CN1127135C - 制造水平沟槽电容器和动态随机存取存储单元阵列的方法 - Google Patents

制造水平沟槽电容器和动态随机存取存储单元阵列的方法 Download PDF

Info

Publication number
CN1127135C
CN1127135C CN98108711A CN98108711A CN1127135C CN 1127135 C CN1127135 C CN 1127135C CN 98108711 A CN98108711 A CN 98108711A CN 98108711 A CN98108711 A CN 98108711A CN 1127135 C CN1127135 C CN 1127135C
Authority
CN
China
Prior art keywords
layer
silicon
dielectric layer
capacitor
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN98108711A
Other languages
English (en)
Other versions
CN1237788A (zh
Inventor
卢志远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Vanguard International Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard International Semiconductor Corp filed Critical Vanguard International Semiconductor Corp
Priority to CN98108711A priority Critical patent/CN1127135C/zh
Publication of CN1237788A publication Critical patent/CN1237788A/zh
Application granted granted Critical
Publication of CN1127135C publication Critical patent/CN1127135C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一种制造隐匿于半导体基底的水平沟槽电容器的方法,包括下列步骤:蚀刻多个沟槽;在沟槽形成第一介电层;在沟槽中填入第一多晶硅层;在基底与第一多晶硅层上形成第二介电层;限定该第二介电层;生长一外延硅层和非晶硅层,形成一外延硅/非晶硅层;蚀刻出多个端点接触窗;在这些端点接触窗的该外延硅/非晶硅层侧壁上形成一绝缘衬垫;以及在这些端点接触窗填入一第二多晶硅层,以形成一正极接触点。本发明还涉及具有水平沟槽电容器的随机存取存储器的制造方法。本发明用于半导体集成电路的制造工艺中,以减小沟槽电容器的高宽比并增大其电容。

Description

制造水平沟槽电容器和动态随机 存取存储单元阵列的方法
技术领域
本发明涉及一种集成电路元件,特别是涉及一种制造水平沟槽电容器的方法和具有水平延伸沟槽电容器的动态随机存取存储单元的制造方法。
背景技术
动态随机存取存储器是用以存取存储单元阵列上来自于电容器所存储的电荷的数字信号。存储单元是由一个存取晶体管(Access Transistor)与一个电容器组成。其中,存取晶体管通常为N通道(N-Channel)场效应晶体管(FieldEffect Transistor,FET),并且以字线(Word Line)连接至周边电路;而电容器则在基底上的每一个存储单元区蚀刻出沟槽,以形成沟槽电容器,或者在存储单元区的存取晶体管之上沉积一导电层,经由构图,以形成堆叠电容器(Stacked Capacitor),并且连接至场效应晶体管的源极/漏极之一。而位线(Bit Line)则连接至场效应晶体管的另一个源极/漏极。为能装载动态随机存取存储器的存储单元阵列的所有的电容器,每一个电容器必须在某一个范围之内,而不能大于存储单元区域的大小。
当整个动态随机存取存储器元件缩小,而存储单元面积并没有减少的情况下,制造具有更多存储单元的动态随机存取存储器元件的困难度将逐渐增加。例如,在2000年后存储单元的数目将扩展到109位元。况且,当存储单元面积减小,亦将减少每一个存储单元的电容器所能拥有的面积,而使得维持足够的静电容以提供所需的信噪比(Signal-to-Noise Ratio)更为困难。而且,为了使电容器中维持足够的电荷,更新(Refresh)循环的时间亦将缩短,而使动态随机存取存储器的执行效率降低。
在半导体工业上,一种克服上述问题的方法,是形成具有堆叠型电容器的动态随机存取存储器。此形式的电容器形成于传送晶体管(PassTransistor)之上,并向Z轴方向垂直延伸,而且当X-Y轴方向,即沿着基底表面的面积缩小时,其可由Z轴方向增加其面积。现有的两种堆叠型电容器的动态随机存取存储单元,如图1所示,其为电容器位于位线下方(Capacitor Under Bit Line,CUB)的结构;如图2所示,其为电容器位于位线上方(Capacitor Over Bit Line,COB)的结构。
请参照图1,绘示电容器位于位线下方结构的动态随机存取存储单元的剖面图。首先,提供一基底10,并在基底10上形成场氧化区12,以隔离存储单元区。埸氧化区可采用局部区域氧化法(LOCOS)或采用浅沟渠隔离法(Shallow Trench Isolation)形成。其后,以热氧化法在氧气环境下,在元件的有源区上形成晶体管的栅极氧化层14,再沉积一多晶硅层或多晶硅化金属(Polycide)层16,经构造图案后,形成晶体管的栅极16。之后,进行离子植入,以形成晶体管的轻掺杂源极/漏极区17,并沉积一绝缘层18,经各向异性回蚀刻,以形成间隙壁18,再进行第二次的离子植入,形成场效应晶体管的重掺杂源极/漏极区19,以完成晶体管。然后,沉积一内层介电层(InterLevel Dielectric Layer,ILD),即绝缘层20,之后再形成堆叠电容器。电容器的接触窗2是蚀刻绝缘层20,使其暴露出各个晶体管的一源极/漏极区19(在图1只叙述动态随机存取存储单元阵列的一个存储单元)。下电容电极22可以采用各种方法形成,其在接触窗2的22′处(正极接触点)可与场效应晶体管的源极/漏极区19相连接。例如,沉积一掺杂多晶硅层22,经构图后,以形成作为块电极(Block Capacitor)的下电极22。此外,尚包括其它层与工艺步骤,皇冠状(Crown-Shaped)电容器,翼状(Fin-Shaped)电容器以及其相似物的形成。在沉积一高介电常数的介电层24以及沉积、限定一上电极26之后,可完成一堆叠状电容器。其后,沉积第二层绝缘层28(内层介电层)以隔绝电容器。位线接触窗4,是通过蚀刻绝缘层28,暴露出晶体管的第二个源极/漏极区19形成的。然后,沉积第一层金属层,例如,以一含有钛/氮化钛阻挡层的铜铝合金,并蚀刻之,以形成位线30,使30′处与第二个源极/漏极区19连接,完成动态随机存取存储单元阵列。此外,位线也可以为一多晶硅化金属(金属硅化物/多晶硅层),例如,硅化钨或硅化钛。
由于高解析度的光刻技术需以浅的聚焦深度(Depth of Focus,DOF)获得,因此需要平坦的表面以使不变形的光致抗蚀剂图案曝光。而且,平坦表面也可以避免后续所形成的导电层,以各向异性等离子体蚀刻时,残留在陡峭阶梯处(Steep Step)。然而,由于元件的表面高低起伏不平,因此,需采用平坦化的技术,以提供一平坦的表面,形成可靠的次微米结构,例如,位线。另一个问题是,位线接触窗具有高的高宽比(Aspect Ratio)值,将造成高接触阻抗,甚至导致开路(E1ectrical Open)现象。
请参照图2,绘示另一种方法以制造具有堆叠电容器的动态随机存取存储单元的剖面图。此动态随机存取存储单元阵列是电容器位于位线上方的结构,其制造方法相似于电容器位于位线下方的结构,因此,元件的标记相类似。电容器位于位线上方的结构中,在绝缘层20中的位线接触窗4,为位线30,其有一位线接触点30′,在堆叠电容器形成之前形成。虽然位线接触窗4具有较低的高宽比,但是由于位线30通常为导电性低而熔点又高的材料(例如,掺杂多晶硅与硅化金属)所形成,因此,经常需通过高温工艺以完成堆叠电容器。然而,由于堆叠电容器的端点接触窗需要高的高宽比值接触窗开口,其蚀刻工艺困难。而且将电容器位于位线下方的(CUB)结构应用于电容器位于位线上方(COB)的结构时,也需要考虑其崎岖不平的元件表面所造成的问题。
另一种堆叠电容器的制造方法是使位线与电容器均形成于硅表面上,其电容器位于位线上方结构的动态随机存取存储单元的三维空间图形请参照图3。当动态随机存取存储单元的尺寸逐渐缩小,而位线与电容器之间又必须保持足够的空间,使得在同一个硅基底的平面上同时架构位线与电容器变得更加困难。图3绘示两个电容器位于位线上方的动态随机存取存储单元,其具有架构于下电极22′之上的两个相邻皇冠状电容器22与一位线30。而图2中的绝缘层20与28并未示于此结构中。图3中,有源元件区1为浅沟渠隔离区12所环绕,而使动态随机存取存储器元件所能提供的存储单元数目变得更少,因此,位线30与堆叠电容器接点22′之间的空间必须更为缩小。其结果将造成形成于同一个基底的位线与电容器的分隔距离不足,甚至造成短路的现象。有时候会设计不规则形状的存储单元结构(螺旋状存储单元结构),以增加位线与电容器的分隔距离,但是,其典型的结果是不规则形状的场效应晶体管栅极设计,将使场效应晶体管通道长度的控制更加困难,并造成产率降低的现象。
一种采用沟渠电容器,以制造动态随机存取存储单元阵列的方法,其动态随机存取存储单元的剖面图请参照图4。其方法是将电容器形成于硅基底的沟槽中,以使基底表面上所留下的区域制作位线。因此可避免电容器位于位线下方结构,或电容器位于位线上方结构其动态随机存取存储器元件的分离问题。此方法也可使存储单元的表面积缩小,以应用于未来高密度动态随机存取存储单元阵列。
请参照图4,绘示具有传统沟槽电容器的动态随机存取存储单元的剖面图。首先,在硅基底10中形成浅沟槽隔离区12,以隔离有源元件区。并且在基底10中蚀刻出一直立式深沟槽,如沟槽5所示,并在沟槽5的硅表面上形成一高介电常数绝缘层32。其后,沉积一导电掺杂多晶硅层,并回蚀之,以在沟槽中形成电容器的正电极34,以架构一电容器。再以传统的方法,在紧邻于沟槽电容器的元件区上形成第一栅极氧化层14,以架构场效应晶体管(存取晶体管)。其后,沉积一多晶硅化金属层,并对其构图,以形成一栅极16与字线(未示于图中)。然后,形成轻掺杂源极/漏极区17、绝缘侧壁间隙壁18以及重掺杂源极/漏极区19,以完成一场效应晶体管。接着,沉积一导电层,并对其构图,以形成正极带(Strap)36,以使电容器多晶硅正电极34与源极/漏极区19之一形成良好的电连接。再沉积一绝缘层20,并蚀刻之,以形成一位线接触窗4。最后,沉积一第二多晶硅化金属层,并对其构图,以形成位线30,完成动态随机存取存储单元阵列。
然而,上述具有沟槽电容器的动态随机存取存储单元存在一些限制。例如,为获得足够的电容量,需以非常深的沟槽(例如,20~40的高宽比),以架沟其电容器。而未来ULSI工艺的需求,动态随机存取存储器沟槽的高宽比预期将更高。而以传统形成沟槽电容器的方法,其工艺的另一个缺点是沟槽无法使场效应晶体管以下的存储单元区予以延伸,以增加其电容量。
J.M.Choi揭露于美国专利第5,418,177号的一种利用场效应晶体管以下区域的方法,是在基底形成一隐匿式电容器,再在所沉积的多晶硅层上形成一场效应晶体管。然而,其所形成的晶体管不如形成于单晶硅上的晶体管好。另一种由McElroy揭露于美国专利第4,896,293号的方法,其场效应晶体管形成于电容沟槽的侧壁,而漏极则形成于基底的顶端表面上,以降低元件的尺寸。Ishi揭露于美国专利第5,112,771号的方法,是蚀刻一深沟槽后,再各向同性蚀刻位于沟槽下方的硅基底,以增加其电容区。
另一种制造沟槽电容器的方法,是将场效应晶体管形成于沟槽上方,以节省元件空间,其方法揭露于Wolf杂志,第2期,第609页以及第611页所示图8-24与图8-25之中。其结构是以双重外延工艺(Double EpitaxyProcess)在沟槽上形成自动对准外延硅(Self-Aligned Epitaxy Over Trench)。在形成完全与P型重掺杂的基底隔离的存储电极(P型重掺杂多晶硅点电极)之后,选择性外延,其往往自侧面生长,而在隔离沟槽电容器的氧化硅上形成P型轻掺杂的单晶硅,但是在外延硅完全形成于沟槽上之前需停止外延生长,以形成一自动对准窗口。其后,蚀刻窗口内的氧化硅,以暴露出沟槽中的P型重掺杂多晶硅,并生长第二P型轻掺杂外延硅层,以在窗口中形成金字塔状的多晶硅,作为电容器的点接触,以架构P通道场效应晶体管存储单元。然而,多重外延并不经济,且在256M位元或1G位元的动态随机存取存储器元件中,其窗口尺寸的控制将更加困难,而且在P型重掺杂基底的P型重掺杂存储电极,也可通过高介电常数的介电层而造成漏电流的现象。
在半导体工业上急需更进一步改善制造动态随机存取存储单元的沟槽存储电容器的方法,以使电容沟槽在提升其可靠性与经济效率的前提下,减小其深度(高宽比减小)后,仍可增加其电容量。
对比文件JP特开平4-287366、US 5,508,541和US 5,102,819公开了相关的技术。
发明内容
因此本发明的主要目的,就是在于提供一种动态随机存取存储单元阵列的结构与制造方法,使其存储单元具有增加电容量的隐匿式水平沟槽电容器。
本发明的另一目的是,通过制造隐匿式水平沟槽电容器,以增加动态随机存取存储器元件的存储单元密度的方法,使动态随机存取存储单元阵列增加电容量,以应用于未来高密度(Gigabit)存储元件。
本发明的另一目的是,使隐匿式水平沟槽电容器之上具有一外延硅层,以使场效应晶体管栅极与浅沟渠隔离区可以架构在电容器之上,增加动态随机存取存储单元的密度。
为实现本发明的目的,提出一种具有隐匿式水平沟槽电容器的动态随机存取存储单元阵列的制造方法,此方法简述如下:提供一半导体基底,例如,具有P型导电掺杂(如硼)的单晶硅基底。在基底上沉积第一衬垫氧化层与第一氮化硅层,并以传统的光刻技术与各向异性蚀刻法限定其图形之后,接着在基底中形成电容沟槽,以在各个动态随机存取存储单元的基底上架构出隐匿式水平沟槽电容器的正电极。此电容沟槽不仅可以由垂直于基底的Z轴方向予以延伸,也可以朝水平的方向(X-Y轴方向)加以扩展,形成倒置的洋菇状结构,以增加其电容量。接着,在电容沟槽的表面形成具有高介电常数的第一介电层,例如,氧化硅/氮化硅/氧化硅层。然后,沉积厚度足以填满电容沟槽的毯覆式第一多晶硅层,并以化学机械研磨法研磨,使其暴露出硅基底的表面,以使留于沟槽内的第一多晶硅层与硅基底表面形成一共平面。其后,在第一多晶硅层与硅基底的表面上形成具有高介电常数的第二介电层,经构图之后,使覆盖在第一多晶硅层的部分与延伸至第一介电层边缘之上的部分,以及扩展至基底之上的部分留下。
然后,在硅基底上生长一外延硅层,此外延硅层是自硅基底生长,并且向第二介电层的上方延伸。同时,此非选择性外延的结果,将使得非晶硅(alpha-Si)成长于第二介电层之上。外延硅层的侧面生长结果,造成填入于沟槽的多晶硅其上方的非晶硅层其顶部表面积逐渐减小。此外延硅/非晶硅层延伸至沟槽之上,使场效应晶体管的栅极与浅沟渠隔离区可以形成在电容沟槽之上,因此可增加动态随机存取存储单元的密度。
其后,以第二衬垫氧化层与第二氮化硅层覆盖于有源元件区,以形成场氧化隔离区,此场氧化隔离区是环绕于隐匿式水平沟槽电容器上方的有源区周围形成,以隔离之。虽然传统局部区域氧化(LOCOS)法可以用于场氧化隔离区的形成,但在此则以浅沟渠隔离(Shallow Trench Isolation)的方式形成。然后,以光致抗蚀剂掩模与各向异性等离子体蚀刻,蚀刻第二氮化硅层与第二衬垫氧化层并穿透外延硅/非晶硅层至第二介电层,以形成一接触窗。在光致抗蚀剂掩模剥除之后,在接触窗的外延硅/非晶硅层侧壁上形成一绝缘衬垫。然后,以各向异性等离子体蚀刻去除接触窗之中的第二介电层,以暴露出水平沟槽电容器的第一多晶硅层。再沉积第二掺杂多晶硅层,以填满接触窗。之后,以氧化硅层保护有源元件区,回蚀第二多晶硅层或以化学机械研磨法(Chemically/Mechanically Polishing,CMP)研磨第二多晶硅层,以形成正极接触点。至此,已完成隐匿式水平沟槽电容器。
接着,移除第二氮化硅层与第二衬垫氧化层,并在元件区形成一场效应晶体管的栅极,以架构动态随机存取存储单元阵列。沉积第一多晶硅化金属层,并对其构图,以在水平沟槽电容器的上方,紧邻正极接触窗的元件区处,形成一场效应晶体管的栅极,以缩小动态随机存取存储单元的尺寸。在限定多晶硅化金属层的同时,在浅沟渠隔离区上形成字线。其后,紧邻栅极,以离子植入法,形成轻掺杂源极/漏极区。再沉积绝缘层,并蚀刻,以形成场效应晶体管栅极侧壁的间隙壁。然后,紧邻间隙壁,以离子植入法,形成重掺杂源极/漏极区,以架构动态随机存取存储单元阵列的场效应存取晶体管。其中,各个场效应晶体管的一源极/漏极区延伸至水平沟槽电容器的一个正极接触点的上方。其后,沉积一导电层,并对其构图,以在衬垫层的上方形成一接点带(Node Strap),使源极/漏极区与正电极接触点形成电连接。然后,沉积一层多晶硅/金属介电(Polysilicon/Metal Dielectric,PMD)层,以隔离场效应晶体管的栅极与源极/漏极区。接着,蚀刻多晶硅/金属介电层,暴露出各个场效应晶体管的第二源极/漏极区,以形成一位线接触窗。之后,沉积第二多晶硅化金属层,并对其构图,以形成位线,完成动态随机存取存储单元阵列。
根据本发明,基底可以为一P型重掺杂的单晶硅,所掺杂的浓度可以约为1×1016atom/cm3至1×1018atom/cm3之间。上面所蚀刻的沟槽的深度可以约为0.2微米至2.0微米之间。
本发明另一方面提供一种制造动态随机存取存储单元阵列的方法,该存储单元阵列具有多个形成于半导体基底上的隐匿式水平沟槽电容器,该方法包括:
在该硅基底上形成一第一衬垫氧化层;
在该第一衬垫氧化层上沉积一第一氮化硅层;
限定该第一氮化硅层,并在该基底中蚀刻出多个沟槽,其中这些隐匿式水平沟槽电容器将分别形成于这些动态随机存取存储单元之中;
在该基底的这些沟槽上形成一第一介电层;
沉积足够厚度的一毯覆式第一多晶硅层,以填满这些沟槽;
以化学机械研磨法研磨该第一多晶硅层,当所留下的该第一多晶硅层与该基底形成一共平面时,暴露出该基底的表面;
在该基底上与这些沟槽上的该第一多晶硅层上形成一第二介电层;
限定该第二介电层,留下覆盖于该第一多晶硅层上的部分;
在该硅基底上成长一外延硅层,使其侧面延伸至该第一多晶硅层上的该第二介电层的上方,且在同时使一非晶硅层生长于该第二介电层上,该非晶硅层的顶端的表面积随着该外延硅生长的厚度增加而减小,以形成一外延硅/非晶硅层;
以一第二衬垫氧化层以及一第二氮化硅层覆盖于该有源元件区之上,形成场氧化隔离区,以使其环绕于该隐匿式水平沟槽电容器的周围,并使该隐匿式水平沟槽电容器之上的元件有源区隔离;
穿过该第二氮化硅层、该外延硅/非晶硅层以及该第二介电层至该隐匿式水平沟槽电容器上的该第一多晶硅层蚀刻出多个端点接触窗;
在这些接触窗的该外延硅/非晶硅层侧壁上形成一绝缘衬垫;
沉积一第二多晶硅层,并回蚀刻,以使该第二多晶硅层填满这些接触窗,形成一正极接触点;
去除该第二氮化硅层与该第二衬垫氧化层,以完成这些隐匿式水平沟槽电容器的一阵列,并进一步在该元件区上形成一栅极氧化层,以形成这些存储单元阵列;
沉积并限定一第一多晶硅化金属层,以在延伸至该隐匿式水平沟槽电容器上方的该元件区上,形成多个场效应晶体管的栅极;
紧邻这些栅极形成轻掺杂源极/漏极区;
沉积并回蚀刻一绝缘层,以形成多个这些栅极的间隙壁;
紧邻这些间隙壁形成重掺杂源极/漏极区,以形成这些动态随机存取存储单元阵列的多个存取场效应晶体管,其中这些晶体管的一源极/漏极区与这些隐匿式水平沟槽电容器的这些正极接触点相接触;
在该绝缘衬垫上形成一正极带,以形成该源极/漏极区与该正极接触点之间的电连接;
在这些栅极上以及这些源极/漏极区上沉积一多晶硅/金属介电层;
蚀刻该多晶硅/金属介电层,在这些晶体管的第二源极/漏极区形成一位线接触窗;以及
以一已限定的第二多晶硅化金属层延伸覆盖这些位线接触窗,以形成多个位线,完成这些动态随机存取存储单元。
最好是,正极带材料是由钛、钛/氮化物、硅化钨或硅化钛组成,且所沉积正极带的厚度为50埃至1000埃之间。
附图说明
为使本发明的上述目的、特征、和优点能更明显易懂,下文特举一优选实施例,并配合附图作详细说明。附图中:
图1绘示现有的一种电容器位于位线下方结构的动态随机存取存储单元的剖面图,其中堆叠电容器与位线均形成于硅基底表面上;
图2绘示现有的一种电容器位于位线上方结构的动态随机存取存储单元的剖面图,其中堆叠电容器与位线均形成于硅基底表面上;
图3绘示现有的一种堆叠电容器位于位线上方结构的动态随机存取存储单元的三维空间图形,其描述位线与电容器形成于相同的元件区上的问题;
图4绘示现有的一种动态随机存取存储单元剖面图,其描述在元件比例缩小后,一传统沟槽电容器需制作一深沟槽以增加其电容量;以及
图5至图12绘示根据本发明一优选实施例,形成具有一隐匿式水平沟槽电容器的动态随机存取阵列的剖面图。
具体实施方式
一种具有隐匿式水平电容器的高密度动态随机存取存储器阵列,是以单一外延硅层延伸至隐匿式电容器上,以形成之,其动态随机存取存储单元的结构与方法详述如下。动态随机存取存储单元是以N型通道场效应晶体管作为各个存储单元的存取晶体管,其形成于隐匿式水平电容器上的P型轻掺杂外延硅层之上。当元件区缩小时,此设计可使本发明利用元件区以下的空间,以制作具有增加电容量的隐匿式电容器。本领域的技术人员应当了解本实施例所叙述之外,还可以增加工艺步骤,并且其他形式的元件也可以覆于动态随机存取存储器晶片上。例如,在基底的P型掺杂外延硅中形成N型掺杂的井区,或在互补式金属氧化物半导体电路中形成P通道场效应晶体管,诸如此类均可用于动态随机存取存储器晶片上的周边电路。
请参照图5至图11,详细描述一种形成新型隐匿式水平沟槽电容器以形成动态随机存取存储单元的制造流程图。图12则描述以此隐匿式电容器所形成的动态随机存取存储单元的剖面图。请参照图5,绘示制造一动态随机存取存储单元的电容器的初始流程剖面图。其方法是提供一半导体基底40,以形成隐匿式水平沟槽电容器。优选的基底40为具有P型重掺杂(例如,硼)的单晶硅基底。而形成于基底40上,由氧化硅所组成的第一衬垫氧化层42,其制造方法为例如热氧化法,优选的厚度约为20埃至300埃之间。其后,在第一衬垫氧化层上沉积第一氮化硅层44,优选的厚度约为50埃至1000埃之间。例如以二氯硅烷(SiCl2H2)与氨气为反应气体,藉由低压化学气相沉积法(LPCVD)形成。
光致抗蚀剂掩模46与各向异性等离子体蚀刻,是用以在后续工艺所形成的元件区上蚀刻,以形成电容沟槽,以架构隐匿式水平沟槽电容器。第一氮化硅层44与第一衬垫氧化层42可在高密度等离子体蚀刻机(High-Density Plasma Etcher)中进行各向异性等离子体蚀刻,或在气体源含有氟的离子反应蚀刻器(Reactive Ion Etcher)中,例如,四氟化碳,进行等离子体蚀刻。持续蚀刻,以在P型重掺杂的基底40中形成电容沟槽7,此沟槽7在后续工艺中将形成电容正电极。优选的沟槽7是以各向异性等离子体蚀刻与含有氯的混合气体蚀刻形成的。此沟槽7不仅可以由垂直的方向(Z轴方向)予以延伸,也可由水平的方向(X-Y轴方向)加以扩展,以形成一倒置的蘑菇状结构,使元件区以下的空间可以加以利用,以增加电容量。此外,电容量也可藉由增加沟槽的深度增加。例如,所蚀刻的沟槽7,其深度至少约为0.2微米。
请参照图6,剥除光致抗蚀剂46,并在硅基底中的沟槽7表面上形成第一介电层(高介电常数)48,例如,氧化硅层/氮化硅层/氧化硅层(ONO)所形成的介电层。一种形成氧化硅层/氮化硅层/氧化硅层的方法是热氧化沟槽7的表面之后,沉积一氮化硅层,再通入氧气进行热回火,以使部分氮化硅层反应为氧化硅而形成。优选的氧化硅层/氮化硅层/氧化硅层48的厚度约为20埃至100埃之间。或选择其他高介电常数的介电层48,例如,五氧化二钽或其他类似的介电层。
然后,请参照图7,沉积一毯覆式第一多晶硅层50,其厚度至少需大于沟槽7的深度,以填满沟槽7。例如,以硅烷为反应气体,通过低压化学气相沉积法形成多晶硅层50。而多晶硅层50的N型重掺杂是在沉积多晶硅的同时掺杂磷形成的,例如,三氢化磷。其优选的掺杂浓度约为1×1019atom/cm3至1×1021atom/cm3之间。
接着,请参照图8,以化学机械研磨法研磨第一多晶硅层50,使其暴露出硅基底40的表面,留下在沟槽7之内的第一多晶硅层50,以使第一多晶硅层50与硅基底40的表面形成一共平面。研磨的方法就如同一般在半导体工业上常用的方法一样,是以已商业化可用于研磨的设备与研浆进行。
然后,在硅基底40上与第一多晶硅层50上形成第二(高介电常数)介电层52。例如,上述第一介电层48的氧化硅/氮化硅/氧化硅层。其中,用以形成第二氧化硅/氮化硅/氧化硅层的热氧化工艺也可以去除化学机械研磨后所造成的研磨损害。第二介电层52经构图后,使其覆盖于第一多晶硅层50的部分,与延伸至第一介电层48边缘之上的部分,以及基底40之上的部分留下。介电层52的构图,可以利用一光致抗蚀剂掩模与氢氟酸的稀释溶液中进行一湿式蚀刻,以去除其氧化硅层,以及在热磷酸溶液中进行蚀刻,以去除其氮化硅层。
其后,请参照图9,在硅基底40上生成一非选择性外延硅层(Non-Selective Epitaxial Silicon Layer)54,并同时在沟槽上方的第二介电层52上生长一非晶硅层54′。外延硅层54的生长延伸至第二介电层52之上,而非选择性外延的结果,使得非晶硅层54′生长在第二介电层52之上,并且造成在多晶硅所填入的沟槽之上的非晶硅层54′其顶部面积逐渐减小,如图9中虚线53所示的图形。外延硅/非晶硅层54(包括非晶硅层54′)可以用商业化的外延反应器形成,其厚度约为200埃至5000埃之间。外延硅/非晶硅层54的掺杂是同时以乙硼烷(B2H6)以形成P型轻掺杂外延硅层,其硼掺杂的浓度为1×1015atom/cm3(原子/厘米3)至1×1018atom/cm3。此外延硅层54延伸至多晶硅所填入的电容沟槽上方,以使动态随机存取存储器的场效应晶体管的栅极,以及浅沟渠隔离区可以形成于电容沟槽之上,因此藉由电容量的增加,以增加动态随机存取存储单元的密度。
接着,请参照图10,以沉积第一衬垫氧化层与第一氮化硅层的方法在外延硅/非晶硅层54上沉积第二层衬垫氧化层56与第二层氮化硅层58,并经由一光致抗蚀剂掩模(未图示)与等离子体蚀刻,留下欲形成元件有源区的部分。场氧化隔离区60环绕于隐匿式水平沟槽电容器上方的有源区周围,以形成隔离。此场氧化隔离区60可以用传统局部区域氧化法形成,但优选是以浅沟渠隔离法,以形成高密度动态随机存取存储器元件。一般工业上所使用的一种方法是蚀刻出一沟槽之后,经由热氧化与化学气相法沉积氧化硅层60,再进行化学机械研磨,使氧化硅层60回蚀至氮化硅层表面,以使其与元件区形成一共平面。以浅沟渠隔离法所形成的沟渠,其优选的深度约为0.1微米至1.0微米之间。
其后,以传统的光刻技术,通过一光致抗蚀剂掩模62与各向异性等离子体蚀刻工艺,蚀刻第二氮化硅层58与非晶硅层54′至正电极50之上的第二介电层52,以形成一端点接触窗9。优选端点接触窗9是以反应离子蚀刻,或以高密度等离子体蚀刻的方式形成。其中,氮化硅层58与氧化硅层56可以用含氟物,例如,二氟二氯化碳(CCl2F2)、三氟甲烷(CHF3)、四氟化碳/氢气、1,1-二氟乙烷(CH3CHF2)以及其他相似物为蚀刻气体进行蚀刻;而非晶硅54'可以用氯气或其他含氯或溴的气体,例如,二氯化硼/四氯化碳(BCl2/CCl4)、三氯化硼/四氟化碳以及其他相似物为蚀刻气体进行蚀刻。
然后,请参照图11,在剥除光致抗蚀剂掩模62之后,去除第二氮化硅层58之前,以热氧化法在端点接触窗9的侧壁上形成衬垫氧化层(LinerOxide)64,而元件区上的第二氮化硅层58与第二介电层之上的氮化硅层58则可防止氧化反应的发生。优选的衬垫层64是一高介电常数的介电层,例如,氧化物/氮化物/氧化物层,沉积的优选厚度约为20埃至100埃之间。或选择五氧化二钽(Ta2O5)作为此衬垫层64。其后,以各向异性等离子体蚀刻,以选择性去除端点接触窗9中的高介电常数介电层64与52。
接着,以低压化学气相沉积法沉积第二多晶硅层66,并研磨,以使接触窗9形成与隐匿式水平沟槽电容器相接触的正极接触点66。氮化硅层58与场氧化隔离区60可以在研磨或回蚀期间保护硅基底。优选的第二多晶硅层66,其厚度大于接触窗9宽度的一半,以完全填满介电层窗,并同时掺杂磷,例如,在以低压化学气相沉积法沉积多晶硅期间通入三磷化氢,使其掺杂浓度约为1×1019atom/cm3至1×1022atom/cm3之间。
然后,请参照图12,形成传送晶体管与位线,以完成动态随机存取存储单元阵列。本发明的关键图形在于各个存储单元的场效应晶体管可形成于沟槽电容器上方的外延硅层54之上,因此,元件的尺寸不但缩小,也可增加电容量。
其后的工艺是移去图11所示元件的第二氮化硅层58以及第二衬垫氧化层56。氮化硅层58的移除可以用热磷酸蚀刻,而衬垫氧化层56则可以用氢氟酸溶液予以去除。然后,在元件区上形成场效应晶体管栅极氧化层14,例如在干的氧气环境下,以热氧化法形成,优选的厚度约为20埃至100埃之间。场效应晶体管栅极16与字线16′,则是在栅极氧化层14上沉积一多晶硅层与硅化钨层,形成第一多晶硅化金属层16,然后再限定其图形以形成之。第一多晶硅化金属层16的形成方式,例如,以低压化学气相沉积法沉积一厚度约为500埃至3500埃的N型重掺杂多晶硅层。典型的多晶硅是以浓度约为1×1019atom/cm3至1×1021atom/cm3之间的砷或磷,进行离子植入,以进行掺杂。硅化钨层是以六氟化钨与硅烷为反应气体,进行低压化学气相沉积形成的。
之后,以传统光刻与各向异性等离子体蚀刻,限定多晶硅化金属层,以同时形成场效应晶体管的栅极16与浅沟渠隔离区60之上的字线16′。以本发明的方法,栅极16可延伸至隐匿式水平沟槽电容器8之上,以进一步缩小动态随机存取存储单元的尺寸。此外,栅极氧化层16也可以紧邻于正极接触点66形成。轻掺杂源极/漏极区17紧邻栅极16,进行离子植入以形成之。一般动态随机存取存储单元所采用的N型通道场效应晶体管,其轻掺杂源极/漏极区17的形成是以植入能量约为15KeV至40KeV之间,植入剂量约为1×1013atom/cm3至1×1015atom/cm3之间的砷(As75)或磷(P31)。然后,沉积一绝缘层,例如,氧化硅层,并回蚀刻,以形成场效应晶体管栅极16与字线16′的侧壁间隙壁18。其后,紧邻间隙壁18,植入砷,以形成重掺杂源极/漏极区19。优选的源极/漏极区19是采用离子植入法以完成剂量约为1×1019atom/cm3至1×1021atom/cm3之间的掺杂。场效应晶体管的源极/漏极区19之一延伸至隐匿式水平沟槽电容器8的正极接触点66的上方。之后,在绝缘衬垫64上沉积一导电层,并限定其图形,以形成一正极带68,使源极/漏极区19与正极接触点66形成良好的电连接。例如,沉积一厚度约为50埃至1000埃的钛、氮化钛、硅化钨或其他金属硅化物,然后以等离子体蚀刻或湿式蚀刻进行图形的限定,以形成正极带68。
然后,在元件上沉积一多晶硅/金属介电(PMD)层70,以隔绝场效应晶体管的栅极16与源极/漏极区19。优选的多晶硅/金属介电层70是以化学气相沉积法沉积一厚度约为1000埃至5000埃的氧化硅层。多晶硅/金属介电层70还可进一步平坦化,以使其表面上可形成不变形的光致抗蚀剂图形,以进一步改善下一层位线的构图,而使位线之间不留下残余物。接着,蚀刻多晶硅/金属介电层70至暴露出各个场效应晶体管的第二个源极/漏极区19,以形成位线接触窗4。然后,沉积第二多晶硅化金属层30,并对其构图,以形成位线,完成动态随机存取存储单元阵列。例如,多晶硅化金属层30可由沉积一厚度约为250埃至2000埃的N型重掺杂多晶硅层与厚度约为200埃至2000埃的硅化钨层所组成。其中,多晶硅层可以用硅烷为反应气体,进行低压化学气相沉积,并以浓度约为1×1019atom/cm3至1×1021atom/cm3之间的磷或砷进行掺杂;而硅化钨层则可以用六氟化钨与硅烷为反应气体,进行低压化学气相沉积形成。最好,以各向异性等离子体蚀刻限定多晶硅化金属层30,以形成位线。
以上所述的动态随机存取存储单元结构,其优点是:使形成于基底中的电容器可以由其水平方向予以延伸,以增加其电容量,而不需以传统方法,蚀刻具有高宽比的沟槽,以达到增加电容量的目的。为了进一步增加电容量,传统的垂直深沟槽,其高宽比(Aspect Ratio)达20~40,或更高,而未来ULSI的动态随机存取存储器元件,其高宽比预期将增加的更多。由于电容器的垂直深沟槽加深,致使蚀刻与再填入的工艺更加困难。而本发明的结构可以在基底表面所空出来的空间制作位线,因此,可以缩小存储单元的尺寸。而且此新的动态随机存取存储器结构的优点更优于堆叠电容器,其原因在于堆叠电容器的电容电极与位线均形成于基底表面,而使其元件的构形更加崎岖不平。
虽然已结合一优选实施例揭露了本发明,但是其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围内,可作出各种更动与润饰,因此本发明的保护范围应当由后附的权利要求来限定。

Claims (17)

1.一种制造隐匿于半导体基底的水平沟槽电容器的方法,该方法包括下列步骤:
在该基底中蚀刻出多个沟槽,以形成该水平沟槽电容器;
在该基底的这些沟槽形成一第一介电层;
在这些沟槽中填入一第一多晶硅层,以使该第一多晶硅层与该基底表面共平面;
在该基底与该第一多晶硅层上形成一第二介电层;
限定该第二介电层,留下该第一多晶硅层上的该第二介电层;
在该硅基底上生长一外延硅层,使其侧面延伸至该第一多晶硅层上的该第二介电层之上,且在同时使一非晶硅层生长于该第二介电层上,该非晶硅层的顶端的表面积随着该外延硅生长的厚度增加而减小,以形成一外延硅/非晶硅层;
穿过该外延硅/非晶硅层以及该第二介电层至该沟槽上的该第一多晶硅层,以蚀刻出多个端点接触窗;
在这些端点接触窗的该外延硅/非晶硅层侧壁上形成一绝缘衬垫;以及
在这些端点接触窗填入一第二多晶硅层,以形成一正极接触点,完成该隐匿式水平沟槽电容器的一阵列。
2.如权利要求1所述的方法,其中该基底为一P型重掺杂的单晶硅,所掺杂的浓度为1×1016atom/cm3至1×1018atom/cm3之间。
3.如权利要求1所述的方法,其中所蚀刻的该沟槽的深度为0.2微米至2.0微米之间。
4.如权利要求1所述的方法,其中该第一介电层与第二介电层包括氧化硅/氮化硅/氧化硅层。
5.如权利要求1所述的方法,其中该第一多晶硅层与第二多晶硅层是以浓度为1×1019atom/cm3至1×1021atom/cm3之间的N型杂质形成的重掺杂。
6.如权利要求1所述的方法,其中该外延硅层是以浓度为1×1015atom/cm3至1×1018atom/cm3之间P型杂质形成轻掺杂。
7.如权利要求1所述的方法,其中该绝缘衬垫为氧化硅/氮化硅/氧化硅。
8.一种制造动态随机存取存储单元阵列的方法,该存储单元阵列具有多个形成于半导体基底上的隐匿式水平沟槽电容器,该方法包括:
在该硅基底上形成一第一衬垫氧化层;
在该第一衬垫氧化层上沉积一第一氮化硅层;
限定该第一氮化硅层,并在该基底中蚀刻出多个沟槽,其中这些隐匿式水平沟槽电容器将分别形成于这些动态随机存取存储单元之中;
在该基底的这些沟槽上形成一第一介电层;
沉积足够厚度的一毯覆式第一多晶硅层,以填满这些沟槽;
以化学机械研磨法研磨该第一多晶硅层,当所留下的该第一多晶硅层与该基底形成一共平面时,暴露出该基底的表面;
在该基底上与这些沟槽上的该第一多晶硅层上形成一第二介电层;
限定该第二介电层,留下覆盖于该第一多晶硅层上的部分;
在该硅基底上成长一外延硅层,使其侧面延伸至该第一多晶硅层上的该第二介电层的上方,且在同时使一非晶硅层生长于该第二介电层上,该非晶硅层的顶端的表面积随着该外延硅生长的厚度增加而减小,以形成一外延硅/非晶硅层;
以一第二衬垫氧化层以及一第二氮化硅层覆盖于该有源元件区之上,形成场氧化隔离区,以使其环绕于该隐匿式水平沟槽电容器的周围,并使该隐匿式水平沟槽电容器之上的元件有源区隔离;
穿过该第二氮化硅层、该外延硅/非晶硅层以及该第二介电层至该隐匿式水平沟槽电容器上的该第一多晶硅层蚀刻出多个端点接触窗;
在这些接触窗的该外延硅/非晶硅层侧壁上形成一绝缘衬垫;
沉积一第二多晶硅层,并回蚀刻,以使该第二多晶硅层填满这些接触窗,形成一正极接触点;
去除该第二氮化硅层与该第二衬垫氧化层,以完成这些隐匿式水平沟槽电容器的一阵列,并进一步在该元件区上形成一栅极氧化层,以形成这些存储单元阵列;
沉积并限定一第一多晶硅化金属层,以在延伸至该隐匿式水平沟槽电容器上方的该元件区上,形成多个场效应晶体管的栅极;
紧邻这些栅极形成轻掺杂源极/漏极区;
沉积并回蚀刻一绝缘层,以形成多个这些栅极的间隙壁;
紧邻这些间隙壁形成重掺杂源极/漏极区,以形成这些动态随机存取存储单元阵列的多个存取场效应晶体管,其中这些晶体管的一源极/漏极区与这些隐匿式水平沟槽电容器的这些正极接触点相接触;
在该绝缘衬垫上形成一正极带,以形成该源极/漏极区与该正极接触点之间的电连接;
在这些栅极上以及这些源极/漏极区上沉积一多晶硅/金属介电层;
蚀刻该多晶硅/金属介电层,在这些晶体管的第二源极/漏极区形成一位线接触窗;以及
以一已限定的第二多晶硅化金属层延伸覆盖这些位线接触窗,以形成多个位线,完成这些动态随机存取存储单元。
9.如权利要求8所述的方法,其中该基底为一P型重掺杂的单晶硅,所掺杂的浓度为1×1016atom/cm3至1×1018atom/cm3之间。
10.如权利要求8所述的方法,其中所蚀刻的该沟槽的深度为0.2微米至2.0微米之间。
11.如权利要求8所述的方法,其中该第一介电层与第二介电层是由氧化硅/氮化硅/氧化硅组成,所沉积的厚度为20埃至100埃之间。
12.如权利要求8所述的方法,其中该第一多晶硅层与第二多晶硅层是以浓度为1×1019atom/cm3至1×1021atorn/cm3之间的N型杂质形成重掺杂。
13.如权利要求8所述的方法,其中该外延硅层是以掺杂剂量为1×1015atom/cm3至1×1018atom/cm3之间的乙硼烷形成P型轻掺杂。
14.如权利要求8所述的方法,其中该外延硅/非晶硅层的厚度为200埃至5000埃之间。
15.如权利要求8所述的方法,其中该绝缘衬垫为氧化硅/氮化硅/氧化硅,且其厚度为20埃至200埃之间。
16.如权利要求8所述的方法,其中该场氧化隔离区是以局部区域氧化法使该外延硅层热氧化形成的。
17.如权利要求8所述的方法,其中该正极带的材料是由钛、钛/氮化物、硅化钨或硅化钛组成,且所沉积的正极带的厚度为50埃至1000埃之间。
CN98108711A 1998-05-29 1998-05-29 制造水平沟槽电容器和动态随机存取存储单元阵列的方法 Expired - Lifetime CN1127135C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98108711A CN1127135C (zh) 1998-05-29 1998-05-29 制造水平沟槽电容器和动态随机存取存储单元阵列的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98108711A CN1127135C (zh) 1998-05-29 1998-05-29 制造水平沟槽电容器和动态随机存取存储单元阵列的方法

Publications (2)

Publication Number Publication Date
CN1237788A CN1237788A (zh) 1999-12-08
CN1127135C true CN1127135C (zh) 2003-11-05

Family

ID=5219766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98108711A Expired - Lifetime CN1127135C (zh) 1998-05-29 1998-05-29 制造水平沟槽电容器和动态随机存取存储单元阵列的方法

Country Status (1)

Country Link
CN (1) CN1127135C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356551C (zh) * 2003-11-21 2007-12-19 联华电子股份有限公司 动态随机存取存储单元及其制造方法
CN101997000B (zh) * 2010-08-24 2012-07-04 中国科学院上海微系统与信息技术研究所 一种具有扩展型沟槽的dram结构及其制作方法
CN102891110B (zh) * 2011-07-18 2014-09-24 中芯国际集成电路制造(上海)有限公司 半导体集成器件及其制造方法

Also Published As

Publication number Publication date
CN1237788A (zh) 1999-12-08

Similar Documents

Publication Publication Date Title
CN1223000C (zh) 带有外延隐埋层的瓶形沟槽式电容器
CN1145214C (zh) 具有外延掩埋层的沟槽电容器
US6780728B2 (en) Semiconductor constructions, and methods of forming semiconductor constructions
US5843820A (en) Method of fabricating a new dynamic random access memory (DRAM) cell having a buried horizontal trench capacitor
CN1169223C (zh) 存储器单元结构,其制造方法及其操作方法
TWI396252B (zh) 提供電性隔離之方法及包含該方法之半導體結構
CN1173394C (zh) 制造半导体集成电路器件的方法
CN1248066A (zh) 带有外延隐埋层的沟槽式电容器
CN1240303A (zh) 具有隔离轴环的沟槽电容器
CN101996999B (zh) 一种具有扩展型沟槽的dram结构及其制作方法
CN1304177A (zh) 具有自对齐到存储沟槽的字线的垂直动态存储单元
CN1507034A (zh) 用于制造具有在位线方向延伸的接触体的半导体器件的方法
TW201203458A (en) Method for fabricating semiconductor device with side junction
CN1841710A (zh) 集成电路及其制造方法
CN1127135C (zh) 制造水平沟槽电容器和动态随机存取存储单元阵列的方法
CN1276494C (zh) 电容器以及动态随机存储器的制造方法
CN1666344A (zh) 氮化物只读存储器存储单元阵列制造方法
CN1216863A (zh) 纵向晶体管
CN1127136C (zh) 制造随机存取存储单元阵列的方法
CN1285120C (zh) 部分垂直存储单元的双边角圆化制程
CN1309050C (zh) 具有单边埋入带的存储单元的制造方法
JPH11204758A (ja) 半導体基板に埋蔵した水平型トレンチコンデンサの製造方法
KR100531461B1 (ko) 엠피에스 공정을 이용한 캐패시터의 제조 방법
CN1949519A (zh) 动态随机存取存储器及其制造方法
CN101997000B (zh) 一种具有扩展型沟槽的dram结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TAIWEN INTEGRATED CIRCUIT MANUFACTURE CO., LTD.

Free format text: FORMER OWNER: WORLD ADVANCED INTEGRATED CIRCUIT STOCK-SHARING CO., LTD.

Effective date: 20110406

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 000000 HSINCHU SCIENCE BASED INDUSTRIAL PARK, TAIWAN, CHINA TO: 000000 HSINCHU CITY, TAIWAN, CHINA

TR01 Transfer of patent right

Effective date of registration: 20110406

Address after: 000000 Hsinchu, Taiwan, China

Patentee after: Taiwan Semiconductor Manufacturing Co., Ltd.

Address before: 000000 Hsinchu Science Industrial Park, Taiwan, China

Patentee before: World Advanced Integrated circuit stock-sharing Co., Ltd.

CX01 Expiry of patent term

Granted publication date: 20031105

CX01 Expiry of patent term