CN102449111A - 发光陶瓷和使用发光陶瓷的发光装置 - Google Patents

发光陶瓷和使用发光陶瓷的发光装置 Download PDF

Info

Publication number
CN102449111A
CN102449111A CN2010800243516A CN201080024351A CN102449111A CN 102449111 A CN102449111 A CN 102449111A CN 2010800243516 A CN2010800243516 A CN 2010800243516A CN 201080024351 A CN201080024351 A CN 201080024351A CN 102449111 A CN102449111 A CN 102449111A
Authority
CN
China
Prior art keywords
light
ceramic
luminescent
pottery
luminescent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800243516A
Other languages
English (en)
Other versions
CN102449111B (zh
Inventor
中村年孝
藤井宏中
宮川浩明
拉贾什·穆克尔吉
张彬
望月周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42304997&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102449111(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of CN102449111A publication Critical patent/CN102449111A/zh
Application granted granted Critical
Publication of CN102449111B publication Critical patent/CN102449111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7721Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Abstract

某些实施方案提供了其中掺杂物的量比常规发光陶瓷更低的发光陶瓷。在某些实施方案中,所述发光陶瓷包含含有稀土元素和至少一种稀土掺杂物的主体材料,其中所述稀土掺杂物为所述材料中存在的稀土原子的约0.01%至0.5%。某些实施方案提供了发光陶瓷,其包含由式(A1-xEx)3B5O12表示的多晶发光材料。某些实施方案提供了包含本文公开的发光陶瓷的发光装置。

Description

发光陶瓷和使用发光陶瓷的发光装置
相关申请的引用
本申请要求2009年6月1日提交的第61/183,004号美国临时专利申请的优先权,其整体内容通过引用并入本文。
发明背景
发明领域
本发明涉及发光陶瓷,诸如在发光装置中所使用的那些发光陶瓷。
相关技术的描述
白光发光二极管(LED)是公知的固态发光装置并广泛用于实际应用。使用LED的实例包括各种仪器的指示器、用于移动电话的LCD显示器的背光、标志牌、装饰性照明等。对于一些应用,难于获得能够发射所述应用所需的颜色范围的光的LED。例如,许多LED发射蓝色光,但对于装置而言常需要白色光。在这些情况下,发光材料能用于改变发出的光的颜色。这通过使从LED发出的蓝色或一些其它颜色的光通过发光材料来完成。一些光通过发光材料而未被改变,但一些光由发光材料吸收,然后其发射不同波长的光。因此,发光材料通过将部分光转换为不同波长的光来调整发出的光的表观颜色。许多白光发光装置以该类型的颜色转换为基础。例如,一种类型的常规白光发光装置包含蓝光LED和分散在诸如环氧树脂或硅树脂的包封树脂中的发射黄色光的YAG发光材料粉末。
近年来LED的发光效率已经得到了提高。因此,LED的用途可扩展至需要更大发光强度的白光发光装置,例如汽车的车头灯、中型至大型LCD显示器的背光和替代目前的荧光灯和白炽灯的普通照明。对于这些应用,具有在较高的驱动条件和较大的发光通量下保持其发光效率的发光装置是有益的。在某些情况下,较高的驱动条件可能显著增加LED装置的发热,并且该升高的温度可能降低LED的效率和装置的寿命。例如,温度上升可能导致LED半导体芯片的内部量子效率降低并缩短包封树脂的寿命。近来,已经制备使用发光陶瓷板代替粉末的LED装置。这在一定程度上帮助降低热淬灭,其可能由于与分散在树脂中的粉末相比板的导热性更好。然而,即使对于陶瓷板而言,热淬灭仍然是一个问题。
发明概述
一些实施方案提供了用于发光装置的发光陶瓷。这些陶瓷的掺杂物的量倾向于比通常使用的常规发光陶瓷低。在一些实施方案中,发光陶瓷包含含有稀土元素和至少一种稀土掺杂物的主体材料,其中所述稀土掺杂物可为在所述材料中存在的稀土原子的约0.01%至0.5%。一些实施方案提供了包含由式(A1-xEx)3B5O12表示的多晶发光材料的发光陶瓷;其中A为Y、Gd、La、Lu、Tb或其组合;x为约0.0001至约0.005;B为Al、Ga、In或其组合;以及E为Ce、Eu、Tb、Nd或其组合;其中所述陶瓷的最大吸收波长为约420nm至约480nm。
一些实施方案提供了包含由式(Y1-(x+y)GdyCex)3B5O12表示的多晶发光材料的发光陶瓷,其中x和B与上述描述的相同且y为约0.005至约0.05。
一些实施方案提供了包含最大发射波长为约420nm至约480nm的发光二极管和如本文公开的发光陶瓷的发光装置,其中设置所述发光陶瓷以接收至少部分从所述发光二极管发射的光并将其转换为最大发射波长为约500nm至约700nm的光。
下文对上述内容和其它实施方案进行更详细的描述。
附图简述
图1是包含本文公开的发光陶瓷的装置的一些实例的示意图。
图2是包含本文公开的发光陶瓷和另外板形式的陶瓷的装置的实例的示意图。
图3是包含本文公开的发光陶瓷和另外粉末形式陶瓷的装置的替代实例的示意图。
图4是包含本文公开的发光陶瓷的装置的替代实例的示意图。
图5是包含本文公开的发光陶瓷的装置的替代实例的示意图。
图6是包含本文公开的发光陶瓷的装置的替代实例的示意图。
图7示出用于检测通过发光陶瓷板的总透光率的装置的一个实施方案的示意图。
图8示出在20mA的驱动条件(driving condition)下LED装置的一些实施方案的发射光谱。
附图并非按比例绘制。
优选实施方案的详细描述
本文公开的一些实施方案提供了包含发光陶瓷的发光装置,该发光陶瓷的掺杂物量低于通常使用的常规发光陶瓷。在一些实施方案中,发光陶瓷包含具有低掺杂物浓度的多晶发光材料,所述多晶发光材料由例如但不限于(A1-xEx)3B5O12、(Y1-xEx)3B5O12、(Gd1-xEx)3B5O12、(La1-xEx)3B5O12、(Lu1-xEx)3B5O12、(Tb1-xEx)3B5O12、(A1-xEx)3Al5O12、(A1-xEx)3Ga5O12、(A1-xEx)3In5O12、(A1-xCex)3B5O12、(A1-xEux)3B5O12、(A1-xTbx)3B5O12、(A1-xEx)3Nd5O12等的式表示。在一些实施方案中,陶瓷包含具有低浓度掺杂物的石榴石,诸如钇铝石榴石。一些实施方案提供了由式(Y1-xCex)3Al5O12表示的组合物。一些实施方案提供了由式(Y1-(x+y)GdyCex)3Al5O12表示的组合物。在上述式中的任何一个中,x可为约0.0001至约0.005、约0.0005至约0.004,或者为约0.0008至约0.0025。在一些实施方案中,y可为约0.005至约0.05、约0.01至约0.03,或者为0.015至约0.025。
本文公开的发光陶瓷可用于吸收从发光二极管发射的光并发射不同颜色的光,因此能够使颜色调整。在一些实施方案中,发光陶瓷可吸收蓝色光并发射黄色光。例如,在一些实施方案中,陶瓷的最大吸收波长为约420nm至约480nm,且最大发射波长为约500nm至约750nm,或者为约500nm至约600nm。
尽管发光陶瓷的吸收-发射特性和掺杂物浓度可影响发光装置的颜色,但这些并不是用于调整颜色的唯一工具。例如还可通过改变发光陶瓷的厚度和/或通过加入另外的诸如绿色、蓝色和红色的各种颜色的发光陶瓷来调整颜色,但不限于次此。
在一些实施方案中,可增加发光陶瓷的厚度以增加从发光二极管发射的光的量并将其转换为不同波长的光。因此,观察到的光看上去不像发光二极管的颜色而更像陶瓷的颜色。或者,可使发光陶瓷更薄以减少转换的光的量,因此使颜色看上去更像发光二极管的颜色。例如,在发光二极管发射蓝色光且发光陶瓷为黄色的或发射黄色光的情况下,较薄的陶瓷可产生看上去更像蓝色的光,而较厚的陶瓷可产生看上去更像白色或黄色的光。在一些实施方案中,发光陶瓷的厚度为约50μm至约5mm、约0.2mm至约2mm,或者为约1mm。发光陶瓷的几何形状也可影响发射的光的颜色,这是因为发光陶瓷的有效厚度取决于光通过陶瓷的路径。在一些实施方案中,发光陶瓷为平板。在其它实施方案中,发光陶瓷为圆拱形、凸形、凹形、帽形、具有浮雕结构(relief structure)的板、具有微透镜结构(microlens structure)的板等。
在一些实施方案中,将诸如发光陶瓷的至少一种另外的组分加入至装置以调整装置发射的光的颜色。另外的组分可包含任何类型的发光陶瓷且其可为任何颜色,例如红色、蓝色、绿色等。一些实施方案提供了发光陶瓷或另外的发光陶瓷,其包含具有稀土掺杂物的稀土主体材料,其中稀土掺杂物的量为陶瓷中稀土原子的约0.01%至约0.05%,或者为约0.01%至0.02%。一些实施方案提供了包含(Sr,Ca,Ba)2SiO4:Eu、Ca3Sc2Si3O12:Ce、CaSc2O4:Ce、Ca3SiO4Cl2:Eu、Sr3SiO5:Eu、Li2SrSiO4:Eu、Ca3Si2O7:Eu、CaAl12O19:Mn、SrAl2O4:Eu、Ba3MgSi2O8:Eu、BaMgAl10O17:Eu、La2O2S:Eu、SrGa2S4:Eu、CaAlSiN3:Eu、Ca2Si5N8:Eu和CaSiAlON:Eu的发光陶瓷,其中冒号后的元素为掺杂物(例如Ca3Sc2Si3O12:Ce中的Ce为掺杂物)。另外的组分,例如发光陶瓷,可为任何形式。在一些实施方案中,另外的发光陶瓷为上述针对发光陶瓷所描述的任何形式,例如平板。在一些实施方案中,另外的发光陶瓷为分散在装置的其它部分中的颗粒形式,例如在包封装置的树脂中。
在一些实施方案中,发光陶瓷的低掺杂物浓度可减少热淬灭。在一些实施方案中,这可为发光装置提供发光效率更好的热稳定性,或换言之提供了高温下的更稳定的发光效率。在一些实施方案中,这可能改善颜色的热稳定性,或换言之提供了高温下的更稳定的颜色。在一些实施方案中,发光陶瓷在200℃下具有第一发光效率并在25℃下具有第二发光效率,其中所述第一发光效率至少为第二发光效率的约80%、82%、85%、87%或者90%。在一些实施方案中,在发光陶瓷的最大发光波长下测定这些发光效率。这些特殊值可根据发光材料和激活剂浓度而变化。在一些实施方案中,通过在约450-470nm或者约460nm下照射陶瓷来测定包含铈掺杂的钇铝石榴石(YAG:Ce)的发光陶瓷的发光效率,并在约500-600nm、约510-550或者约530nm下检测发光。
发光陶瓷可为透明的或半透明的。然而,在某些情况下发光陶瓷中的小缺陷例如气孔可导致来自发光二极管的光的后向散射损失。通常,发光陶瓷材料中缺陷的数量很少且后向散射损失最小。然而,在某些情况下,由于缺陷数量可能很少,因此在陶瓷中可能难于获得一致的散射水平。因此,在一些实施方案中,可加入另外的缺陷,尽管其可增加散射,但也可提供从一个陶瓷向另一个陶瓷散射的更好的一致性。在一些实施方案中,在约800nm下检测的发光陶瓷的总透光率大于或等于约50%,或者为约60%至约70%,或者为约80%。在一些实施方案中,通过控制气孔密度或外来晶相生长(非多晶相材料)可提供另外的散射。在一些实施方案中,发光陶瓷至少还包含诸如第二陶瓷材料的第二组分。在一些实施方案中,第二陶瓷材料选自以下中的至少一种:钇铝石榴石粉末,包含钇、铝、氧和/或铈的无定形粉末,YAlO3:Ce,Al2O3粉末,氧化铝,氧化钇和氧化铝钇。
通常,在本领域中存在多种方法可用于制备本文公开的发光陶瓷。在一些实施方案中,通过诸如包括模制陶瓷生压坯制备法的公知陶瓷坯体制造步骤的方法来制备发光陶瓷。在一些实施方案中,可采用使用常规模制陶瓷生压坯制造法,其使用具有适当加入的聚合物类粘合剂材料和/或熔剂(flux)(例如SiO2和/或MgO)、分散剂和/或溶剂的陶瓷原粉。在一些实施方案中,重要的是粒径。例如,如果粒径变得太大,那么可能难于获得期望的高度密实的陶瓷,这是因为即使在高的烧结温度下大颗粒可能仍不容易团聚或彼此熔合。此外,增加的粒径可能增加陶瓷层中气孔的数量。另一方面,较小的纳米级颗粒的彼此熔合的能力可能增加,其可能产生高度密实且不含气孔的陶瓷元件。在一些实施方案中,用于制备发光陶瓷的原粉可为平均粒径仅为约1000nm,或者仅为约500nm的纳米级颗粒。
在一些实施方案中,可在混合和/或成型过程中将粘合剂树脂、分散剂和/或溶剂加入至原粉以促进制造过程。在一些实施方案中,混合过程可使用诸如研钵及研杵、球磨机、珠铣机等的装置。在一些实施方案中,模制过程使用诸如简单模压、单轴冲压、热等静压(HIP)和冷等静压(CIP)的方法。在一些实施方案中,为控制陶瓷层的厚度,在模具中装入控制量的原粉,随后施加压力。在一些实施方案中,浆料溶液的注浆成型法能用于制备模制陶瓷生压坯(green compact)。在一些实施方案中,通过使用在多层陶瓷电容器制造过程中广泛使用的流涎成型法制成的柔韧陶瓷生片(green sheet)来制备发光陶瓷。
在一些实施方案中,可在诸如空气的氧环境中热处理模制陶瓷生压坯以去除粘合剂树脂或任何其它的残留物。可在高于粘合剂树脂开始分解的温度但低于样品表面气孔关闭的温度的任何温度下进行热处理。在一些实施方案中,热处理可包括在500℃至1000℃的温度下加热约10分钟至约100小时。所述条件可能取决于粘合剂树脂的分解速度,并可进行调整以防止陶瓷生压坯的翘曲和/或变形。
其次,在一些实施方案中,可在受控的环境下进行烧结以提供无空隙的发光陶瓷。烧结温度范围取决于受烧结的陶瓷材料、原粉的平均粒径和陶瓷生压坯的密度。在其中陶瓷包含YAG:Ce的一些实施方案中,烧结温度可为约1450℃至约1800℃。当可使用任何合适的烧结环境条件时,在一些实施方案中,烧结环境可为真空的,诸如氦气、氩气和氮气的惰性气体,或诸如氢气或氢气和惰性气体混合物的还原气体。
包含本文公开的发光陶瓷的发光装置可为任何发光的装置。在一个实施方案中,发光装置可为发光二极管(LED)、有机发光二极管(OLED)或无机电致发光装置(IEL)。
在一些实施方案中,可将发光陶瓷安装在蓝色-LED上以产生发射看上去更白的光的装置。图1示出这种装置结构的一些实例。在该装置中,将蓝色-LED5固定在基板1上并设置发光陶瓷10以使蓝色-LED5位于陶瓷10和基板1之间。通过与基板1连接的树脂15包封蓝色-LED5和陶瓷10。当陶瓷10的形状不受限制时,少数陶瓷10的形状的实例为平板,图Ia;凸形,图Ib;凹形,图Ic和纹理板,图Id。
一些实施方案包含另外的发光陶瓷。例如,图2例示的一个实施方案具有固定于基板1的蓝色-LED5。设置发红光的发光陶瓷11以使蓝色-LED5位于发红光的陶瓷11和基板1之间。将发黄光的发光陶瓷13布设在发红光的陶瓷11上以使由发红光的陶瓷11发射的光或通过发红光的陶瓷11的光随后通过发黄光的发光陶瓷13。通过与基板1连接的树脂15将蓝色-LED5、发红光的陶瓷11和发黄光的发光陶瓷13包封。
在一些实施方案中,另外的发光陶瓷为粉末的形式。图3示出这种装置结构的实例。在该装置中,将蓝色-LED5固定在基板1上,并设置发黄光的发光陶瓷13以使蓝色-LED5位于发黄光的发光陶瓷13和基板1之间。通过与基板1连接的树脂15包封蓝色-LED5和发黄光的发光陶瓷13。在树脂15内部是粉末形式的发红光的发光陶瓷12,其设置在发黄光的发光陶瓷13上部以使由发黄光的陶瓷13发射的光或通过发黄光的陶瓷13的光随后通过粉末形式的发红光的发光陶瓷12。
在一些实施方案中,可将并联(multiple)LED合并入发光装置。例如,图4例示的一个实施方案具有若干固定于基板1的蓝色-LED5。配置该实施方案中的发光陶瓷10以使所有蓝色-LED5均设置在基板1和发光陶瓷10之间。通过与基板1连接的树脂15包封蓝色-LED5和发光陶瓷10。
在其它实施方案中,将包含蓝色-LED5和发光陶瓷10的并联发光单元安装在基板1上。例如,图5例示的另一实施方案具有若干固定于基板1的蓝色-LED5。分别设置大量的发光陶瓷10以使每个蓝色-LED5设置在基板1和每个发光陶瓷10中之间。通过与基板连接的树脂15包封发光陶瓷10和蓝色-LED5。
在一些实施方案中,还可安装阵列型发光单元以形成发光装置。如图6描述的,将蓝色-LED5的阵列安装在基板1上。通过在包封树脂15中包埋发光材料半透明陶瓷板形成相应的发光材料半透明陶瓷板10的阵列。然后,将匹配的发光材料半透明陶瓷板阵列和蓝色-LED组合以形成发射白光的发光装置。
实施例1
通过使用电感耦合RF热等离子体裂解制备原料粒子
将硝酸钇(III)六水合物(0.5988mol,229.346g,99.9%纯度,Sigma-Aldrich)、硝酸铝九水合物(1.0mol,375.14g,99.97%纯度,Sigma-Aldrich)和硝酸铈(III)六水合物(0.0012mol,0.521g,99.99%纯度,Sigma-Aldrich)溶于1000ml的去离子水中。在该实施例中,Ce掺杂量为0.2摩尔%。
通过使用液体泵的雾化探针将1.6M的该前体溶液输送至等离子反应室。
使用在3.3MHz下操作的RF感应等离子炬(TEKNA PlasmaSystem,Inc PL-35[Quebec,Canada])进行沉积实验。RF发生器板功率为12kW至15kW。使用径向雾化探针(TEKNA Plasma System,IncSDR-772)进行反应物注射。使用由理光微型反光相机[RigakuMiniflex(Rigaku Americas,the Woodlands,Texas,USA)](CuKa)获得的X-射线衍射(XRD)光谱研究沉积颗粒的晶相。鉴定获得样品晶相为无定形物和钇铝钙钛矿(YAP)的混合物。
基于从Micrometritics model Gemini 2365气体吸附仪(Norcross,GA,USA)获得的数据,从BET表面积检测中获得平均粒径(Dave)。获得的样品的Dave为87nm。然后,在水下使用3mm的氧化钇稳定化氧化锆球并使用行星式球磨机将获得的粉末解团聚。在H2/N2=3%/97%的混合气体环境下,在1000℃下将获得的粉末预退火2小时。XRD显示纯相的YAG结构,且由BET检测获得的Dave为103nm。
发光陶瓷样品的制备
通过球磨机,将上述制备的原粉(4g,Dave=103nm)、聚(乙烯丁缩醛-CO-乙烯醇-CO-醋酸乙烯酯)(0.21g,平均分子量90,000-120,000粉末,Sigma-Aldrich)、煅制(fumed)二氧化硅粉末(0.012g,CAB-O-SIL
Figure BPA00001479424200091
HS-5,Cabot Corporation,Tuscola,IL,USA)和甲醇(10ml)混合。通过从干燥机鼓入热空气并不断移动碾锤,完全去除甲醇以获得干燥的粉末。将干燥的粉末(400mg)分散开来并放入直径设置为13mm的模具(Product#:0012-6646,3mm KBr Die Set,International CrystalLaboratories,Inc.,Garfield,NJ,USA)中,随后使用液压机施加5000psi的压力。在800℃下将产生的陶瓷生压坯在空气中热处理(加热速度为4℃/min)1小时以去除粘合剂树脂。
然后,在1600℃下将陶瓷生压坯真空烧结(加热速度为2℃/min)5小时。获得厚度为约1mm的黄色半透明YAG:Ce陶瓷圆片。
实施例2
除了通过改变硝酸盐前体的组成将Ce掺杂量从0.2摩尔%变为0.05摩尔%之外,重复实施例1的一般步骤。获得黄色半透明YAG:Ce陶瓷板。与实施例1中获得的样品相比,陶瓷圆片的颜色为轻微的淡黄色。
实施例3
除了通过改变硝酸盐前体的组成将Ce掺杂量从0.2摩尔%变为0.4摩尔%之外,重复实施例1的一般步骤。获得黄色半透明YAG:Ce陶瓷圆片。与实施例1中获得的样品相比,陶瓷圆片的颜色略深。
实施例3A
除了将硝酸钇(III)六水合物(0.5912mol,226.449g,99.9%纯度,Sigma-Aldrich)、硝酸钆(III)六水合物(0.0189mol,8.553g,99.99%纯度,Sigma-Aldrich)、硝酸铝九水合物(1.0mol,375.14g,99.97%纯度,Sigma-Aldrich)和硝酸铈(III)六水合物(0.0012mol,0.521g,99.99%纯度,Sigma-Aldrich)溶于1000ml的去离子水中之外,重复实施例1的一般步骤。在该实施例中,钇的量为97.8摩尔%、钆的量为2.0摩尔%且Ce掺杂量为0.2摩尔%。获得黄色半透明Y/Gd铝石榴石:Ce陶瓷圆片。与实施例1中获得的样品相比,陶瓷圆片的颜色为轻微的淡黄色。
对比实施例1
除了通过改变硝酸盐前体的组成将Ce掺杂量从0.2摩尔%变为0.8摩尔%之外,重复实施例1的一般步骤。获得黄色半透明YAG:Ce陶瓷圆片。与实施例1中获得的样品相比,陶瓷圆片的颜色较深。
对比实施例2
除了通过改变硝酸盐前体的组成将Ce掺杂量从0.2摩尔%变为2.0摩尔%之外,重复实施例1的一般步骤。获得黄色半透明YAG:Ce陶瓷圆片。与实施例1中获得的样品相比,陶瓷圆片的颜色较深。
对比实施例3
除了通过改变硝酸盐前体的组成将Ce掺杂量从0.2摩尔%变为5.0摩尔%之外,重复实施例1的一般步骤。获得黄色半透明YAG:Ce陶瓷圆片,但显示半透明低。与实施例1中获得的样品相比,陶瓷圆片的颜色更深。
对比实施例4
将中值粒径为约6.6微米的市售YAG:Ce发光材料粉末(KaseiOptonix,Ltd P46-Y3[Odawara City,Kanagawa,Japan)分散开来并放入直径设置为13mm的模具(Product#:0012-6646,3mm KBr Die Set,International Crystal Laboratories,Inc)中,随后使用液压机施加5000psi的压力。获得厚度为约1mm的YAG:Ce发光材料粉末片。
实施例4
在甲醇中,通过行星式球磨机将Y2O3(33.81g,99.99%)、Al2O3(25.49g,99.99%)、CeO2(0.1033g,99.9%)和0.5g的原硅酸四乙酯(TEOS,99.99%,Sigma-Aldrich)混合。然后,加入聚(乙烯丁缩醛-CO-乙烯醇-CO-醋酸乙烯酯)(2.5g,平均分子量90,000-120,000粉末,Sigma-Aldrich)作为粘合剂。在该实施例中,Ce掺杂量为约0.2摩尔%。
通过从干燥机鼓入热空气形成干燥剂并同时不断移动碾锤,完全去除甲醇以获得干燥的粉末。将干燥的粉末(400mg)分散开来并放入直径设置为13mm的模具(Product#:0012-6646,3mm KBr Die Set,International Crystal Laboratories,Inc)中,随后使用液压机施加5000psi的压力。然后,在800℃下将获得的陶瓷生压坯在空气中热处理(加热速度为4℃/min)1小时以去除粘合剂树脂。
然后,在1700℃下将陶瓷生压坯真空烧结(加热速度为2℃/min)5小时。获得厚度为约1mm的黄色半透明YAG:Ce陶瓷圆片。
热淬灭性质评价
使用大冢电子(Otsuka Electronics)MCPD 7000多通路光电探测器系统连同相关的诸如积分球、光源、单色器、光纤的光学组件以及可控温的样品支持器进行热淬灭检测。
在通过单色器之后,在460nm下使用Xe灯(150W,L2274)照射获得的发光陶瓷圆片或粉末片。通过使用积分球获得发射光谱。以25℃的梯级从25℃升至200℃来进行该检测,同时保持相同的检测条件。通过25℃的值将发射光谱的峰值归一化,然后在表1中总结。
表1
实施例5
在实施例1中,通过将95mg的所述干燥的粉末分散进入直径设置为13mm的相同模具来制备较薄的发光陶瓷圆片。在1600℃下真空烧结5小时之后,获得厚度为约240微米的黄色半透明YAG:Ce陶瓷圆片。
通过使用图7所示的光学配置检测获得的发光陶瓷圆片的总透光率。图7示出用于检测通过上述制备的发光陶瓷45的总透光率的装置示意图。积分球20用于收集包括散射光的所有透射光50。将挡板25插入在检测器30和球20的入口之间以防止入射光40对检测器30的直接照射(impingement)。反向散射光35不透射进入积分球,因此不能通过检测器30进行检测。如果发光陶瓷板45含有大量气孔或缺陷,那么总透光率倾向于降低。如果入射光40的波长与用于制备烧结的陶瓷圆片45的发光材料材料的吸收区重叠,那么不检测透光率,这是因为入射光主要通过发光材料吸收而消散(dissipated)。因此,通过选择发光陶瓷不吸收照射光(impinging light)的波长进行总透光率检测。
通过使用大冢电子MCPD 7000多通路光电检测器系统连同诸如积分球、光源、光纤的相关光学组件和样品支持器建立图7的检测系统。在800nm的波长下获得的总透光率为73.9%。
通过使用金刚石切割器将陶瓷圆片小心地切割成约1.5mm×1.5mm的尺寸。通过下列步骤将小块的陶瓷圆片安装在蓝色LED芯片上。将铸造型环氧树脂(Nitto Denko Corporation,NT8080)用作包封树脂。通过使用牙签将非常少量的环氧树脂设置在LED芯片上。然后,将发光材料圆片块小心地安装在LED芯片上,随后在135℃下固化5小时。驱动具有陶瓷圆片的LED装置,并观察到发射白色光。
对比实施例5
将铸造型环氧树脂(0.4g)与市售YAG:Ce发光材料粉末(0.6g,Kasei Optonix,Ltd P46-Y3)混合。将混合的溶液安装在实施例5中使用的相同类型的蓝色LED芯片上,随后在135℃下短暂固化30分钟。由于发光颜色为黄色而不是白色,因此通过使用砂纸将发光材料分散的环氧树脂层小心刮擦直至发光颜色变为白色。随后在135℃下完全固化5小时。
驱动具有市售YAG:Ce发光材料粉末的LED装置,并观察到发射白色光。
对比实施例6
在H2/N2=3%/97%混合物气体环境下,在1400℃下将刚好在等离子处理(Dave=87nm)之后获得的与实施例1的描述相似的纳米级粉末退火2小时。获得的粉末表现出单一的YAG相。颜色为黄色但比在对比实施例6中使用的商业YAG:Ce粉末更淡。
通过与对比实施例6的描述相同的方法将铸造型环氧树脂(0.5g)与YAG:Ce粉末(0.5g)混合,驱动具有YAG:Ce发光材料粉末的LED装置,并观察到发射白色光。
LED性能测试
通过使用大冢电子MCPD 7000多通路光电检测器系统(Osaka,Japan)连同诸如积分球、光源、光纤的相关光学组件和直流电源获得各个LED的白色光发射光谱。在20mA的驱动条件下获得各个LED装置的发射光谱。
图8示出在20mA的驱动条件下各个LED装置的发射光谱。未对获得的数据进行归一化而获得光谱。随后,按照100mA、200mA、300mA、400mA和500mA来逐步增加驱动电流。为使LED的温度稳定,在改变驱动电流之后约1分钟获得发射光谱。实施例5的装置在不同驱动条件下的发光颜色变化与对比实施例5的装置相比不太敏感。
表A给出实施例5和对比实施例5的驱动电流的CIE色度变化。
表A
Figure BPA00001479424200141

Claims (19)

1.发光陶瓷,其包含:
由式(A1-xEx)3B5O12表示的多晶发光材料;
其中A为Y、Gd、La、Lu、Tb或其组合;
x为约0.0001至约0.005;
B为Al、Ga、In或其组合;以及
E为Ce、Eu、Tb、Nd或其组合;
其中所述陶瓷的最大吸收波长为约420nm至约480nm。
2.如权利要求1所述的陶瓷,其中所述陶瓷发射的光的最大发射波长为约500nm至约750nm。
3.如前述权利要求中任一权利要求所述的陶瓷,其中所述陶瓷在200℃下具有第一发光效率并在25℃下具有第二发光效率,其中所述第一发光效率至少为所述第二发光效率的约80%。
4.如前述权利要求中任一权利要求所述的陶瓷,其中E包含Ce。
5.如前述权利要求中任一权利要求所述的陶瓷,其中A包含Y和Gd,其中约0至约0.05摩尔百分比的A为所述Gd。
6.如前述权利要求中任一权利要求所述的陶瓷,其中所述发光材料进一步由式(Y1-(x+y)GdyCex)3B5O12表示,其中x为约0.0001至约0.005且y为约0.005至约0.05。
7.如前述权利要求中任一权利要求所述的陶瓷,其中x为约0.0001至约0.003。
8.如前述权利要求中任一权利要求所述的陶瓷,其中所述发光材料进一步由式(Y0.978Gd0.02Ce0.002)3Al5O12表示。
9.如前述权利要求中任一权利要求所述的陶瓷,其还包含与所述多晶发光材料不同的第二组分。
10.如权利要求9所述的陶瓷,其中所述第二组分选自氧化铝、氧化钇和氧化铝钇。
11.发光装置,其包含:
最大发射波长为约420nm至约480nm的发光二极管和权利要求1所述的发光陶瓷,其中设置所述发光陶瓷以接收至少部分从所述发光二极管发射的光并将其转换为最大发射波长为约500nm至约700nm的光。
12.如权利要求11所述的发光装置,其中所述发光陶瓷的厚度为约50μm至约5mm。
13.如权利要求11或12所述的发光装置,其中所述发光陶瓷的总透光率大于或等于约50%。
14.如权利要求11-13中任一权利要求所述的发光装置,其中E包含Ce,A包含Y并且B包含Al。
15.如权利要求11-14中任一权利要求所述的发光装置,其中x为约0.0001至约0.002。
16.如权利要求11-15中任一权利要求所述的发光装置,其中E包含Ce,A包含Y和Gd,并且B包含Al。
17.如权利要求11-16中任一权利要求所述的发光装置,其中所述发光材料进一步由式(Y1-(x+y)GdyCex)3B5O12表示,其中x为约0.0001至约0.005且y为约0.005至约0.05。
18.如权利要求11-17中任一权利要求所述的发光装置,其至少还包含第二陶瓷组分。
19.如权利要求19所述的发光装置,其中所述第二组分选自氧化铝、氧化钇和氧化铝钇。
CN201080024351.6A 2009-06-01 2010-05-26 发光陶瓷和使用发光陶瓷的发光装置 Active CN102449111B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18300409P 2009-06-01 2009-06-01
US61/183,004 2009-06-01
PCT/US2010/036224 WO2010141291A1 (en) 2009-06-01 2010-05-26 Luminescent ceramic and light-emitting device using the same

Publications (2)

Publication Number Publication Date
CN102449111A true CN102449111A (zh) 2012-05-09
CN102449111B CN102449111B (zh) 2014-12-24

Family

ID=42304997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080024351.6A Active CN102449111B (zh) 2009-06-01 2010-05-26 发光陶瓷和使用发光陶瓷的发光装置

Country Status (6)

Country Link
US (1) US8339025B2 (zh)
EP (1) EP2438139B1 (zh)
JP (1) JP5833547B2 (zh)
KR (1) KR101800345B1 (zh)
CN (1) CN102449111B (zh)
WO (1) WO2010141291A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943759A (zh) * 2013-01-21 2014-07-23 圣戈本陶瓷及塑料股份有限公司 包括发光含钆材料的物件及其形成工艺
CN107154454A (zh) * 2013-10-23 2017-09-12 株式会社光波 单晶荧光体和发光装置
CN109716178A (zh) * 2016-10-28 2019-05-03 日本特殊陶业株式会社 光波长转换部件及发光装置
CN110838540A (zh) * 2013-10-23 2020-02-25 株式会社光波 发光装置
CN112552038A (zh) * 2020-11-13 2021-03-26 浙江大学 一种绿色荧光复合陶瓷及其制备方法和应用
CN113024251A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 具有平凹形结构薄膜的高显色性激光照明用荧光陶瓷及其制备方法
CN114222801A (zh) * 2019-08-09 2022-03-22 株式会社田村制作所 波长转换构件

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141235A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Light-emitting divice comprising a dome-shaped ceramic phosphor
US8941135B2 (en) 2010-07-15 2015-01-27 Nitto Denko Corporation Light emissive ceramic laminate and method of making same
JP2012038889A (ja) * 2010-08-06 2012-02-23 Koito Mfg Co Ltd 蛍光部材および発光モジュール
US9389188B2 (en) 2010-12-22 2016-07-12 Koninklijke Philips N.V. Method and apparatus for testing optical films
WO2012085824A1 (en) * 2010-12-22 2012-06-28 Koninklijke Philips Electronics N.V. Method and apparatus for testing luminescent films
US8968600B2 (en) 2011-02-24 2015-03-03 Nitto Denko Corporation Light emitting composite with phosphor components
WO2013161683A1 (ja) * 2012-04-24 2013-10-31 株式会社光波 蛍光体及びその製造方法、並びに発光装置
US9447319B2 (en) * 2012-12-14 2016-09-20 Cree, Inc. Yellow phosphor having an increased activator concentration and a method of making a yellow phosphor
DE102013100832A1 (de) * 2013-01-28 2014-07-31 Schott Ag Stark streuender keramischer Konverter sowie ein Verfahren zu dessen Herstellung
US20140264987A1 (en) * 2013-03-15 2014-09-18 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
DE102013105304A1 (de) * 2013-05-23 2014-11-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines pulverförmigen Precursormaterials, pulverförmiges Precursormaterial und seine Verwendung
CN104119911A (zh) * 2014-06-30 2014-10-29 彩虹集团电子股份有限公司 一种高光效led用铝酸盐荧光粉的制备方法
US9331253B2 (en) 2014-09-03 2016-05-03 Cree, Inc. Light emitting diode (LED) component comprising a phosphor with improved excitation properties
US9150784B1 (en) * 2014-10-30 2015-10-06 Osram Opto Semiconductors Gmbh Lighting modules, lighting apparatus and electronic devices
DE102014117440B3 (de) * 2014-11-27 2016-04-07 Seaborough IP IV BV Lichtemittierende Remote-Phosphor-Vorrichtung
EP3243222B1 (en) * 2015-01-06 2021-02-17 Lumileds LLC Method of manufacturing a wavelength converted light emitting device
DE102015203578A1 (de) 2015-02-27 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung von optoelektronischen bauelementen und optoelektronische bauelemente
DE102015102842A1 (de) 2015-02-27 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leuchtstoffkompositkeramik sowie Verfahren zu deren Herstellung
KR102478491B1 (ko) * 2015-12-30 2022-12-16 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그의 제조 방법
JP6642557B2 (ja) * 2017-02-28 2020-02-05 日亜化学工業株式会社 波長変換部材の製造方法
US10947448B2 (en) 2017-02-28 2021-03-16 Nichia Corporation Method for manufacturing wavelength conversion member
JP6863071B2 (ja) 2017-05-19 2021-04-21 日亜化学工業株式会社 希土類アルミニウム・ガリウム酸塩の組成を有する蛍光体及び発光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1364851A (zh) * 2002-02-27 2002-08-21 北京大学 铈激活的钇铝石榴石白光粉的制备方法
WO2006097876A1 (en) * 2005-03-14 2006-09-21 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
US20070126017A1 (en) * 2005-11-29 2007-06-07 Lumileds Lighting U.S, Llc Luminescent ceramic element for a light emitting device
WO2007107917A2 (en) * 2006-03-21 2007-09-27 Philips Intellectual Property & Standards Gmbh Electroluminescent device
WO2008025723A1 (en) * 2006-08-29 2008-03-06 Osram Sylvania Inc. Enhanced emission from phosphor-converted leds using interferometric filters

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032568A (en) * 1932-04-19 1936-03-03 Walter B Fogh Vehicle
US5032568A (en) 1989-09-01 1991-07-16 Regents Of The University Of Minnesota Deposition of superconducting thick films by spray inductively coupled plasma method
US5061682A (en) * 1990-01-17 1991-10-29 The Washington Technology Center Ceramic precursor mixture and technique for converting the same to ceramic
CA2089760C (en) * 1990-08-18 1998-04-14 Dieter Wurmbauer Process for producing metal hydroxides with a small specific area
JPH04119914A (ja) 1990-09-11 1992-04-21 Satoyuki Inui イットリウムアルミニウムガーネットの製造方法
US5200595A (en) * 1991-04-12 1993-04-06 Universite De Sherbrooke High performance induction plasma torch with a water-cooled ceramic confinement tube
IT1249817B (it) * 1991-07-23 1995-03-28 Sviluppo Materiali Spa Procedimento per la produzione di polveri per materiali ceramici superconduttori
US5321223A (en) * 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
US5447708A (en) * 1993-01-21 1995-09-05 Physical Sciences, Inc. Apparatus for producing nanoscale ceramic powders
EP0657399B1 (en) * 1993-12-10 1997-07-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH High-pressure discharge lamp having a ceramic discharge vessel, sintered body suitable therefor, and methods for producing the said sintered body
US5644193A (en) * 1993-12-17 1997-07-01 Kabushiki Kaisha Toshiba Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
US5560844A (en) * 1994-05-26 1996-10-01 Universite De Sherbrooke Liquid film stabilized induction plasma torch
US5609921A (en) * 1994-08-26 1997-03-11 Universite De Sherbrooke Suspension plasma spray
US6482387B1 (en) * 1996-04-22 2002-11-19 Waltraud M. Kriven Processes for preparing mixed metal oxide powders
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
DE69834559T3 (de) * 1997-02-24 2011-05-05 Cabot Corp., Boston Sauerstoffhaltige Phosphorpulver, Verfahren zur Herstellung von Phosphorpulvern und Vorrichtung hiermit
US6059936A (en) * 1997-10-08 2000-05-09 Micron Technology, Inc. Rapid annealing of powder phosphors
US6656588B1 (en) * 1998-12-01 2003-12-02 The Regents Of The University Of Michigan Ultrafine powders and their use as lasing media
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
MXPA02002780A (es) * 1999-09-22 2002-07-22 Microcoating Technologies Inc Metodos y dispositivos de atomizacion de liquidos.
US7576496B2 (en) * 1999-12-22 2009-08-18 General Electric Company AC powered OLED device
US6994837B2 (en) * 2001-04-24 2006-02-07 Tekna Plasma Systems, Inc. Plasma synthesis of metal oxide nanopowder and apparatus therefor
KR20040002393A (ko) * 2001-04-27 2004-01-07 가세이 옵토닉스 가부시키가이샤 형광체 및 그 제조방법
US20040101617A1 (en) * 2001-11-27 2004-05-27 Devi P Sujatha Direct synthesis and deposition of luminescent films
US6623559B2 (en) * 2001-12-10 2003-09-23 Nanotek Instruments, Inc. Method for the production of semiconductor quantum particles
US6869544B2 (en) * 2001-12-14 2005-03-22 National Cheng Kung University Process for producing nanoscale yttrium aluminum garnet (YAG) fluorescent powders
US6884514B2 (en) * 2002-01-11 2005-04-26 Saint-Gobain Ceramics & Plastics, Inc. Method for forming ceramic layer having garnet crystal structure phase and article made thereby
WO2003070640A1 (en) * 2002-02-19 2003-08-28 Tal Materials Mixed-metal oxide particles by liquid feed flame spray pyrolysis of oxide precursors in oxygenated solvents
CN1149275C (zh) * 2002-06-14 2004-05-12 中国地质大学(武汉) 一种制备铕激活的钇钆硼酸盐荧光粉的方法
WO2004035496A2 (en) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
US7554258B2 (en) * 2002-10-22 2009-06-30 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
US7708974B2 (en) * 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US7112758B2 (en) * 2003-01-10 2006-09-26 The University Of Connecticut Apparatus and method for solution plasma spraying
CN101555128A (zh) 2003-01-20 2009-10-14 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
AU2003207286A1 (en) * 2003-01-27 2004-08-23 Konoshima Chemical Co., Ltd. Rare earth garnet sintered compact
EP1473348B1 (en) 2003-04-30 2007-03-21 Centrum für Angewandte Nanotechnologie (CAN) GmbH Luminescent core/shell nanoparticles
US6844285B1 (en) * 2003-09-03 2005-01-18 Osram Sylvania Inc. Transparent polycrystalline yttrium aluminum garnet
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
WO2006009881A2 (en) * 2004-06-18 2006-01-26 Innovalight, Inc. Process and apparatus for forming nanoparticles using radiofrequency plasmas
JP4420021B2 (ja) * 2004-06-24 2010-02-24 宇部興産株式会社 白色発光ダイオード装置
JP4828810B2 (ja) * 2004-08-30 2011-11-30 アジレント・テクノロジーズ・インク Icp分析用試料導入装置及び方法
JP5133065B2 (ja) * 2005-01-28 2013-01-30 テクナ・プラズマ・システムズ・インコーポレーテッド ナノ粉末の誘導プラズマ合成
CN100403563C (zh) 2005-04-18 2008-07-16 光宝科技股份有限公司 白光发光二极管元件及相关荧光粉与制备方法
US20060265088A1 (en) * 2005-05-18 2006-11-23 Roger Warford Method and system for recording an electronic communication and extracting constituent audio data therefrom
US20070272664A1 (en) * 2005-08-04 2007-11-29 Schroder Kurt A Carbon and Metal Nanomaterial Composition and Synthesis
KR20080064854A (ko) * 2005-10-05 2008-07-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 흡수 필터를 갖는 인광체-변환 전계발광 소자
EP1942370A4 (en) * 2005-10-26 2008-11-05 Asahi Kasei Chemicals Corp RESIN PLATE WITH LIGHT TRANSMISSION
EP2001973A1 (en) 2006-03-23 2008-12-17 Philips Intellectual Property & Standards GmbH Light emitting device with a ceramic garnet material
DE102006037730A1 (de) * 2006-08-11 2008-02-14 Merck Patent Gmbh LED-Konversionsleuchtstoffe in Form von keramischen Körpern
US20090262428A1 (en) * 2006-08-29 2009-10-22 Takiron Co., Ltd. Light diffusing sheet and backlight unit using the light diffusing sheet
US20080108496A1 (en) * 2006-11-07 2008-05-08 Gratson Gregory M Composition Used to Make a Transparent Ceramic Material and Method of Manufacturing the Same
US20080138538A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US8137588B2 (en) 2007-03-12 2012-03-20 Nitto Denko Corporation Nanoscale phosphor particles with high quantum efficiency and method for synthesizing the same
JP5631745B2 (ja) * 2008-02-21 2014-11-26 日東電工株式会社 透光性セラミックプレートを備える発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1364851A (zh) * 2002-02-27 2002-08-21 北京大学 铈激活的钇铝石榴石白光粉的制备方法
WO2006097876A1 (en) * 2005-03-14 2006-09-21 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
US20070126017A1 (en) * 2005-11-29 2007-06-07 Lumileds Lighting U.S, Llc Luminescent ceramic element for a light emitting device
WO2007107917A2 (en) * 2006-03-21 2007-09-27 Philips Intellectual Property & Standards Gmbh Electroluminescent device
WO2008025723A1 (en) * 2006-08-29 2008-03-06 Osram Sylvania Inc. Enhanced emission from phosphor-converted leds using interferometric filters

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943759A (zh) * 2013-01-21 2014-07-23 圣戈本陶瓷及塑料股份有限公司 包括发光含钆材料的物件及其形成工艺
US9368686B2 (en) 2013-01-21 2016-06-14 Saint-Gobain Ceramics & Plastics, Inc. Article including a light emitting gadolinium-containing material and a process of forming the same
CN107154454A (zh) * 2013-10-23 2017-09-12 株式会社光波 单晶荧光体和发光装置
CN110838540A (zh) * 2013-10-23 2020-02-25 株式会社光波 发光装置
CN107154454B (zh) * 2013-10-23 2021-10-26 国立研究开发法人物质·材料研究机构 单晶荧光体和发光装置
CN109716178A (zh) * 2016-10-28 2019-05-03 日本特殊陶业株式会社 光波长转换部件及发光装置
CN114222801A (zh) * 2019-08-09 2022-03-22 株式会社田村制作所 波长转换构件
CN114222801B (zh) * 2019-08-09 2023-09-08 国立研究开发法人物质·材料研究机构 波长转换构件
CN113024251A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 具有平凹形结构薄膜的高显色性激光照明用荧光陶瓷及其制备方法
CN112552038A (zh) * 2020-11-13 2021-03-26 浙江大学 一种绿色荧光复合陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
WO2010141291A1 (en) 2010-12-09
JP5833547B2 (ja) 2015-12-16
EP2438139B1 (en) 2017-03-01
EP2438139A1 (en) 2012-04-11
US20100301739A1 (en) 2010-12-02
KR101800345B1 (ko) 2017-11-22
KR20120015460A (ko) 2012-02-21
CN102449111B (zh) 2014-12-24
US8339025B2 (en) 2012-12-25
JP2012528920A (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
CN102449111B (zh) 发光陶瓷和使用发光陶瓷的发光装置
CN101953230B (zh) 具有半透明陶瓷板的发光装置
KR101178054B1 (ko) β-사이알론 형광체 제조방법
TWI407474B (zh) 陶瓷冷光轉換器及包含該轉換器之照明系統
EP1875781B1 (en) Illumination system comprising a ceramic luminescence converter
US8664678B2 (en) Phosphor ceramic and light-emitting device
CN103080272B (zh) 石榴石材料、其制造方法及包括石榴石材料的发射辐射的元件
US8298442B2 (en) Method of manufacturing phosphor translucent ceramics and light emitting devices
US20080191609A1 (en) Illumination System Comprising a Red-Emitting Ceramic Luminescence Converter
KR101483657B1 (ko) 다상 sialon 기반 세라믹 재료를 포함하는 발광 장치
US20100201250A1 (en) METHOD OF PRODUCING ILLUMINANTS CONSISTING OF ORTHOSILICATES FOR pcLEDs
KR20130099097A (ko) 실리코포스페이트 발광단
WO2011142770A1 (en) Carbonitride based phosphors and light emitting devices using the same
CN105051154B (zh) 铝硅酸镁基荧光体
JP2014503605A (ja) 窒素化合物発光材料及びその調製方法並びにそれによって製造された照明光源
CN103154196A (zh) Mn活化的磷光体
CN115397947A (zh) 荧光体粒子、复合体、发光装置和自发光型显示器
CN102044601B (zh) 白光发光装置、其制造方法及应用
CN103221510B (zh) 硅酸盐无机发光材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191108

Address after: Germany Mainz

Patentee after: Schott AG

Address before: Osaka

Patentee before: Nitto Denko Corporation