CN112553575B - 一种多层复合二氧化氮气敏薄膜及其制备方法 - Google Patents

一种多层复合二氧化氮气敏薄膜及其制备方法 Download PDF

Info

Publication number
CN112553575B
CN112553575B CN202011412059.3A CN202011412059A CN112553575B CN 112553575 B CN112553575 B CN 112553575B CN 202011412059 A CN202011412059 A CN 202011412059A CN 112553575 B CN112553575 B CN 112553575B
Authority
CN
China
Prior art keywords
layer
nitrogen dioxide
multilayer composite
noble metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011412059.3A
Other languages
English (en)
Other versions
CN112553575A (zh
Inventor
刘皓
徐瑶华
张晓�
赵文瑞
明安杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN202011412059.3A priority Critical patent/CN112553575B/zh
Publication of CN112553575A publication Critical patent/CN112553575A/zh
Application granted granted Critical
Publication of CN112553575B publication Critical patent/CN112553575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种多层复合二氧化氮气敏薄膜及其制备方法,其中薄膜包括:带有氧化层的硅基片,以及自下而上依次沉积在硅基片表面的氧化锡层、三氧化钨层、贵金属层。其制备方法是采用直流掠射角磁控溅射技术,分别以锡、钨及贵金属为靶材,依次在硅基片表面沉积氧化锡、三氧化钨、贵金属薄膜,之后将试样置于马弗炉中进行热处理。本发明制备的多层复合气敏薄膜对二氧化氮灵敏度高,能在150℃的较低温度下检测0.1ppm的二氧化氮气体,有利于实现MEMS传感器的低功耗,也具备较低的基线电阻,适用于针对MEMS器件的检测电路。同时本发明采用的制备方法便于控制气敏材料的均匀性,与MEMS工艺兼容性高,适合于工业大规模生产。

Description

一种多层复合二氧化氮气敏薄膜及其制备方法
技术领域
本发明涉及薄膜型气敏材料的制备方法,尤其涉及一种多层复合二氧化氮气敏薄膜及其制备方法。
背景技术
二氧化氮是一种常见的大气污染物,是形成酸雨、光化学烟雾的主要物质之一,长时间暴露在0.1ppm甚至更低浓度的二氧化氮环境中会对人体造成极大伤害。随着现代工业的发展,各种化石燃料的燃烧及工业生产过程中排放的二氧化氮逐渐成为环境治理的重点,二氧化氮气体传感器愈发重要。因此,对二氧化氮气敏材料的研究具有重要的意义和发展前景。
三氧化钨由于对二氧化氮灵敏度高,受到了研究人员的广泛关注。传统工业生产一般采用粉末状气敏材料进行气体传感器的制备,但随着气体传感器向微机电(MEMS)领域发展,气敏粉体的制备与MEMS工艺不兼容的劣势愈发明显。采用磁控溅射等方法在传感器芯片上原位生长三氧化钨薄膜,不仅能解决工艺兼容性问题,同时更容易克服气敏粉体工作温度较高的缺点,因此具有巨大的研究价值。然而,采用常规磁控溅射法制备的薄膜较为致密,难以满足气敏材料多孔、大比表面积的特点,导致其灵敏度等气敏性能较低,而采用如CN105803502B公开的阳极氧化等辅助方法,制备的气敏薄膜虽然性能优异,但工艺较为复杂,且成本较高,不适用于工业大规模生产。同时,三氧化钨材料的本征电阻率较高,应用于MEMS传感器中时会导致传感器基线电阻过大,对二氧化氮产生响应时电阻过高,不利于MEMS检测电路的设计(一般氧化钨基气体传感器的基线电阻在105~106Ω,对二氧化氮产生响应时电阻能达到107Ω以上,而MEMS检测电路通常要求响应时的电阻小于106Ω,以便提高检测精度)。因此,如何制备出低功耗、高灵敏度,且基线电阻满足MEMS检测电路要求的二氧化氮气敏薄膜,仍需进一步研究。
发明内容
针对上述已有技术存在的不足,本发明提供一种多层复合二氧化氮气敏薄膜及其制备方法,采用该方法制备的气敏薄膜能满足MEMS传感器对气敏材料的要求,即同时具备工作温度低,对二氧化氮灵敏度高,基线电阻低的特性。
本发明是通过以下技术方案实现的。
一种多层复合二氧化氮气敏薄膜,其特征在于,所述薄膜包括:带有氧化层的硅基片,以及自下而上依次沉积在硅基片表面的氧化锡层、三氧化钨层、贵金属层。
进一步地,所述硅基片的氧化层厚度为500nm~2000nm,所述氧化锡层厚度为100nm~500nm,所述三氧化钨层厚度为50nm~300nm,所述贵金属层厚度为1nm~10nm。
进一步地,所述贵金属为铂、金、钯中的一种。
一种如上所述的多层复合二氧化氮气敏薄膜的制备方法,其特征在于,所述方法包括:
(1)将带有氧化层的硅基片采用丙酮、无水乙醇、去离子水分别超声清洗后,用氮气吹干;
(2)采用金属锡靶材,以氩气和氧气作为工作气体,采用直流掠射角磁控溅射在经步骤(1)得到的硅基片表面沉积氧化锡层;
(3)采用金属钨靶材,以氩气和氧气作为工作气体,采用直流掠射角磁控溅射在氧化锡层表面沉积三氧化钨层;
(4)采用贵金属靶材,以氩气作为工作气体,采用直流掠射角磁控溅射在三氧化钨层表面沉积一层贵金属层,得到多层复合薄膜;
(5)将制备好的多层复合薄膜置于马弗炉中进行热处理,得到多层复合二氧化氮气敏薄膜产品。
优选地,所述步骤(1)超声清洗时间为10~20min。
优选地,所述步骤(2)中硅基片平面法线与金属锡靶材平面法线之间形成的掠射角为80°~90°,溅射压强为0.5~3Pa,氧气的体积分数为30%~70%,溅射功率为50~200W,氧化锡层厚度为100~500nm。
优选地,所述步骤(3)中硅基片平面法线与金属钨靶材平面法线之间形成的掠射角为80°~90°,溅射压强为1~3Pa,氧气的体积分数为30%~70%,溅射功率为50~200W,三氧化钨层厚度为50~300nm。
优选地,所述步骤(4)中硅基片平面法线与贵金属靶材平面法线之间形成的掠射角为80°~90°,溅射压强为1Pa,溅射功率为50~100W,贵金属层厚度为1~10nm。
优选地,所述步骤(4)中贵金属靶材为铂、金、钯中的一种。
优选地,所述步骤(5)中热处理温度为300℃~500℃,升温速度低于10℃/min,热处理时间为1~3h。
优选地,所述步骤(5)中热处理温度为450℃,升温速度为2℃/min,热处理时间为2h。
本发明的有益技术效果:
(1)本发明采用直流掠射角磁控溅射,制备的气敏薄膜具有较高的比表面积,相比于常规手段沉积的气敏薄膜灵敏度更高。
(2)本发明将电阻率较低的氧化锡作为导电层,将对二氧化氮灵敏度高的氧化钨作为气敏层,同时再复合一层贵金属,制得的气敏薄膜既保留了氧化钨在低温下对二氧化氮高灵敏度的特性,利于实现MEMS传感器的低功耗,也具备较低的基线电阻,适用于针对MEMS器件的检测电路。
(3)本发明采用的制备方法与传统化学合成手段相比,便于控制气敏材料的均匀性,与MEMS工艺兼容性高,适合于工业大规模生产。
附图说明
图1是实施例1制备的多层复合气敏薄膜结构示意图。图中:1为硅基片,2为氧化硅(即氧化层),3为氧化锡层,4为多孔的三氧化钨层,5为不连续的铂层。
图2是实施例1制备的多层复合气敏薄膜在不同温度时对1ppm二氧化氮气体的响应值;
图3是实施例1制备的多层复合气敏薄膜在150℃时对不同浓度二氧化氮气体的动态响应曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
(1)将带有1000nm厚氧化层的硅基片采用丙酮、无水乙醇、去离子水分别超声清洗15min后,用氮气吹干;
(2)以质量纯度为99.995%的金属锡为靶材,以质量纯度为99.999%的氩气和氧气作为工作气体,采用直流掠射角磁控溅射在经步骤(1)得到的硅基片表面沉积氧化锡薄膜(层),掠射角为85°,溅射压强为1Pa,氧气的体积分数为60%,溅射功率为100W,氧化锡薄膜厚度为400nm;
(3)以质量纯度为99.995%的金属钨为靶材,以质量纯度为99.999%的氩气和氧气作为工作气体,采用直流掠射角磁控溅射在氧化锡表面沉积多孔三氧化钨薄膜(层),掠射角为85°,溅射压强为1.5Pa,氧气的体积分数为60%,溅射功率为100W,三氧化钨薄膜厚度为200nm;
(4)以质量纯度为99.95%的金属铂为靶材,以质量纯度为99.999%的氩气作为工作气体,采用直流掠射角磁控溅射在三氧化钨层表面沉积一层不连续的铂层,掠射角为85°,溅射压强为1Pa,溅射功率为60W,铂层厚度为4nm;
(5)将制备好的多层复合薄膜置于马弗炉中进行热处理,热处理温度为450℃,升温速度为2℃/min,热处理时间为2h,热处理结束后自然冷却至室温,即得到高性能的多层复合二氧化氮气敏薄膜。
实施例1制备的多层复合气敏薄膜在不同温度时对1ppm二氧化氮气体的响应值如图2所示,在室温、100℃、150℃、200℃、250℃对1ppm二氧化氮的响应值分别为1.12、4.66、7.47、3.92、1.87,表明本发明制备的多层复合气敏薄膜可在较低温度下工作(100~150℃),利于实现MEMS传感器的低功耗。
实施例1制备的多层复合气敏薄膜在150℃的工作温度下对0.1~10ppm二氧化氮气体的动态响应曲线如图3所示,对0.1ppm、0.5ppm、1ppm、2ppm、5ppm、10ppm二氧化氮的灵敏度分别为1.32、3.92、7.47、21.56、98.89、454.32,且基线电阻小于104Ω。表明本发明制备的多层复合气敏薄膜在低温下对低浓度的二氧化氮具有较高的灵敏度,同时也具备较低的基线电阻,满足MEMS检测电路的要求。
实施例2
本实施例与实施例1的不同之处在于:步骤(2)、(3)、(4)中掠射角为80°,硅基片氧化层厚度为500nm,氧化锡层厚度为100nm,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为5.22。
实施例3
本实施例与实施例1的不同之处在于:步骤(2)、(3)、(4)中掠射角为90°,步骤(2)、(3)溅射压强均为3Pa,氧化锡层厚度为500nm,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为5.84。
实施例4
本实施例与实施例1的不同之处在于:步骤(2)溅射压强为0.5Pa,步骤(2)、(3)溅射功率均为200W,步骤(4)溅射功率均为100W,步骤(2)、(3)氧气的体积分数均为30%,步骤(4)中采用金属钯为靶材,金属钯层厚度为10nm,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为4.21。
实施例5
本实施例与实施例1的不同之处在于:步骤(4)中采用金属金为靶材,步骤(4)溅射功率均为50W,步骤(4)金层厚度为2nm,步骤(5)中热处理温度为300℃,处理时间为1h,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为4.44。
实施例6
本实施例与实施例1的不同之处在于:步骤(1)超声清洗时间为20min,步骤(5)中热处理温度为500℃,升温速率为9℃/min,处理时间为3h,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为3.69。
实施例7
本实施例与实施例1的不同之处在于:步骤(1)超声清洗时间为10min,硅基片氧化层厚度为2000nm,步骤(3)中三氧化钨层厚度为50nm,步骤(2)、(3)氧气的体积分数均为70%,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为2.18。
实施例8
本实施例与实施例1的不同之处在于:步骤(3)中三氧化钨层厚度为300nm,所制备的多层复合气敏薄膜在150℃下对1ppm的二氧化氮灵敏度为3.39。
以上所述的仅是本发明的较佳实施例,并不局限发明。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,还可以做出其它等同改进,均可以实现本发明的目的,都应视为本发明的保护范围。

Claims (6)

1.一种多层复合二氧化氮气敏薄膜,其特征在于,所述薄膜包括:带有氧化层的硅基片,以及自下而上依次沉积在硅基片表面的氧化锡层、三氧化钨层、贵金属层,所述硅基片的氧化层厚度为500nm~2000nm,所述氧化锡层厚度为100nm~500nm,所述三氧化钨层厚度为50nm~300nm,所述贵金属层厚度为1nm~10nm,所述贵金属为铂、金、钯中的一种;所述的多层复合二氧化氮气敏薄膜的制备方法,包括:
(1)将带有氧化层的硅基片采用丙酮、无水乙醇、去离子水分别超声清洗后,用氮气吹干;
(2)采用金属锡靶材,以氩气和氧气作为工作气体,采用直流掠射角磁控溅射在经步骤(1)得到的硅基片表面沉积氧化锡层,掠射角为80°~90°,氧化锡层厚度为100~500nm;
(3)采用金属钨靶材,以氩气和氧气作为工作气体,采用直流掠射角磁控溅射在氧化锡层表面沉积三氧化钨层,掠射角为80°~90°,三氧化钨层厚度为50~300nm;
(4)采用贵金属靶材,以氩气作为工作气体,采用直流掠射角磁控溅射在三氧化钨层表面沉积一层贵金属层,得到多层复合薄膜,掠射角为80°~90°,贵金属靶材为铂、金、钯中的一种,贵金属层厚度为1~10nm;
(5)将制备好的多层复合薄膜置于马弗炉中进行热处理,热处理温度为300℃~500℃,升温速度低于10℃/min,热处理时间为1~3h,得到多层复合二氧化氮气敏薄膜产品。
2.根据权利要求1所述的薄膜,其特征在于,所述步骤(1)超声清洗时间为10~20min。
3.根据权利要求1所述的薄膜,其特征在于,所述步骤(2)中溅射压强为0.5~3Pa,氧气的体积分数为30%~70%,溅射功率为50~200W。
4.根据权利要求1所述的薄膜,其特征在于,所述步骤(3)中溅射压强为1~3Pa,氧气的体积分数为30%~70%,溅射功率为50~200W。
5.根据权利要求1所述的薄膜,其特征在于,所述步骤(4)中溅射压强为1Pa,溅射功率为50~100W。
6.根据权利要求1所述的薄膜,其特征在于,所述步骤(5)中热处理温度为450℃,升温速度为2℃/min,热处理时间为2h。
CN202011412059.3A 2020-12-02 2020-12-02 一种多层复合二氧化氮气敏薄膜及其制备方法 Active CN112553575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011412059.3A CN112553575B (zh) 2020-12-02 2020-12-02 一种多层复合二氧化氮气敏薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011412059.3A CN112553575B (zh) 2020-12-02 2020-12-02 一种多层复合二氧化氮气敏薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112553575A CN112553575A (zh) 2021-03-26
CN112553575B true CN112553575B (zh) 2022-12-02

Family

ID=75048778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011412059.3A Active CN112553575B (zh) 2020-12-02 2020-12-02 一种多层复合二氧化氮气敏薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112553575B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588876B (zh) * 2021-07-13 2023-08-15 有研工程技术研究院有限公司 一种提高二氧化氮半导体传感器选择性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745529A (zh) * 2013-09-30 2016-07-06 阿本果太阳能新技术有限公司 生产氢气检测传感器的方法和所得传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032476A1 (de) * 1980-08-28 1982-04-01 Siemens AG, 1000 Berlin und 8000 München Selektiver duennschicht-gassensor hoher empfindlichkeit und stabilitaet zum nachweis und zur messung von gasfoermigen kohlenwasserstoff-verunreinigungen in der luft auf der basis von wolframoxid (wo(pfeil abwaerts)x(pfeil abwaerts))-halbleitern, sowie ein verfahren zu seiner herstellung
KR100236334B1 (ko) * 1997-01-27 1999-12-15 구자홍 암모니아 가스센서 및 그의 제조방법과 암모니아 가스 감지방법
WO2003042681A1 (fr) * 2001-11-14 2003-05-22 Matsushita Electric Industrial Co., Ltd. Capteur de gaz et procede de fabrication d'un capteur de gaz
CN100427939C (zh) * 2006-12-21 2008-10-22 天津大学 三氧化钨薄膜气敏传感器的表面改性方法
CN101824603B (zh) * 2010-06-02 2011-11-09 福州大学 一种复合薄膜气敏传感器的制作方法
US20120161790A1 (en) * 2010-12-22 2012-06-28 Peter Smith NOx SENSING MATERIALS AND SENSORS INCORPORATING SAID MATERIALS
KR101344738B1 (ko) * 2011-12-12 2013-12-26 한국과학기술연구원 고감도 투명 가스 센서 및 그 제조방법
CN104713915B (zh) * 2015-03-18 2017-12-08 华中科技大学 一种基于叠层结构的高性能气敏传感器及其制备方法
JP7403232B2 (ja) * 2019-04-12 2023-12-22 新コスモス電機株式会社 半導体式ガス検知素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745529A (zh) * 2013-09-30 2016-07-06 阿本果太阳能新技术有限公司 生产氢气检测传感器的方法和所得传感器

Also Published As

Publication number Publication date
CN112553575A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN103852496B (zh) 基于准定向氧化钨纳米线的气敏传感器元件的制备方法
CN203519539U (zh) 基于三氧化钨薄膜的室温气体传感器元件
Velasco et al. Thin solid state electrochemical gas sensors
CN103512924A (zh) 一种低温检测氮氧化物气敏元件的制备方法
CN104445047B (zh) 一种氧化钨/氧化钒异质结纳米线阵列及其制备方法
CN111624237B (zh) 一种氧化镍/二氧化钛纳米棒复合结构气体传感器及其制备方法和应用
CN102639993A (zh) 应用阳极氧化铝膜的快速响应的相对湿度传感器
CN112553575B (zh) 一种多层复合二氧化氮气敏薄膜及其制备方法
CN103512928A (zh) 一种基于三氧化钨薄膜的室温气体传感器元件的制备方法
CN102998337A (zh) 一种氮氧化物气体传感器元件的制备方法
CN107402241A (zh) 基于氧化钨/氧化钛核壳纳米线的气敏元件及其制备方法
CN106018490A (zh) 一种钯银合金纳米薄膜氢敏元件及制作方法
CN204177762U (zh) 一种掺氮二氧化钛纳米管氢气传感器
CN103389334A (zh) 铜掺杂多孔硅基氧化钨室温气敏元件的制备方法
CN107402240A (zh) 一维有序氧化钨/氧化钛核壳纳米线在检测二氧化氮中的应用
CN117849133A (zh) 一种双功能氢气传感器及其制备方法和使用方法
CN1797806A (zh) 氢半导体传感器气敏元件及其制作方法
CN104020201A (zh) 一种低温钯基氢气传感器及其制造方法
CN105675650A (zh) 用于室温的多孔硅基氧化铜复合结构气敏元件的制备方法
CN104407035A (zh) 一种气体传感器芯片
CN114910185A (zh) 一种激光热解结合维森堡直写的氧化铟锡高温薄膜传感器
CN107907572A (zh) 一种氧化钨纳米线气体传感器的响应类型控制方法
CN1603808A (zh) 氧化锌气体感测装置
CN111141790A (zh) 一种氢气探测器探测浓度范围和灵敏度的调控方法
CN112881475B (zh) 一种多孔SiCO-MoO3高温氢气传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant