CN112645693B - 一种复合负温度系数热敏陶瓷材料的制备方法 - Google Patents

一种复合负温度系数热敏陶瓷材料的制备方法 Download PDF

Info

Publication number
CN112645693B
CN112645693B CN202110031116.1A CN202110031116A CN112645693B CN 112645693 B CN112645693 B CN 112645693B CN 202110031116 A CN202110031116 A CN 202110031116A CN 112645693 B CN112645693 B CN 112645693B
Authority
CN
China
Prior art keywords
powder
ceramic material
temperature coefficient
thermal sensitive
negative temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110031116.1A
Other languages
English (en)
Other versions
CN112645693A (zh
Inventor
马成建
李宁
高虹
陈景文
赵云峰
关荣锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202110031116.1A priority Critical patent/CN112645693B/zh
Publication of CN112645693A publication Critical patent/CN112645693A/zh
Application granted granted Critical
Publication of CN112645693B publication Critical patent/CN112645693B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种复合负温度系数热敏陶瓷材料的制备方法,将镍、钴、锌和锰的氧化物混合均匀后,与磨介材料和分散剂一起球磨,将得到的粉末干燥后煅烧,然后二次球磨,烘干后过筛,得到粉料;将粉料加入硝酸银溶液中,搅拌均匀后,干燥并过筛,得到的复合粉体加入到硼氢化钠溶液中,搅拌均匀后,分别用去离子水和乙醇离心洗涤,干燥后加入粘合剂进行造粒,然后模压成型,将成型后的坯体煅烧,最后冷却,即得。本发明制得的负温度系数热敏陶瓷材料具有致密性好、稳定性高、精度高、导电性能优良、适合工业化生产等特点,室温电阻率为15.25~542.52Ω·cm,B值为3000~3531K,适合用于低温测量等技术领域。

Description

一种复合负温度系数热敏陶瓷材料的制备方法
技术领域
本发明涉及一种热敏电阻材料的制备方法,尤其是一种复合负温度系数热敏陶瓷材料的制备方法。
背景技术
负温度系数(NTC)热敏陶瓷具有测温精度高、互换性好、可靠性高等特点,在温度测量、控制、补偿等方面应用十分广泛。通常NTC热敏陶瓷材料由通式为AB2O4的锰系过渡金属尖晶石氧化物组成,随着科技的发展,对这类材料的低阻值和高B值提出了更高的要求,而通常的情况是当材料的电阻率较高时,B值也高,反之亦然。因此,需要通过掺杂或复合其他材料调节其电学性能。研究表明仅掺杂铜离子能使其室温电阻率降至100Ω·cm以下,然而由于铜离子价态转变及离子与空位迁移等因素导致此类材料电学性能稳定性较差,通常阻值漂移大于10%,例如,Ni0.5Mn2.5O4陶瓷的室温电阻率为2900Ω·cm,老化值为1.9%,添加少量Cu离子时,Cu0.2Ni0.5Mn2.3O4陶瓷的室温电阻率降低两个数量级,为70Ω·cm,而老化值却增加了一个数量级,为14.9%;Ni0.66Mn2.34O4陶瓷的室温电阻率为2037Ω·cm,添加少量Cu离子时,Cu0.2Ni0.66Mn2.14O4陶瓷的室温电阻率降低两个数量级,为42Ω·cm,而老化值却高达12.6%。通过与低阻相氧化物材料复合制备的复合热敏陶瓷材料性能有所改善,然而由于两相材料中原子能够互相固溶,易导致材料组分偏析等问题,不适合广泛应用。
因此,探索新的复合材料制备低阻值高稳定性的NTC热敏材料迫在眉睫。
发明内容
本发明的目的在于针对现有技术的负温度系数热敏陶瓷材料存在的不足,提供一种复合负温度系数热敏陶瓷材料的制备方法,制得的负温度系数热敏陶瓷材料具有低阻值和高B值,并且稳定性高。
技术方案
一种复合负温度系数热敏陶瓷材料的制备方法,包括如下步骤:
(1)将镍、钴、锌和锰的氧化物混合均匀后,得到混合物,将混合物与磨介材料和分散剂按重量比1:(1~3):(1~3)装入球磨罐球磨6~24h,将得到的粉末干燥后进行煅烧,然后二次球磨6~24h,烘干后过筛,得到粉料;
(2)取硝酸银溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液中,搅拌均匀后,分别用去离子水和乙醇离心洗涤,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂进行造粒,然后模压成型,将成型后的坯体煅烧,最后冷却,即得复合负温度系数热敏陶瓷材料。
进一步,步骤(1)中,所述镍、钴、锌和锰的氧化物的配比按原子百分比:镍18~20%、钴13.33~33.33%、锌0~2%、锰46.67~66.67%。
进一步,步骤(1)中,所述分散剂为无水乙醇。
进一步,步骤(1)中,所述煅烧温度为950~1050℃,时间为2~4h。
进一步,步骤(2)中,所述硝酸银用量按金属银来计算,金属银的用量为粉料质量的3~20%。
进一步,步骤(3)中,所述硼氢化钠的用量为硝酸银摩尔量的1.2倍。
进一步,步骤(4)中,所述粘合剂为浓度为5~8wt%的聚乙烯醇溶液,粘合剂与粉体的质量比为(5~8):(95~92)。
进一步,步骤(4)中,所述煅烧温度为1000~1150℃,时间为4~8h。
有益效果:本发明先以镍、钴、锌和锰的氧化物为原料,通过氧化物固相法制备尖晶石结构的氧化物粉末,然后以硝酸银和硼氢化钠为原料,通过化学还原法制备金属银颗粒填料,最后采用陶瓷制备工艺法制备出新型负温度系数热敏陶瓷材料。本发明制得的负温度系数热敏陶瓷材料具有致密性好、稳定性高、精度高、导电性能优良、适合工业化生产等特点,室温电阻率为15.25~542.52Ω·cm,B值为3000~3531K,适合用于低温测量等技术领域。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步说明。
实施例1
一种复合负温度系数热敏陶瓷材料的制备方法,包括如下步骤:
(1)以分析纯的NiO、ZnO、Co3O4、MnO2为原料,按原子百分比Ni:Zn:Co:Mn=20:0:33.33:46.67准确称取后混合均匀,得到混合物,将混合物与磨介材料玛瑙球和分散剂无水乙醇按重量比1:2:3装入球磨罐球磨12h,将得到的粉末干燥后进行煅烧(1000℃煅烧2h),然后二次球磨12h,烘干后过80目筛,得到粉料;
(2)取硝酸银(金属银的用量占粉料质量的15%)溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过80目筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液(硼氢化钠摩尔量为硝酸银摩尔量的1.2倍)中,搅拌均匀后,分别用去离子水和乙醇离心洗涤数次,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂(5wt%的聚乙烯醇溶液)进行造粒,粘合剂与粉体的质量比为8:92,然后在10MPa压力下模压成直径为12mm的圆片,将成型后的坯体1100℃煅烧5h,最后冷却,即得复合负温度系数热敏陶瓷材料。
将制得的复合负温度系数热敏陶瓷材料进行电学性能测试,测试方法:先将复合负温度系数热敏陶瓷材料进行表面抛光,抛光介质为金刚砂,随后在两个表面上涂覆一层均匀的银浆,烘干后,在电阻炉中750℃烧银并保温15min,被银后的陶瓷样品将侧面抛光后进行电学性能测试。
电阻测量:被银后的陶瓷片样品加焊上银电极引线。使用PROVA-901数字多用表测试电阻值,在甲基硅油中分别测量25℃、85℃时的电阻R25和R85,根据式计算电阻率:
Figure BDA0002892113870000031
式中:ρ为样品的电阻率,Ω·cm;R为样品的电阻,Ω;S为样品的面积,cm2;L为样品的厚度,cm。
B值计算:
Figure BDA0002892113870000032
式中,R1和R2分别为在25℃和85℃温度下样品的电阻值。
测得本实施例制得的复合负温度系数热敏陶瓷材料的电学参数为:室温电阻率为80.13±1%Ω·cm,B值为3285±2%K。
将复合负温度系数热敏陶瓷材料放入150℃的烘箱中老化500h后,测得其老化值为2.51±0.2%。
实施例2
一种复合负温度系数热敏陶瓷材料的制备方法,包括如下步骤:
(1)以分析纯的NiO、ZnO、Co3O4、MnO2为原料,按原子百分比Ni:Zn:Co:Mn=18:2:13.33:66.67准确称取后混合均匀,得到混合物,将混合物与磨介材料玛瑙球和分散剂无水乙醇按重量比1:2:2装入球磨罐球磨12h,将得到的粉末干燥后进行煅烧(950℃煅烧2h),然后二次球磨12h,烘干后过80目筛,得到粉料;
(2)取硝酸银(金属银的用量占粉料质量的3%)溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过80目筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液(硼氢化钠摩尔量为硝酸银摩尔量的1.2倍)中,搅拌均匀后,分别用去离子水和乙醇离心洗涤数次,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂(5wt%的聚乙烯醇溶液)进行造粒,粘合剂与粉体的质量比为5:95,然后在10MPa压力下模压成直径为12mm的圆片,将成型后的坯体1050℃煅烧5h,最后冷却,即得复合负温度系数热敏陶瓷材料。
测得本实施例制得的复合负温度系数热敏陶瓷材料的电学参数为:室温电阻率为542.52±1%Ω·cm,B值为3531±2%K。
将复合负温度系数热敏陶瓷材料放入150℃的烘箱中老化500h后,测得其老化值为1.25±0.2%。
实施例3
一种复合负温度系数热敏陶瓷材料的制备方法,包括如下步骤:
(1)以分析纯的NiO、ZnO、Co3O4、MnO2为原料,按原子百分比Ni:Zn:Co:Mn=20:0:33.33:46.67准确称取后混合均匀,得到混合物,将混合物与磨介材料玛瑙球和分散剂无水乙醇按重量比1:2:3装入球磨罐球磨12h,将得到的粉末干燥后进行煅烧(1000℃煅烧2h),然后二次球磨12h,烘干后过80目筛,得到粉料;
(2)取硝酸银(金属银的用量占粉料质量的10%)溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过80目筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液(硼氢化钠摩尔量为硝酸银摩尔量的1.2倍)中,搅拌均匀后,分别用去离子水和乙醇离心洗涤数次,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂(5wt%的聚乙烯醇溶液)进行造粒,粘合剂与粉体的质量比为8:92,然后在10MPa压力下模压成直径为12mm的圆片,将成型后的坯体1100℃煅烧5h,最后冷却,即得复合负温度系数热敏陶瓷材料。
测得本实施例制得的复合负温度系数热敏陶瓷材料的电学参数为:室温电阻率为103.34±1%Ω·cm,B值为3224±2%K。
将复合负温度系数热敏陶瓷材料放入150℃的烘箱中老化500h后,测得其老化值为2.02±0.2%。
实施例4
一种复合负温度系数热敏陶瓷材料的制备方法,包括如下步骤:
(1)以分析纯的NiO、ZnO、Co3O4、MnO2为原料,按原子百分比Ni:Zn:Co:Mn=18:2:33.33:46.67准确称取后混合均匀,得到混合物,将混合物与磨介材料玛瑙球和分散剂无水乙醇按重量比1:2:3装入球磨罐球磨12h,将得到的粉末干燥后进行煅烧(1000℃煅烧2h),然后二次球磨12h,烘干后过80目筛,得到粉料;
(2)取硝酸银(金属银的用量占粉料质量的20%)溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过80目筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液(硼氢化钠摩尔量为硝酸银摩尔量的1.2倍)中,搅拌均匀后,分别用去离子水和乙醇离心洗涤数次,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂(5wt%的聚乙烯醇溶液)进行造粒,粘合剂与粉体的质量比为8:92,然后在10MPa压力下模压成直径为12mm的圆片,将成型后的坯体1100℃煅烧5h,最后冷却,即得复合负温度系数热敏陶瓷材料。
测得本实施例制得的复合负温度系数热敏陶瓷材料的电学参数为:室温电阻率为15.25±1%Ω·cm,B值为3000±2%K。
将复合负温度系数热敏陶瓷材料放入150℃的烘箱中老化500h后,测得其老化值为3.32±0.2%。

Claims (7)

1.一种复合负温度系数热敏陶瓷材料的制备方法,其特征在于,包括如下步骤:
(1)将镍、钴、锌和锰的氧化物混合均匀后,得到混合物,将混合物与磨介材料和分散剂按重量比 1:(1~3):(1~3)装入球磨罐球磨 6~24h,将得到的粉末干燥后进行煅烧,然后二次球磨 6~24 h,烘干后过筛,得到粉料;
(2)取硝酸银溶于去离子水,得到硝酸银溶液,将步骤(1)得到的粉料加入硝酸银溶液中,搅拌均匀后,干燥并过筛,得到复合粉体;
(3)将复合粉体加入到硼氢化钠溶液中,搅拌均匀后,分别用去离子水和乙醇离心洗涤,然后干燥,得到粉体;
(4)往步骤(3)的粉体中加入粘合剂进行造粒,然后模压成型,将成型后的坯体煅烧,最后冷却,即得复合负温度系数热敏陶瓷材料;
步骤(1)中,所述镍、钴、锌和锰的氧化物的配比按原子百分比:镍 18~20%、钴 13.33~33.33%、锌 0~2%、锰 46.67~66.67%。
2.如权利要求1所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(1)中,所述分散剂为无水乙醇。
3.如权利要求1所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(1)中,所述煅烧温度为 950~1050℃,时间为2~4 h。
4.如权利要求1所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(2)中,所述硝酸银用量按金属银来计算,金属银的用量为粉料质量的3~20%。
5.如权利要求1所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(3)中,所述硼氢化钠的用量为硝酸银摩尔量的 1.2 倍。
6.如权利要求1所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(4)中,所述粘合剂为浓度为 5~8 wt%的聚乙烯醇溶液,粘合剂与粉体的质量比为(5~8):(95~92)。
7.如权利要求1至6任一项所述复合负温度系数热敏陶瓷材料的制备方法,其特征在于,步骤(4)中,所述煅烧温度为1000~1150℃,时间为4~8 h。
CN202110031116.1A 2021-01-11 2021-01-11 一种复合负温度系数热敏陶瓷材料的制备方法 Expired - Fee Related CN112645693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110031116.1A CN112645693B (zh) 2021-01-11 2021-01-11 一种复合负温度系数热敏陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110031116.1A CN112645693B (zh) 2021-01-11 2021-01-11 一种复合负温度系数热敏陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN112645693A CN112645693A (zh) 2021-04-13
CN112645693B true CN112645693B (zh) 2021-11-19

Family

ID=75367783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110031116.1A Expired - Fee Related CN112645693B (zh) 2021-01-11 2021-01-11 一种复合负温度系数热敏陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN112645693B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976482B (zh) * 2022-12-08 2024-07-23 中国科学院新疆理化技术研究所 一种基于离子注入的ntc复合热敏薄膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796333A (zh) * 2012-09-06 2012-11-28 哈尔滨工业大学 具有负温度系数效应的聚偏氟乙烯基温敏电阻材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233303A (ja) * 1996-09-30 1998-09-02 Mitsubishi Materials Corp Ntcサーミスタ
CN102167577B (zh) * 2010-12-24 2014-04-02 吴江华诚复合材料科技有限公司 一种高性能热敏陶瓷材料
KR101498203B1 (ko) * 2013-04-29 2015-03-05 한국생산기술연구원 은 나노 섬유의 제조방법
DE102016115642A1 (de) * 2016-08-23 2018-03-01 Epcos Ag Keramikmaterial, Bauelement und Verfahren zur Herstellung des Bauelements
WO2021004957A1 (de) * 2019-07-05 2021-01-14 Tdk Electronics Ag Ntc-dünnschichtthermistor und verfahren zur herstellung eines ntc-dünnschichtthermistors
CN111116173B (zh) * 2019-12-16 2022-07-01 深圳顺络电子股份有限公司 一种低温烧结ntc热敏电阻器陶瓷材料及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796333A (zh) * 2012-09-06 2012-11-28 哈尔滨工业大学 具有负温度系数效应的聚偏氟乙烯基温敏电阻材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of Zn substitution on the phase, microstructure and electrical properties of Ni0.6Cu0.5ZnxMn1.9−xO4 (0≤x≤1) NTC ceramics;Ma Chengjian 等;《Materials Science and Engineering B》;20140624;第188卷;第66-71页 *

Also Published As

Publication number Publication date
CN112645693A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN102219479B (zh) 一种应用于高温下的ntc材料及其制备方法
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN108675769B (zh) 一种含锂六元系中温负温度系数热敏电阻材料
CN112802648A (zh) 一种基于高熵氧化物的热敏电阻及其制备方法
CN108395217B (zh) 一种铌掺杂锰镍基负温度系数热敏电阻及其制备方法
CN112645693B (zh) 一种复合负温度系数热敏陶瓷材料的制备方法
CN103183508A (zh) Ntc热敏电阻材料及制备方法和在电子器件中的应用
CN107226681B (zh) 一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法
Yang et al. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors
CN112876238B (zh) 一种锡酸盐体系负温度系数热敏电阻材料及其制备方法
CN109256246B (zh) 一种含钙四元系负温度系数热敏电阻材料及其制备方法
Wang et al. Electrical properties of Nb/Al-doped CuO-based ceramics for NTC thermistors
Varghese et al. Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: correlation between processing conditions and electrical characteristics
CN101402522A (zh) 一种新型锡酸钡基导电陶瓷及其制备方法
Ma et al. Effect of Ag addition on the microstructure and electrical properties of Ni0. 6CoMn1. 4O4/Ag composite ceramics
CN102260074A (zh) 一种高温ntc材料及其制备方法
CN115073140B (zh) 一种含铜系负温度系数热敏陶瓷材料的制备方法
CN107365153B (zh) 一种高性能ntc热敏陶瓷材料及其制备方法与应用
CN100415414C (zh) 用于制备高精度热敏电阻的纳米粉体
CN107129284B (zh) 一种高性能多温区ntc热敏电阻器介质材料及其制备方法
CN111584911B (zh) 一种Fe3O4-BCFN中温复合固体电解质及其制备方法
CN108975903A (zh) 一种氧化锌压敏电阻生料及其制备方法
CN114394819A (zh) 一种高可靠性片式ntc热敏电阻材料及其制备方法及用途
Li et al. Mn/La co-doped WO3 (Mn x La0. 03WO3+ δ, x≤ 0.1) ceramics for NTC thermistors
CN109796203A (zh) 一种ZnO基负温度系数热敏电阻材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211119

CF01 Termination of patent right due to non-payment of annual fee