CN112552038A - 一种绿色荧光复合陶瓷及其制备方法和应用 - Google Patents

一种绿色荧光复合陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN112552038A
CN112552038A CN202011271282.0A CN202011271282A CN112552038A CN 112552038 A CN112552038 A CN 112552038A CN 202011271282 A CN202011271282 A CN 202011271282A CN 112552038 A CN112552038 A CN 112552038A
Authority
CN
China
Prior art keywords
green fluorescent
composite ceramic
fluorescent composite
equal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011271282.0A
Other languages
English (en)
Other versions
CN112552038B (zh
Inventor
郑国君
肖文戈
邱建荣
郭绍润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011271282.0A priority Critical patent/CN112552038B/zh
Publication of CN112552038A publication Critical patent/CN112552038A/zh
Application granted granted Critical
Publication of CN112552038B publication Critical patent/CN112552038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明公开了一种绿色荧光复合陶瓷及其制备方法和应用。绿色荧光复合陶瓷主要由稀土铝酸盐石榴石和氧化铝两种晶体组成,按化学组成Lu3‑x‑zCezRexAlyO12的元素计量比制备而成,其中,Re为Y、Gd中的至少一种,x、y、z的取值范围分别为:0≤x≤2,6<y≤20,0<z≤0.3,且公开了绿色荧光复合陶瓷的制备方法及绿色荧光复合陶瓷在基于大功率蓝光LED或LD的固态照明与显示的应用。本发明制备的绿色荧光复合陶瓷,其量子效率高、热稳定性优异,且制备方法简单,在常压下通过玻璃晶化的方式即可得到致密度高、透过率可调的绿色荧光透明陶瓷,并且制备的绿色荧光透明陶瓷可以通过与大功率蓝光LED或LD等固态激发光源组合封装出高功率发光器件。

Description

一种绿色荧光复合陶瓷及其制备方法和应用
技术领域
本发明属于固体发光材料的一种复合陶瓷,具体涉及一种绿色荧光复合陶瓷及其制备方法和应用。
背景技术
白光LED因具有高效、环保、长寿命、体积小等许多优点而应用广泛,并已经逐渐取代传统照明光源。半导体固态照明光源正朝着高稳定性、高光学品质和高激发密度的方向发展,有望应用于汽车大灯、隧道灯、强力探照灯等特殊照明领域。以大功率LED或者激光二极管(LD)等作为激发光源的高功率荧光转换型固态照明光源在运行时会产生巨大的热量,使得器件的运行温度大于150℃。然而,由于有机封装材料物理化学稳定性差且热导率低,传统的“荧光粉+硅胶”型有机-无机复合荧光转换体,无法应用于高功率固态照明,特别是激光照明领域。
作为一种块体材料,荧光陶瓷是一种全无机荧光转换体。它不但能够拥有荧光晶体的高荧光量子效率和高热导率,还能通过组分调控、烧结过程的控制实现对透明度的调控,进而优化其对光的散射、透过和吸收。
绿色荧光陶瓷能够被应用于高品质绿色照明或者宽色域显示等领域,如专利文献《一种绿色荧光透明陶瓷的制备方法和应用》(CN 110204324A)就公开了一种绿色硅酸盐石榴石荧光透明陶瓷及其应用。铝酸盐石榴石相比于硅酸盐石榴石,具有更高的热导率和光谱可调性,但是目前稀土铝酸盐(Re3Al5O12)石榴石荧光陶瓷的制备方法均采用高压、高真空烧结技术。如专利文献《一种用于高光效LED的绿光透明陶瓷荧光体的制备方法》(CN104891967A)公开了一种绿色透明陶瓷(Cex%Lu100%-x%)3Al5O12的制备方法其制备时采用了冷等静压(150~300Mpa)和高真空烧结,其工艺复杂,重复性差。又如,专利文献《一种石榴石型铝酸盐荧光陶瓷的制备方法及所制成的荧光陶瓷》(CN 104909741 A)公开了一种石榴石型荧光陶瓷的制备方法,其制备时采用了真空电子束熔炼技术,并且在0.01-100Pa的高真空下进行热处理,制备成本极高。高压、高真空等致密化烧结的工艺复杂、成本高昂极大地限制了荧光陶瓷在高功率照明领域的广泛应用。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于提供一种绿色荧光复合陶瓷;本发明的另一目的在于提供上述绿色荧光复合陶瓷的无需高压和高真空的制备方法及其应用。
为实现上述目的,本发明的技术方案是:
一、一种绿色荧光复合陶瓷:
绿色荧光复合陶瓷主要由稀土铝酸盐石榴石和氧化铝两种晶体组成,按化学组成Lu3-x-zRexAlyO12:zCe的元素计量比制备而成,其中,Re为Y、Gd中的至少一种,x、y、z的取值范围分别为:0≤x≤2,6<y≤20,0<z≤0.3。
二、一种绿色荧光复合陶瓷的制备方法,包括以下具体步骤:
(1)按化学组成Lu3-x-zRexAlyO12:zCe中的元素计量比,其中,Re为Y、Gd中的至少一种,x、y、z的取值范围分别为:0≤x≤2,6<y≤20,0<z≤0.3,称取含有Lu、Al、Re、Ce的氧化物、碳酸盐或者硝酸盐为原料,然后通过研磨、搅拌等方式将其充分混合;
(2)将步骤(1)所得的原料,在高温熔化设备中进行熔融操作,然后经冷却后得到透明玻璃样品。
(3)将步骤(2)所得的透明玻璃样品放入箱式炉中进行析晶处理,在常压下,首先在800~1000℃下进行保温,随后升温至1100~1600℃进行致密化烧结,并在气氛下进行析晶,经冷却后得到致密化的绿色荧光复合陶瓷。
(4)将步骤(3)所得的致密化的绿色荧光复合陶瓷依次进行打磨成片状、表面抛光处理后得量子效率高、热稳定好及透过率能调的最终的绿色荧光复合陶瓷。
所述步骤(3)中,保温的时间和致密化烧结的时间均为1-40h。
所述步骤(3)中的气氛为空气、氧气、氮气和氢气混合气、氩气、一氧化碳气体中的至少一种。
三、绿色荧光复合陶瓷的应用
所述的绿色荧光复合陶瓷在基于大功率蓝光LED或LD的固态照明与显示的应用。
所述绿色荧光复合陶瓷制备荧光转换型固态光源,所述的荧光转换型固态光源应用于照明与显示。
所述的荧光转换型固态光源采用发射波长为420~480nm的LED或者LD作为固态激发光源。
本发明无需高压、高真空就可以制备出致密度高、透过率可调的绿色荧光复合陶瓷,且其常温下内量子效率高达98%、且在150℃下也几乎不发生热猝灭。
本发明的有益效果:
本发明涉及一种量子效率高、热稳定性优异的绿色荧光复合陶瓷;其制备方法不需要复杂的制备工艺,也不需要高压、高真空等极端条件,在常压下通过玻璃晶化的方式即可得到致密度高、透过率可调的绿色荧光透明陶瓷,并且可以通过与大功率蓝光LED或LD等固态激发光源组合封装出高功率发光器件。
附图说明
图1是实施例1制备的样品的XRD图谱;
图2是实施例1-3制备的样品的激发和发射光谱;
图3是实施例1制备的样品的总透过率;
图4是实施例1制备的样品的热稳定性测试;
图5是实施例1和实施例3制备的样品结合450nm蓝光LED封装的LED器件的光谱。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1
按以下分子式Lu2.99Ce0.01Al10O12的计量比分别称取氧化镥、氧化铝和氧化铈原料,放入玛瑙研钵中,加入3ml酒精,搅拌、研磨20min使原料充分混合后得到混合粉体,使用压片机将混合粉体压制成薄片,然后截取该薄片的二十分之一,放入配备有双光束二氧化碳激光器的气悬浮炉中,使用高纯氧气作为载气,对样品进行悬浮熔炼,使样品保持熔融状态约30s,通过切断激光使熔体快速冷却,获得具有相应组分的玻璃球。接着将所获得的玻璃球放入高温箱式炉中,在空气氛围下以10℃/min的速度升至900℃并保温2h,最后以5℃/min的速度升至1300℃,常压下进行致密化烧结5h,自然冷却后,得到致密化的球形荧光透明陶瓷。将球形荧光透明陶瓷打磨成片状,对荧光透明陶瓷片进行表面抛光处理后,即获得在420-480nm激发下发射峰值在511nm左右的绿光荧光复合陶瓷。
如图1所示,是实施例1制备的样品的XRD图谱,从图中可知,制备的绿色荧光复合陶瓷属于石榴石结构的立方晶相。
如图2所示,实施例1制备的绿色荧光复合陶瓷在420-480nm的蓝光激发下,发射出峰值的511nm的宽带绿光,内量子效率为98%。
如图3所示,是实施例1制备的样品的总透过率,其中此实施例在样品的厚度为0.5mm时发射峰值在511nm处的总透过率为50%。
如图4所示,是实施例1制备的样品的热稳定性测试,从图中可知,制备的样品的热稳定好,其在150℃下积分强度未发生改变。
如图5所示,实施例1制备的样品结合450nm蓝光LED封装的LED器件的光谱,其光谱覆盖蓝光到绿光区域,可以应用于基于LED的照明与显示领域。
实施例2
除了将致密化烧结温度(致密化温度)改为1100℃,烧结时间(致密化时间)改为2h,其他制备步骤和工艺条件与实施例1相同。本实施例激发和发射光谱、热稳定性与实施例1相似,内量子效率为90%,在样品的厚度为0.5mm时发射峰值在511nm处的总透过率为80%。
实施例3
除了将致密化烧结温度(致密化温度)改为1600℃,其他制备步骤和工艺条件与实施例1相同。本实施例激发和发射光谱、热稳定性与实施例1相似,内量子效率为95%,在样品的厚度为0.5mm时发射峰值在511nm处的总透过率为20%,结合450nm蓝光LED封装的LED器件的光谱见图5。
实施例4至实施例20:
按表1中的实施例化学式组成及其化学计量比称取相应原料,其致密化温度、致密化时间和气氛见表1,其他步骤与上述实施例皆相同。表1中透过率值均为0.5mm厚的样品在波长511nm处的总透过率。
表1实施例1-20
Figure BDA0002777736220000041
Figure BDA0002777736220000051
由此可见,本发明通过不同的元素配比、保温条件、烧结条件等工艺条件能调节光透过率,适当延长烧结保温时间能实现更高的透过率。本发明的光透过率最高可达到80%,实现了极高的致密性。显然,上述实施例仅仅是为了清楚的说明所作的举例,在上述说明的基础上还可以做出其他形式的变动或变化,由此所引申出的显而易见的变化或变动仍属于本发明的保护范围之内。本发明实施例中玻璃的制备采用了气悬浮炉法,然而,其制备方法并不局限于此,其他能够将原料充分熔化且快速冷却的方法均可以获得本发明所述的玻璃。本发明实施例中所采用的原料也可以使用含有相应元素但不引入外来杂质的其他化合物。

Claims (6)

1.一种绿色荧光复合陶瓷,其特征在于:所述的绿色荧光复合陶瓷主要由稀土铝酸盐石榴石和氧化铝两种晶体组成,按化学组成Lu3-x-zCezRexAlyO12的元素计量比制备而成,其中,Re为Y、Gd中的至少一种,x、y、z的取值范围分别为:0≤x≤2,6<y≤20,0<z≤0.3。
2.一种权利要求1所述的绿色荧光复合陶瓷的制备方法,其特征在于:方法包括以下步骤:
(1)按照权利要求1所述的化学组成及计量比,称取含有Lu、Al、Re、Ce的氧化物、碳酸盐或者硝酸盐为原料,Re为Y、Gd中的至少一种,然后通过研磨、搅拌方式将原料充分混合;
(2)将步骤(1)中的原料,在熔化设备中进行熔融操作,然后经冷却后得到透明玻璃样品;
(3)将步骤(2)所得的透明玻璃样品放入箱式炉中进行析晶处理,在常压下,首先在800~1000℃下进行保温,随后升温至1100~1600℃进行致密化烧结,并在气氛下进行析晶,经冷却后得到致密化的绿色荧光复合陶瓷;
(4)将步骤(3)所得的致密化的绿色荧光复合陶瓷依次进行打磨成片状、表面抛光处理后得最终的绿色荧光复合陶瓷。
3.根据权利要求2所述的一种绿色荧光复合陶瓷的制备方法,其特征在于:所述步骤(3)中,保温的时间和致密化烧结的时间均为1-40h。
4.根据权利要求2所述的一种绿色荧光复合陶瓷的制备方法,其特征在于:所述步骤(3)中的气氛为空气、氧气、氮气和氢气混合气、氩气、一氧化碳气体中的至少一种。
5.根据权利要求2-4任一所述的制备方法制成的绿色荧光复合陶瓷的应用,其特征在于:所述的绿色荧光复合陶瓷在基于大功率蓝光LED或LD的固态照明与显示的应用。
6.根据权利要求5的绿色荧光复合陶瓷的应用,其特征在于:所述绿色荧光复合陶瓷制备荧光转换型固态光源,所述的荧光转换型固态光源应用于照明与显示。
CN202011271282.0A 2020-11-13 2020-11-13 一种绿色荧光复合陶瓷及其制备方法和应用 Active CN112552038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011271282.0A CN112552038B (zh) 2020-11-13 2020-11-13 一种绿色荧光复合陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011271282.0A CN112552038B (zh) 2020-11-13 2020-11-13 一种绿色荧光复合陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112552038A true CN112552038A (zh) 2021-03-26
CN112552038B CN112552038B (zh) 2021-12-14

Family

ID=75042220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011271282.0A Active CN112552038B (zh) 2020-11-13 2020-11-13 一种绿色荧光复合陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112552038B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548883A (zh) * 2021-07-08 2021-10-26 太原理工大学 一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN101284733A (zh) * 2007-04-10 2008-10-15 中国科学院上海硅酸盐研究所 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN101294302A (zh) * 2007-04-25 2008-10-29 宁波大学 掺杂稀土的镥铝石榴石晶体制备工艺
WO2008135477A2 (de) * 2007-05-02 2008-11-13 Ceramtec Ag Keramischer hartstoff
CN101617023A (zh) * 2007-02-02 2009-12-30 日立金属株式会社 荧光材料及采用该荧光材料的闪烁器和放射线检测器
CN101855187A (zh) * 2007-09-14 2010-10-06 宾夕法尼亚州立大学研究基金会 透明陶瓷的制造方法
CN102060539A (zh) * 2009-11-13 2011-05-18 中国科学院上海硅酸盐研究所 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN102344284A (zh) * 2010-05-10 2012-02-08 信越化学工业株式会社 波长转换元件,发光装置,及制造波长转换元件的方法
CN102449111A (zh) * 2009-06-01 2012-05-09 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
CN103601484A (zh) * 2013-11-28 2014-02-26 中国科学院宁波材料技术与工程研究所 一种镥铝石榴石基透明陶瓷的制备方法
CN104762658A (zh) * 2015-04-30 2015-07-08 哈尔滨工业大学 一种水平定向区熔结晶制备大尺寸氧化铝-钇铝石榴石共晶陶瓷的方法
CN104846431A (zh) * 2015-05-26 2015-08-19 哈尔滨工业大学 一种大尺寸氧化铝-钇铝石榴石共晶陶瓷的垂直布里奇曼法制备法
CN105579553A (zh) * 2013-09-26 2016-05-11 奥斯兰姆施尔凡尼亚公司 波长转换器以及具有所述波长转换器的发光器件
CN106518037A (zh) * 2016-11-03 2017-03-22 中国科学院长春光学精密机械与物理研究所 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN106544023A (zh) * 2016-10-21 2017-03-29 北京宇极科技发展有限公司 一种白光LED用小粒径LuAG绿粉的制备方法
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
CN107651955A (zh) * 2017-10-23 2018-02-02 苏州创思得新材料有限公司 一种白光led照明用的复相透明陶瓷及其制备方法
CN107915481A (zh) * 2017-11-22 2018-04-17 中国科学院过程工程研究所 一种纳米结构钇铝石榴石基透明陶瓷材料、其制备方法及用途
CN108148592A (zh) * 2018-01-10 2018-06-12 中山大学 一种具有相分离结构稀土共晶荧光材料及其制备方法和应用
CN108441959A (zh) * 2018-04-18 2018-08-24 苏州四海常晶光电材料有限公司 掺铈铝酸钆镥石榴石晶体制备方法
CN108863317A (zh) * 2017-05-09 2018-11-23 中国科学院上海硅酸盐研究所 一种荧光复合陶瓷及其制备方法和应用
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN109987932A (zh) * 2018-01-02 2019-07-09 上海航空电器有限公司 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN110128019A (zh) * 2019-05-15 2019-08-16 浙江大学 一种黄色荧光玻璃陶瓷的制备方法和应用
CN110204324A (zh) * 2019-05-15 2019-09-06 浙江大学 一种绿色荧光透明陶瓷的制备方法和应用
FR3078966A1 (fr) * 2018-03-16 2019-09-20 Luxeram Matrice ceramique transparente comportant une inclusion visible
CN110272208A (zh) * 2019-07-18 2019-09-24 浙江大学 一种绿色荧光玻璃陶瓷及其制备方法和应用
CN110642624A (zh) * 2019-10-31 2020-01-03 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN110668803A (zh) * 2019-10-31 2020-01-10 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的钪硅酸盐荧光陶瓷及其制备方法
CN111072374A (zh) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN101617023A (zh) * 2007-02-02 2009-12-30 日立金属株式会社 荧光材料及采用该荧光材料的闪烁器和放射线检测器
CN101284733A (zh) * 2007-04-10 2008-10-15 中国科学院上海硅酸盐研究所 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN101294302A (zh) * 2007-04-25 2008-10-29 宁波大学 掺杂稀土的镥铝石榴石晶体制备工艺
WO2008135477A2 (de) * 2007-05-02 2008-11-13 Ceramtec Ag Keramischer hartstoff
CN101855187A (zh) * 2007-09-14 2010-10-06 宾夕法尼亚州立大学研究基金会 透明陶瓷的制造方法
CN102449111A (zh) * 2009-06-01 2012-05-09 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
CN102060539A (zh) * 2009-11-13 2011-05-18 中国科学院上海硅酸盐研究所 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN102344284A (zh) * 2010-05-10 2012-02-08 信越化学工业株式会社 波长转换元件,发光装置,及制造波长转换元件的方法
CN105579553A (zh) * 2013-09-26 2016-05-11 奥斯兰姆施尔凡尼亚公司 波长转换器以及具有所述波长转换器的发光器件
CN103601484A (zh) * 2013-11-28 2014-02-26 中国科学院宁波材料技术与工程研究所 一种镥铝石榴石基透明陶瓷的制备方法
CN104762658A (zh) * 2015-04-30 2015-07-08 哈尔滨工业大学 一种水平定向区熔结晶制备大尺寸氧化铝-钇铝石榴石共晶陶瓷的方法
CN104846431A (zh) * 2015-05-26 2015-08-19 哈尔滨工业大学 一种大尺寸氧化铝-钇铝石榴石共晶陶瓷的垂直布里奇曼法制备法
CN106544023A (zh) * 2016-10-21 2017-03-29 北京宇极科技发展有限公司 一种白光LED用小粒径LuAG绿粉的制备方法
CN106518037A (zh) * 2016-11-03 2017-03-22 中国科学院长春光学精密机械与物理研究所 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
CN108863317A (zh) * 2017-05-09 2018-11-23 中国科学院上海硅酸盐研究所 一种荧光复合陶瓷及其制备方法和应用
CN107651955A (zh) * 2017-10-23 2018-02-02 苏州创思得新材料有限公司 一种白光led照明用的复相透明陶瓷及其制备方法
CN107915481A (zh) * 2017-11-22 2018-04-17 中国科学院过程工程研究所 一种纳米结构钇铝石榴石基透明陶瓷材料、其制备方法及用途
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN109987932A (zh) * 2018-01-02 2019-07-09 上海航空电器有限公司 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN108148592A (zh) * 2018-01-10 2018-06-12 中山大学 一种具有相分离结构稀土共晶荧光材料及其制备方法和应用
FR3078966A1 (fr) * 2018-03-16 2019-09-20 Luxeram Matrice ceramique transparente comportant une inclusion visible
CN108441959A (zh) * 2018-04-18 2018-08-24 苏州四海常晶光电材料有限公司 掺铈铝酸钆镥石榴石晶体制备方法
CN111072374A (zh) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法
CN110128019A (zh) * 2019-05-15 2019-08-16 浙江大学 一种黄色荧光玻璃陶瓷的制备方法和应用
CN110204324A (zh) * 2019-05-15 2019-09-06 浙江大学 一种绿色荧光透明陶瓷的制备方法和应用
CN110272208A (zh) * 2019-07-18 2019-09-24 浙江大学 一种绿色荧光玻璃陶瓷及其制备方法和应用
CN110642624A (zh) * 2019-10-31 2020-01-03 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN110668803A (zh) * 2019-10-31 2020-01-10 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的钪硅酸盐荧光陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI ZHAO等: "Controlled Synthesis and Application of α-Al2O3 for Lu3Al5O12: Ce3+ Green Spherical Phosphors", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY(MATERIALS SCIENCE)》 *
邹征刚: "微下拉法生长的铈掺杂LuAG/Al2O3和(Lu2/3Gd1/3)AG/Al2O3共晶的结构与发光性能研究", 《中国学术期刊(光盘版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548883A (zh) * 2021-07-08 2021-10-26 太原理工大学 一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112552038B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
TWI625379B (zh) 螢光體及其用途
KR101507250B1 (ko) 옥시나이트라이드 발광재료, 그 제조방법 및 이로부터 제조된 조명광원
US9153754B2 (en) Light emitting diode (LED) red fluorescent material and lighting device having the same
CN110204324B (zh) 一种绿色荧光透明陶瓷的制备方法和应用
TWI576410B (zh) 矽酸鹽磷光體
CN106047341B (zh) 一种稀土掺杂荧光粉、其合成方法及其在led器件上的应用
CN111234814B (zh) 一种Mn4+掺杂的氮氧化物红色荧光粉及制备方法
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
CN109592978A (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
Zhao et al. Synthesis and luminescence properties of color-tunable Ce, Mn co-doped LuAG transparent ceramics by sintering under atmospheric pressure
Sun et al. Green emitting spinel/Ba2SiO4: Eu2+/spinel sandwich structure robust ceramic phosphor prepared by spark plasma sintering
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN113213933B (zh) 一种宽带近红外荧光陶瓷及其制备方法和应用
WO2019061004A1 (zh) 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
Li et al. Ce: YScAG phosphor-converted transparent ceramics with high thermal saturation and weak concentration quenching for LED and LD white lighting
JP5111181B2 (ja) 蛍光体および発光装置
Zhao et al. Fabrication of Al2O3GAGG: Ce composite ceramic phosphors with excellent color quality for high-power laser-driven lighting
CN115259852A (zh) 一种高光效的绿光转换材料及其制备方法
US12006263B2 (en) Preparation method and use of green fluorescent transparent ceramic
Hong et al. Cost-effective way of improving the optical properties of phosphor-in-glass by adjusting the particle size of glass powder
CN115521785B (zh) 一种氧化物近红外发光材料及其制备方法与发光装置
CN111875370B (zh) 一种用于蓝光led或ld激发的复合晶相荧光陶瓷及其制备方法
Wang et al. Ce: LuAG transparent ceramics for high-brightness solid-state lighting: Fabrication and effect of Ce concentration
CN116589271A (zh) 一种激光照明用高热导、高显指复相荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant