CN111574200A - 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法 - Google Patents

适用于室温及低温温区的ntc热敏陶瓷材料及制备方法 Download PDF

Info

Publication number
CN111574200A
CN111574200A CN202010496863.8A CN202010496863A CN111574200A CN 111574200 A CN111574200 A CN 111574200A CN 202010496863 A CN202010496863 A CN 202010496863A CN 111574200 A CN111574200 A CN 111574200A
Authority
CN
China
Prior art keywords
ceramic material
sensitive ceramic
ntc
thermal sensitive
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010496863.8A
Other languages
English (en)
Inventor
谢永新
赵一风
常爱民
王振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Sensor Foshan Technology Co ltd
Original Assignee
Zhongke Sensor Foshan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Sensor Foshan Technology Co ltd filed Critical Zhongke Sensor Foshan Technology Co ltd
Priority to CN202010496863.8A priority Critical patent/CN111574200A/zh
Publication of CN111574200A publication Critical patent/CN111574200A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种适用于室温及低温温区的NTC热敏陶瓷材料及制备方法,本发明所提供的NTC热敏陶瓷材料,以MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O为原料,掺杂碱金属碳酸盐,采用溶胶凝胶法制备尖晶石相负温度系数热敏陶瓷材料,其化学通式为Mn1.2Ni0.3Co1.5‑xRxO4;其中,R为Li、Na或K;x取值范围为0‑0.15。通过本发明的制备方法所获得NTC热敏陶瓷材料,通过碱金属Li/Na/K掺杂Mn1.2Ni0.3Co1.5O4,调控Li/Na/K的比例进而改变电学性能参数,使材料具有低材料常数B值高阻值的特点,能够用于低温领域温度传感器中的热敏材料,能够用于‑120℃至70℃低温NTC热敏陶瓷材料。

Description

适用于室温及低温温区的NTC热敏陶瓷材料及制备方法
技术领域
本发明涉及热敏材料技术领域,主要涉及一种适用于室温及低温温区的NTC热敏陶瓷材料及制备方法。
背景技术
日常生活中很多材料器件的特性都会随着温度而发生变化,这些材料可作为温度传感器的核心材料。基于热敏材料的温度传感器广泛应用于航天、海洋、家电医疗以及汽车等领域。负温度系数热敏电阻(NTCR)按适用温区分为低温(<-60℃)、常温(-60-300℃)、高温(>300℃)NTCR。然而常温以及低温NTCR更具有应用的普遍性。国内外关于热敏陶瓷材料研究主要通过掺杂、复合以及制备工艺改善对材料性能进行优化。一般的热敏陶瓷材料为高B值高阻值或高B值低阻值,然而低B值高阻值材料存在一定的研究空白。低B值可应用在电路温度补偿和低温测量,适用于室温以下温区的热敏陶瓷材料要求较低B值和较高的电阻率。负温度系数尖晶石结构的氧化物组成广泛,但低B值高阻值可用的尖晶石氧化物少之又少。2009年陈初升团队首次将低B值的Fe0.5Cu0.2Ni0.66Mn1.64O4中引入稳定的Zr0.84Y0.16O1.92的复合材料,B值为2842K,ρ25℃=10479 Ω•cm满足应用需求的低B值高阻值热敏材料。2019年常爱民团队通过制备了宽温区核壳结构的Co1.5Mn 1.2Ni0.3O4@Al2O3材料B值为3846.79K,ρ25℃=536.68 Ω•cm。市面上可选择的适用于室温及低温温区的NTC(NegativeTemperature Coefficient,负温度系数)热敏陶瓷材料仍然很少。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种适用于室温及低温温区的NTC热敏陶瓷材料及制备方法,该材料以MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O为原料,通过掺杂碱金属Li/Na/K能够制备得到具有低材料常数B值高阻值特点的NTC热敏陶瓷材料,旨在提供一种新的适用于室温及低温温区的NTC热敏陶瓷材料。
本发明的技术方案如下:
一种适用于室温及低温温区的NTC热敏陶瓷材料,其中,其化学通式为Mn1.2Ni0.3Co1.5- xRxO4;其中,R为Li、Na或K;x取值范围为0-0.15。
所述的适用于室温及低温温区的NTC热敏陶瓷材料,其中,x为0.05-0.15。
所述的适用于室温及低温温区的NTC热敏陶瓷材料,其中,当R为Li时,电学参数范围为B25℃/50℃=3387.42-3545.36K,ρ25℃=42.29-62.78Ω·cm;
当R为Na时,电学参数范围为B25℃/50℃=3545.36-3582.91K,ρ25℃=42.29-62.78Ω·cm;
当R为K时,电学参数范围为B25℃/50℃=3359.22-3658.82K, ρ25℃=62.78-91.05Ω·cm。
一种适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,包括以下步骤:
A、称取MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O、碱金属碳酸盐, MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O按摩尔比4:1:5-4.5称取,碱金属碳酸盐按摩尔比0.05-0.5称取;其中,当R为Li时,碱金属碳酸盐为Li2CO3,当R为Na时,碱金属碳酸盐为Na2CO3,当R为K时,碱金属碳酸盐为K2CO3
B、将碱金属碳酸盐与MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O用蒸馏水混合溶解后,加入过量的柠檬酸,搅拌使溶液至透明澄清,得湿凝胶;
C、将湿凝胶在140-180℃恒温烘干得干凝胶,340-360℃煅烧除碳,研磨至粉末无凝聚块状,即得前驱体粉体;再在800℃煅烧2h后,研磨5-7h,得NTC热敏陶瓷材料粉体。
所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,还包括以下步骤:
D、压片成型得直径8-10mm,厚度1.5-2.0mm圆片;等静压压力300-350MPa,时间80-100s,采用二步烧结程序进行烧结得到NTC热敏陶瓷材料片。
所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,所述二步烧结程序如下:
从30±10℃以2℃/min的升温速度升温至1240±10℃;以10℃/min的降温速度降温至1000±10℃,在此温度保持3±0.5h;以2℃/min的降温速度降温至30±10℃。
所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,还包括以下步骤:
E、电极制备:将NTC热敏陶瓷材料片的两面各涂银浆,在835℃退火处理20min。
所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,步骤B中,所述柠檬酸作为络合剂,所述柠檬酸的加入量为金属离子摩尔量的1.2-2倍。
所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其中,步骤B中,在60-90℃条件下,将碱金属碳酸盐与MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O用蒸馏水混合溶解。
有益效果:本发明所提供的NTC热敏陶瓷材料,以MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O为原料,掺杂碱金属碳酸盐,采用溶胶凝胶法制备尖晶石相负温度系数热敏陶瓷材料,其化学通式为Mn1.2Ni0.3Co1.5-xRxO4;其中,R为Li、Na或K;x取值范围为0-0.15。通过本发明的制备方法所获得NTC热敏陶瓷材料,通过碱金属Li/Na/K掺杂Mn1.2Ni0.3Co1.5O4,调控Li/Na/K的比例进而改变电学性能参数,使材料具有低材料常数B值高阻值的特点,能够用于低温领域温度传感器中的热敏材料,能够用于-120℃至70℃低温NTC热敏陶瓷材料。
附图说明
图1为本发明实施例1- 4所制备得到的样品的XRD图。
图2为本发明实施例1- 4所制备得到的样品的SEM图。
图3A和3B为本发明锂掺杂所得样品Mn1.2Ni0.3Co1.5-xLixO4的阻温关系图。
图4A和4B为本发明钠掺杂所得样品Mn1.2Ni0.3Co1.5-xNaxO4的阻温关系图。
图5A和5B为本发明钾掺杂所得样品Mn1.2Ni0.3Co1.5-xKxO4的阻温关系图。
具体实施方式
本发明提供一种适用于室温及低温温区的NTC热敏陶瓷材料及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种适用于室温及低温温区的NTC热敏陶瓷材料,其化学通式为Mn1.2Ni0.3Co1.5-xRxO4;其中,R为Li、Na或K;x取值范围为0-0.15。当x为0时,所述NTC热敏陶瓷材料具备适用于室温及低温温区的高B值高阻值的特点;通过掺杂碱金属Li/Na/K,能够有效降低B值或增加阻值,使其更加适用于低温领域温度传感器中。优选地,所述x取值范围为0.05-0.15。
本发明中还提供所述NTC热敏陶瓷材料的制备方法,包括以下步骤:
A、按照化学式Mn1.2Ni0.3Co1.5-xRxO4,R为Li、Na或K,x为0.05、0.1或0.15,称取MnSO4·H2O(硫酸锰)、CoSO4·7H2O(硫酸钴)、NiSO4·6H2O(硫酸镍)、碱金属碳酸盐;其中,当R为Li时,碱金属碳酸盐为Li2CO3(碳酸锂),当R为Na时,碱金属碳酸盐为Na2CO3(碳酸钠),当R为K时,碱金属碳酸盐为K2CO3(碳酸钾)。
在步骤A中,所述MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O可按摩尔比4:1:5-4.5称取,碱金属碳酸盐可以按摩尔比0.05-0.5称取。
B、在60-90℃条件下,将碱金属碳酸盐与MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O用蒸馏水混合溶解后,加入过量的柠檬酸,搅拌使溶液至透明澄清,得湿凝胶。
其中,所述柠檬酸作为络合剂,所述柠檬酸的加入量可以为金属离子摩尔量的1.2-2倍,采用过量的柠檬酸使金属离子完全络合反应。
C、将湿凝胶在140-180℃恒温真空干燥箱烘干得干凝胶,340-360℃煅烧除碳,研磨3h至无凝聚块儿,即得前驱体粉体;
再在800℃煅烧2h后,研磨5-7h,得NTC热敏陶瓷材料粉体。
在步骤C中包含两次煅烧,第一次煅烧为了避免产生含碳杂质,第二次煅烧和研磨可以使粉体颗粒更细避免团聚。
D、压片成型得直径8-10mm,厚度1.5-2.0mm圆片;
等静压压力300-350MPa,时间80-100s,采用二步烧结程序进行烧结得到NTC热敏陶瓷材料片。
其中,所述二步烧结程序如下:
从30±10℃以2℃/min的升温速度升温至1240±10℃;以10℃/min的降温速度降温至1000±10℃,在此温度保持3±0.5h;以2℃/min的降温速度降温至30±10℃。采用此二步烧结程序可以使晶粒大小均匀性好,晶界清晰可见,结晶性好。
E、电极制备:将NTC热敏陶瓷材料片的两面各涂银浆,在835℃退火处理20min。
本发明所提供的NTC热敏陶瓷材料,以MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O为原料,掺杂碱金属碳酸盐,采用溶胶凝胶法制备尖晶石相负温度系数热敏陶瓷材料,其化学通式为Mn1.2Ni0.3Co1.5-xRxO4;其中,R为Li、Na或K;x取值范围为0-0.15,具有高纯单相的物相组成。通过本发明的制备方法所获得NTC热敏陶瓷材料,通过碱金属Li/Na/K掺杂Mn1.2Ni0.3Co1.5O4,调控Li/Na/K的比例进而改变电学性能参数,使材料具有低材料常数B值高阻值的特点,能够用于低温领域温度传感器中的热敏材料,能够用于-120℃至70℃低温NTC热敏陶瓷材料。
以下通过实施例对本发明做进一步说明。
实施例1
样品1(XLi=0.05):将硫酸锰、硫酸钴、硫酸镍、碳酸锂按摩尔比12:3:14:0.5称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.5倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间100s,二步烧结得到NTC热敏陶瓷材料片。
样品2(XLi=0.1):将硫酸锰、硫酸钴、硫酸镍、碳酸锂按摩尔比12:3:14:1称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.2-2倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间90s,二步烧结得到NTC热敏陶瓷材料片。
样品3(XLi=0.15):将硫酸锰、硫酸钴、硫酸镍、碳酸锂按摩尔比12:3:14:1.5称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.5倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间90s,二步烧结得到NTC热敏陶瓷材料片。
实施例2
样品1(XNa=0.05):将硫酸锰、硫酸钴、硫酸镍、碳酸钠按摩尔比12:3:14.5:0.5称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.2倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间90s,二步烧结得到NTC热敏陶瓷材料片。
样品2(XNa=0.1):将硫酸锰、硫酸钴、硫酸镍、碳酸钠按摩尔比12:3:14.5:1称取,80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的2倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间90s,二步烧结得到NTC热敏陶瓷材料片。
样品3(XNa=0.15):将硫酸锰、硫酸钴、硫酸镍、碳酸钠按摩尔比12:3:14.5:1.5称取,80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.3倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,时间80s,二步烧结得到NTC热敏陶瓷材料片。
实施例3
样品1(XK=0.05):将硫酸锰、硫酸钴、硫酸镍、碳酸钾按摩尔比12:3:14.5:0.5称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.4倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力350MPa,时间80s,二步烧结得到NTC热敏陶瓷材料片。
样品2(XK=0.1):将硫酸锰、硫酸钴、硫酸镍、碳酸钾按摩尔比12:3:14.5:1称取,80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.5倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,100s,二步烧结得到NTC热敏陶瓷材料片。
样品3(XK=0.15):将硫酸锰、硫酸钴、硫酸镍、碳酸钾按摩尔比12:3:14.5:1.5称取,80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.5倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300MPa,90s,二步烧结得到NTC热敏陶瓷材料片。
实施例4
样品(X=0):将硫酸锰、硫酸钴、硫酸镍、碱金属碳酸盐按摩尔比12:3:14:0称取;80℃蒸馏水混合溶解,加入过量柠檬酸(为金属离子摩尔量的1.5倍),搅拌使溶液至透明澄清;160℃恒温烘干得干凝胶;350℃煅烧后研磨3h得前驱物粉体,在800℃煅烧2h后,研磨6h得NTC热敏陶瓷材料粉体。成型得直径10mm,厚度1.7mm陶瓷圆片,等静压压力300-350MPa,时间80-100s,二步烧结得到NTC热敏陶瓷材料片。
图1为实施例1-3和实施例4所制备得到的样品的XRD图,可以看出通过本发明所述方法得到样品并未出现任何杂质相。
图2为实施例1-3和实施例4所制备得到的样品的SEM图,图2中K代表实施例4样品(X=0),L-N分别代表实例1样品1-3,O-Q分别代表实例2样品1-3,R-T分别代表实例3样品1-3。由图可以看出通过本发明所述方法得到的陶瓷样品晶粒大小均匀,晶界清晰可见,并且掺杂钠的样品晶粒均匀性较好。
对实施例1- 4所制备得到的样品进行电学性能测试。对实施例1- 4所制备得到的NTC热敏陶瓷材料片的两面各涂银浆,并835℃退火处理20min。
在-120℃-70℃范围内,通过对各样品在不同温度下的阻值(R)进行测试,表现出负温度系数热敏电阻的典型特征,即随温度升高,电阻率呈下降趋势,如图3A、4A、5A所示;发现阻温特性具有线性关系,如图3B、4B、5B所示。
实施例1的样品1-3,如图3A和3B所示,经过Li掺杂后B值和电阻值同时降低,当锂含量分别为x=0,0.05,0.1,0.15时,B值分别为3545.36K,3387.42K,3406.11K,3451.06K,电阻率分别为62.78Ω·cm,42.29Ω·cm,48.92Ω·cm,58.98Ω•cm。可以看到锂掺杂量为0.05时B值降低程度最大,阻值变化较小,电阻率参数范围ρ25℃=62.78Ω•cm(x=0)变化到ρ25℃=58.98Ω•cm(x=0.15)。由此得出,热敏陶瓷Mn1.2Ni0.3Co1.5-xLixO4(x=0-0.15)的电学参数范围为B25℃/50℃=3387.42-3545.36(K),ρ25℃=42.29-62.78(Ω·cm)。
实施例2的样品1-3,如图4A和4B所示,经过Na掺杂后能够有效降低B值和增加阻值,钠含量分别为x=0,0.05,0.1,0.15时,B值分别为3545.36K,3530.94K,3582.91K,3522.60K,电阻率分别为62.78Ω•cm,72.36Ω•cm,79.97Ω•cm,98.57Ω•cm;可以看到钠含量为x=0.15时,B值从3545.36K(x=0)降低到3522.60K(x=0.15),电阻率参数范围ρ25℃=62.78Ω•cm(x=0)变化到ρ25℃=98.57Ω•cm(x=0.15)。由此得出,热敏陶瓷Mn1.2Ni0.3Co1.5-xNaxO4(x=0-0.15)的电学参数范围为B25℃/50℃=3545.36-3582.91(K),ρ25℃=42.29-62.78(Ω·cm)。
实施例3的样品1-3,如图5A和5B所示,经过K掺杂后能够有效降低B值和增加阻值,K含量分别为x=0,0.05,0.1,0.15时,B值分别为3545.36K,3658.82K,3417.47K,3359.22K,电阻率分别为62.78Ω•cm,68.76Ω•cm,91.05Ω•cm,63.76Ω•cm;可以看到K含量为x=0.1时,B值从3545.36K(x=0)降低到3417.47K(x=0.1),电阻率参数范围ρ25℃=62.78Ω•cm(x=0)变化到ρ25℃=91.05Ω•cm(x=0.1)。由此得出,热敏陶瓷Mn1.2Ni0.3Co1.5-xKxO4(x=0-0.15)的电学参数范围为B25℃/50℃=3359.22-3658.82(K), ρ25℃=62.78-91.05(Ω·cm)。
通过上述阻温测试结果可知,锂的掺杂能够大幅度降低B值,钠和钾的掺杂能够有效降低B值增加阻值。表明一定量碱金属Li/Na/K掺杂能够有效降低B值或增加阻值,Mn1.2Ni0.3Co1.5-xRxO4能够用于-120℃至70℃低温NTC热敏陶瓷材料。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种适用于室温及低温温区的NTC热敏陶瓷材料,其特征在于,其化学通式为Mn1.2Ni0.3Co1.5-xRxO4;其中,R为Li、Na或K;x取值范围为0-0.15。
2.根据权利要求1所述的适用于室温及低温温区的NTC热敏陶瓷材料,其特征在于,x为0.05-0.15。
3.根据权利要求1所述的适用于室温及低温温区的NTC热敏陶瓷材料,其特征在于,当R为Li时,电学参数范围为B25℃/50℃=3387.42-3545.36K,ρ25℃=42.29-62.78Ω·cm;
当R为Na时,电学参数范围为B25℃/50℃=3545.36-3582.91K,ρ25℃=42.29-62.78Ω·cm;
当R为K时,电学参数范围为B25℃/50℃=3359.22-3658.82K, ρ25℃=62.78-91.05Ω·cm。
4.一种适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,包括以下步骤:
A、称取MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O、碱金属碳酸盐, MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O按摩尔比4:1:5-4.5称取,碱金属碳酸盐按摩尔比0.05-0.5称取;其中,当R为Li时,碱金属碳酸盐为Li2CO3,当R为Na时,碱金属碳酸盐为Na2CO3,当R为K时,碱金属碳酸盐为K2CO3
B、将碱金属碳酸盐与MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O用蒸馏水混合溶解后,加入过量的柠檬酸,搅拌使溶液至透明澄清,得湿凝胶;
C、将湿凝胶在140-180℃恒温烘干得干凝胶,340-360℃煅烧除碳,研磨至粉末无凝聚块状,即得前驱体粉体;再在800℃煅烧2h后,研磨5-7h,得NTC热敏陶瓷材料粉体。
5.根据权利要求4所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,还包括以下步骤:
D、压片成型得直径8-10mm,厚度1.5-2.0mm圆片;等静压压力300-350MPa,时间80-100s,采用二步烧结程序进行烧结得到NTC热敏陶瓷材料片。
6.根据权利要求5所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,所述二步烧结程序如下:
从30±10℃以2℃/min的升温速度升温至1240±10℃;以10℃/min的降温速度降温至1000±10℃,在此温度保持3±0.5h;以2℃/min的降温速度降温至30±10℃。
7.根据权利要求4所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,还包括以下步骤:
E、电极制备:将NTC热敏陶瓷材料片的两面各涂银浆,在835℃退火处理20min。
8.根据权利要求4所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,步骤B中,所述柠檬酸作为络合剂,所述柠檬酸的加入量为金属离子摩尔量的1.2-2倍。
9.根据权利要求4所述的适用于室温及低温温区的NTC热敏陶瓷材料的制备方法,其特征在于,步骤B中,在60-90℃条件下,将碱金属碳酸盐与MnSO4·H2O、CoSO4·7H2O、NiSO4·6H2O用蒸馏水混合溶解。
CN202010496863.8A 2020-06-03 2020-06-03 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法 Pending CN111574200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010496863.8A CN111574200A (zh) 2020-06-03 2020-06-03 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010496863.8A CN111574200A (zh) 2020-06-03 2020-06-03 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法

Publications (1)

Publication Number Publication Date
CN111574200A true CN111574200A (zh) 2020-08-25

Family

ID=72121796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010496863.8A Pending CN111574200A (zh) 2020-06-03 2020-06-03 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN111574200A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679198A (zh) * 2020-12-13 2021-04-20 中国科学院新疆理化技术研究所 一种锰镍钴锂氧热敏陶瓷材料的制备方法
CN112992449A (zh) * 2020-12-09 2021-06-18 中国科学院新疆理化技术研究所 一种低温尖晶石氧化物负温度系数热敏电阻器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134237A1 (en) * 2007-08-22 2010-06-03 Miura Tadamasa Semi-conductive ceramic material and ntc thermistor using the same
CN105967655A (zh) * 2016-05-06 2016-09-28 中南大学 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN108675769A (zh) * 2018-04-26 2018-10-19 成都德兰特电子科技有限公司 一种含锂六元系中温负温度系数热敏电阻材料
CN110642603A (zh) * 2018-06-27 2020-01-03 中南大学 一种基于氧化镍的高精度新型ntc热敏电阻材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134237A1 (en) * 2007-08-22 2010-06-03 Miura Tadamasa Semi-conductive ceramic material and ntc thermistor using the same
CN105967655A (zh) * 2016-05-06 2016-09-28 中南大学 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN108675769A (zh) * 2018-04-26 2018-10-19 成都德兰特电子科技有限公司 一种含锂六元系中温负温度系数热敏电阻材料
CN110642603A (zh) * 2018-06-27 2020-01-03 中南大学 一种基于氧化镍的高精度新型ntc热敏电阻材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIFENG ZHAO ET AL.: "NTC thermo‑sensitive ceramics with low B value and high resistance at low temperature in Li‑doped Mn0.6Ni0.9Co1.5O4 system", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
张惠敏等: "NTC陶瓷材料Co1.5Mn1.5-XNiXO4中阳离子分布与导电性间的关系", 《无机化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992449A (zh) * 2020-12-09 2021-06-18 中国科学院新疆理化技术研究所 一种低温尖晶石氧化物负温度系数热敏电阻器及其制备方法
CN112679198A (zh) * 2020-12-13 2021-04-20 中国科学院新疆理化技术研究所 一种锰镍钴锂氧热敏陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
Teichmann et al. Sintering and electrical properties of Cu-substituted Zn-Co-Ni-Mn spinel ceramics for NTC thermistors thick films
Li et al. Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN111574200A (zh) 适用于室温及低温温区的ntc热敏陶瓷材料及制备方法
CN106994517B (zh) 一种高导热低膨胀W-Cu封装材料的制备方法
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN110451960B (zh) 一种钕掺杂的白钨矿结构负温度系数热敏电阻材料及其制备方法
Azegami et al. Formation and sintering of LaCrO3 prepared by the hydrazine method
CN113066978A (zh) 一种Ta表面掺杂的高镍单晶正极材料及制备方法
Torii et al. Chemical processing and characterization of spinel-type thermistor powder in the Mn-Ni-Fe oxide system
CN105798319B (zh) 银钨电触头材料的制备方法及电触头材料、电触头
Fang et al. Aging of nickel manganite NTC ceramics
Varghese et al. Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: correlation between processing conditions and electrical characteristics
CN107093758B (zh) 一种钼酸镧基中温固体氧化物燃料电池电解质材料及其制备方法
CN112047722A (zh) 一种负温度系数玻封热敏电阻材料及其制备方法和应用
Wang et al. Electrical properties of Nb/Al-doped CuO-based ceramics for NTC thermistors
CN102260074B (zh) 一种高温ntc材料及其制备方法
Yao et al. Preparation of Ni0. 9Mn2. 1–xMgxO4 (0≤ x≤ 0.3) negative temperature coefficient ceramic materials by a rheological phase reaction method
CN102491756A (zh) 一种水热法制备纳米热敏粉体的方法
CN109516780A (zh) 一种高稳定性负温度系数热敏电阻材料及其制备方法
CN112645693B (zh) 一种复合负温度系数热敏陶瓷材料的制备方法
CN109734423B (zh) 一种负温度系数的热敏材料及其制备方法
WO2001087799A1 (fr) Compact fritte de sulfure de lanthane ou de sulfure de cerium et procede de preparation
JP2003119023A (ja) Ito粉末の製造方法及びito粉末
CN109516781A (zh) 一种四元系负温度系数热敏电阻材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825

RJ01 Rejection of invention patent application after publication