 2024-01-09 2024-04-12 肇庆市金龙宝电子有限公司 一种ntc材料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7408299A (zh) * 1973-06-20 1974-12-24
JPS54115799A (en) * 1978-03-01 1979-09-08 Hitachi Ltd Thermistor composition
JPH082962A (ja) * 1994-06-14 1996-01-09 Siemens Matsushita Components Gmbh & Co Kg 高安定性サーミスタ用焼結セラミックス及びその製造方法
JP2000040603A (ja) * 1998-07-24 2000-02-08 Matsushita Electric Ind Co Ltd 高温サーミスタ素子とその製造方法およびそれを用いた高温用温度センサ
DE19946196A1 (de) * 1999-09-27 2001-04-26 Epcos Ag Elektro-keramisches Bauelement und Verfahren zu seiner Herstellung
WO2004008466A1 (ja) * 2002-07-16 2004-01-22 Murata Manufacturing Co., Ltd. 負特性サーミスタの製造方法および負特性サーミスタ
CN1587208A (zh) * 2004-08-20 2005-03-02 中国科学院新疆理化技术研究所 大尺寸负温度系数热敏陶瓷的微波烧结工艺
CN102693795A (zh) * 2012-06-04 2012-09-26 句容市博远电子有限公司 负温度系数热敏电阻
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN103617851A (zh) * 2013-12-03 2014-03-05 中国科学院新疆理化技术研究所 一种改进的共沉淀法制备热敏电阻粉体材料的方法
IN2015DN01343A (zh) * 2012-09-25 2015-07-03 Nec Corp
CN110556536A (zh) * 2019-09-19 2019-12-10 安徽工业大学 用于锂离子电池的六元高熵氧化物材料及制备方法
CN110845237A (zh) * 2019-11-28 2020-02-28 太原理工大学 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN111217402A (zh) * 2020-03-10 2020-06-02 南昌航空大学 一种六元尖晶石型铁钴铬锰铜锌系高熵氧化物及其粉体制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7408299A (zh) * 1973-06-20 1974-12-24
US3962145A (en) * 1973-06-20 1976-06-08 Matsushita Electric Industrial Co., Ltd. High temperature thermistor composition
JPS54115799A (en) * 1978-03-01 1979-09-08 Hitachi Ltd Thermistor composition
JPH082962A (ja) * 1994-06-14 1996-01-09 Siemens Matsushita Components Gmbh & Co Kg 高安定性サーミスタ用焼結セラミックス及びその製造方法
JP2000040603A (ja) * 1998-07-24 2000-02-08 Matsushita Electric Ind Co Ltd 高温サーミスタ素子とその製造方法およびそれを用いた高温用温度センサ
DE19946196A1 (de) * 1999-09-27 2001-04-26 Epcos Ag Elektro-keramisches Bauelement und Verfahren zu seiner Herstellung
WO2004008466A1 (ja) * 2002-07-16 2004-01-22 Murata Manufacturing Co., Ltd. 負特性サーミスタの製造方法および負特性サーミスタ
CN1587208A (zh) * 2004-08-20 2005-03-02 中国科学院新疆理化技术研究所 大尺寸负温度系数热敏陶瓷的微波烧结工艺
CN102693795A (zh) * 2012-06-04 2012-09-26 句容市博远电子有限公司 负温度系数热敏电阻
IN2015DN01343A (zh) * 2012-09-25 2015-07-03 Nec Corp
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN103617851A (zh) * 2013-12-03 2014-03-05 中国科学院新疆理化技术研究所 一种改进的共沉淀法制备热敏电阻粉体材料的方法
CN110556536A (zh) * 2019-09-19 2019-12-10 安徽工业大学 用于锂离子电池的六元高熵氧化物材料及制备方法
CN110845237A (zh) * 2019-11-28 2020-02-28 太原理工大学 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN111217402A (zh) * 2020-03-10 2020-06-02 南昌航空大学 一种六元尖晶石型铁钴铬锰铜锌系高熵氧化物及其粉体制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AZER C ET AL.: "Preparation and characterization of cobalt aluminate spinels CoAl2O4 doped with magnesium oxide", 《ADSORPTION SCIENCE & TECHNOLOGY》, vol. 30, no. 5, 31 December 2012 (2012-12-31), pages 399 - 407 *
FRACCHIA, M ET AL.: "A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: Synthesis and cation distribution by X-ray absorption spectroscopy", 《SCRIPTA MATERIALIA》, 30 November 2020 (2020-11-30), pages 26 - 31 *
HAN, MEI ET AL.: "Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method", 《MATERIALS CHEMISTRY AND PHYSICS》, vol. 215, 31 December 2018 (2018-12-31), pages 251 *
KHAN, M ET AL.: "First principle studies of structural, elastic, electronic and magnetic properties of spinel XAl2O4 (X = Mg, Mn, Fe, Co, Cu, Ni, Zn) compounds", 《COMPUTATIONAL CONDENSED MATTER》, 31 December 2017 (2017-12-31), pages 72 - 76 *
ZHANG Y ET AL.: "High-entropy alloys with high saturation magnetization, electrical resistivity and malleability", 《SCIENTIFIC REPORTS》, vol. 3, no. 1, 31 December 2013 (2013-12-31), pages 1 - 7 *
李萍等: "CoCrFeNiTi (0.5) 高熵合金在 0.75% SO2 气氛中的腐蚀行为研究", 《稀有金属》, vol. 40, no. 6, 31 December 2016 (2016-12-31), pages 559 - 566 *
王剑星等: "热偶型敏电缆及其应用研究", 《传感器世界》, vol. 17, no. 9, 31 December 2011 (2011-12-31), pages 17 - 21 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658808A (zh) * 2021-07-21 2021-11-16 太原理工大学 一种镁掺杂型钙钛矿结构高熵陶瓷电极材料及其在制备超级电容器中的应用
CN113658808B (zh) * 2021-07-21 2023-02-03 太原理工大学 一种镁掺杂型钙钛矿结构高熵陶瓷电极材料及其在制备超级电容器中的应用
CN116283231A (zh) * 2023-01-30 2023-06-23 广东风华高新科技股份有限公司 一种ntc热敏电阻材料及其制备方法
CN117865650A (zh) * 2024-01-09 2024-04-12 肇庆市金龙宝电子有限公司 一种ntc材料及其制备方法

Also Published As

Publication number Publication date
CN112811891B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN112811891B (zh) 一种尖晶石相高熵热敏电阻材料及其制备方法
CN112624740B (zh) 一种高熵ntc热敏电阻陶瓷材料及其制备方法
CN110563462B (zh) B位六元高熵的新型钙钛矿型高熵氧化物材料及制备方法
CN110526706B (zh) 一种共晶高熵氧化物粉体材料及制备方法
CN107252689B (zh) 一种复合催化剂及其制备方法和应用
CN110451960B (zh) 一种钕掺杂的白钨矿结构负温度系数热敏电阻材料及其制备方法
CN101544493B (zh) 一种ntc电阻材料及制作方法
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
Ma et al. Preparation and characterization of single-phase NiMn 2 O 4 NTC ceramics by two-step sintering method
CN102173780B (zh) 一种稀土改性的压敏材料的制备方法
CN104557040A (zh) 一种高温热敏电阻材料及其制备方法
Jabry et al. Preparation of semiconducting ceramics (NTC thermistors) by chemical method
CN104692802B (zh) 一种三氧化二钇掺杂的宽温区热敏电阻材料及其制备方法
CN105777098B (zh) 铁氧体的制备方法、铁氧体和电感器
CN104987059A (zh) 一种基于氧化铜的新型ntc热敏电阻材料
CN112271048A (zh) 一种负温度系数热敏电阻厚膜浆料及其制备方法
CN101402522A (zh) 一种新型锡酸钡基导电陶瓷及其制备方法
CN112047722A (zh) 一种负温度系数玻封热敏电阻材料及其制备方法和应用
US20150137050A1 (en) Metal-oxide sintered body for temperature sensor, and method for manufacturing same
CN111574200A (zh) 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法
CN104310984A (zh) 一种热敏陶瓷材料及其制备方法
Xie et al. Effects of Zn-doping on the electrical properties of Zn x Fe 2.5− x Ni 2 Mn 1.5 O 8 (0≤ x≤ 0.8) NTC ceramics by co-precipitation method
Battault et al. Aging of iron manganite negative temperature coefficient thermistors
JP3331447B2 (ja) サーミスタ用磁器組成物の製造方法
CN109206135A (zh) 一种具有高温度系数的热敏陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant