CN112501718A - 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用 - Google Patents

一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用 Download PDF

Info

Publication number
CN112501718A
CN112501718A CN202011358846.4A CN202011358846A CN112501718A CN 112501718 A CN112501718 A CN 112501718A CN 202011358846 A CN202011358846 A CN 202011358846A CN 112501718 A CN112501718 A CN 112501718A
Authority
CN
China
Prior art keywords
nanofiber
preparation
electrostatic spinning
steps
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011358846.4A
Other languages
English (en)
Other versions
CN112501718B (zh
Inventor
禹妙成
董松涛
汪蕾
张亚梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202011358846.4A priority Critical patent/CN112501718B/zh
Publication of CN112501718A publication Critical patent/CN112501718A/zh
Application granted granted Critical
Publication of CN112501718B publication Critical patent/CN112501718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括以下步骤:a、称取0.245~1.225份硝酸铋、0.11925~0.59625份硝酸钙和0.147~0.735份硝酸钴依次溶解于DMF与冰醋酸的混合溶液,最后加入1.35~6.75份PVP;b、将混合溶液放在磁力搅拌器上搅拌,直至溶液成透明状,获得静电纺丝液;c、将得到的静电纺丝液通过静电纺丝法制备Bi2Ca2Co2Oy前驱体纤维;d、放入烘箱中进行烘干;e、在700~900℃烧结,得到Bi2Ca2Co2Oy纳米纤维。本发明还公开了一种晶粒Bi2Ca2Co2Oy纳米纤维及其在超级电容器电极材料中的应用。

Description

一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用
技术领域
本发明涉及纳米纤维领域,具体为一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用。
背景技术
近年来,随着经济的高速发展,对能源的需求日益增加,但随着石油资源的消耗,环境恶化和能源短缺成为目前最大的问题,因此寻找清洁的新能源成为急需解决的问题。超电容器近年来作为一种新型储能装置,其具有能量密度高,功率密度高,充电速度快,低温性能好,使用寿命长,免维护,环境友善。因此,寻找作为超级电容器的新型电极材料,是该领域研究的重点。
具有层状结构的Bi2Ca2Co2Oy是Bi2Ca2O4(CaO-BiO-BiO-CaO)和CdI2型八面体结构的CoO2沿c轴交替堆垛而成。Bi2Ca2Co2Oy现有的制备方法有溶胶凝胶法、固相烧结法等,但目前这些方法制备出来的Bi2Ca2Co2Oy粉体材料只是被作为一种热电材料对其进行了研究,而尚未发现将其作为一种电极材料的报道。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明的目的是提供一种简单方便、节能环保的Bi2Ca2Co2Oy纳米纤维的制备方法,本发明的另一目的是提供一种晶粒尺寸小、超电性能好的Bi2Ca2Co2Oy纳米纤维,本发明的再一目的是提供一种Bi2Ca2Co2Oy纳米纤维在超级电容器电极材料中的应用。
技术方案:本发明所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括以下步骤:
a、称取0.245~1.225份硝酸铋、0.11925~0.59625份硝酸钙和0.147~0.735份硝酸钴依次溶解于DMF(N,N二甲基甲酰胺)与冰醋酸的混合溶液,最后加入1.35~6.75份PVP(聚乙烯吡咯烷酮),硝酸铋、硝酸钙、硝酸钴的化学计量比为2:2:2;
b、将混合溶液放在磁力搅拌器上搅拌,直至溶液成透明状,获得静电纺丝液;
c、将得到的静电纺丝液通过静电纺丝法制备Bi2Ca2Co2Oy前驱体纤维;
d、将获得的Bi2Ca2Co2Oy前驱体纤维放入烘箱中进行烘干;
e、在700~900℃烧结,得到Bi2Ca2Co2Oy纳米纤维。
步骤a中,,DMF与冰醋酸的体积比为5~25:2.5~7.5。
步骤b中,搅拌速度为80~120rpm,搅拌时间为6~12h。
步骤c中,静电纺丝电压为15~20kV,溶液注射速度为0.2~0.6ml h-1。静电纺丝机的收丝滚筒转速50~200r/min,接收距离为10~20cm。静电纺丝的温度为10~30℃。
步骤d中,烘干温度为70~100℃,烘干时间为12~24h。
步骤e中,升温速率为1~5℃/min,升高到700~900℃时保温2~6h,降温速率为1~5℃/min。
上述Bi2Ca2Co2Oy纳米纤维的制备方法所制得的Bi2Ca2Co2Oy纳米纤维,晶粒尺寸为60~250nm。
上述Bi2Ca2Co2Oy纳米纤维能够在超级电容器电极材料中应用,Bi2Ca2Co2Oy纳米纤维制备成超级电容器电极后,具有比容量可达72.2F/g。
制备原理:
Figure BDA0002803432250000021
有益效果:本发明和现有技术相比,具有如下显著性特点:所制得的Bi2Ca2Co2Oy纳米纤维晶粒尺寸小;用静电纺丝法制备的Bi2Ca2Co2Oy所需的升温速率快于现有的溶胶凝胶法,在相同温度和相同保温时间下,用静电纺丝法制备的Bi2Ca2Co2Oy纳米纤维烧结时间更少;所制得的Bi2Ca2Co2Oy纳米纤维能够用于超级电容器电极材料,超电性能好,拓展了Bi2Ca2Co2Oy纳米纤维材料的新应用。
附图说明
图1是本发明实施例1的Bi2Ca2Co2Oy纳米纤维的XRD图;
图2是本发明实施例1的Bi2Ca2Co2Oy纳米纤维的SEM图;
图3是本发明实施例1的Bi2Ca2Co2Oy纳米纤维的循环伏安图;
图4是本发明实施例1的Bi2Ca2Co2Oy纳米纤维的充放电图;
图5是对比例的Bi2Ca2Co2Oy纳米纤维的充放电图。
具体实施方式
以下各实施例中,DMF的纯度为99%,五水合硝酸铋的纯度为99%,四水合硝酸钙的纯度为99%,六水合硝酸钴的纯度为99%,PVP的平均分子量为1300000。
实施例1
一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括如下步骤:
(1)将10ml的DMF和5ml的冰醋酸混合,加入0.49g的硝酸铋直至完全溶解,再向溶液中加入0.2385g的硝酸钙,完全溶解后再加入0.294g的硝酸钴,最后再加入2.7g的PVP;
(2)将混合溶液放在磁力搅拌器上搅拌12h,搅拌速度为80rpm,获得静电纺丝液;
(3)通过静电纺丝法制备纤维,纺丝电压为18kV,溶液注射速度为0.4ml h-1,收丝筒转速为50r/min,接收距离为20cm,静电纺丝的温度为24℃;
(4)将所得纤维在80℃烘干24h;
(5)将烘干后的纤维装入坩埚中,在箱式电阻炉中,以2℃/min的升温速率升温到800℃烧结2h,再以1℃/min的降温速率冷却,得到Bi2Ca2Co2Oy纳米纤维。
将所得Bi2Ca2Co2Oy纳米纤维进行XRD检测和微观形貌分析。图1与PDF-2004卡片库中的标准卡片对比,合成样品为纯Bi2Ca2Co2Oy。Bi2Ca2Co2Oy纤维的扫描电镜图如图2所示,结果表明合成的样品颗粒尺寸为60~250nm。图3为Bi2Ca2Co2Oy纳米纤维的循环伏安图,可以看出扫描速率为10mV和100mV的循环伏安图形没有大的变化,表明就有良好的倍率性能。图4是Bi2Ca2Co2Oy纳米纤维的充放电图,从图中可以看出将Bi2Ca2Co2Oy纳米纤维制成电极后具有较好的比电容,比电容可达109.2F/g。
实施例2
一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括如下步骤:
(1)将5ml的DMF和2.5ml的冰醋酸混合,加入0.245g的硝酸铋直至完全溶解,再向溶液中加入0.1193g的硝酸钙,完全溶解后再加入0.147g的硝酸钴,最后再加入1.35g的PVP;
(2)将混合溶液放在磁力搅拌器上搅拌6h,搅拌速度为120rpm,获得静电纺丝液;
(3)通过静电纺丝法制备纤维,纺丝电压为15kV,溶液注射速度为0.6ml h-1,收丝筒转速为100r/min,接收距离为10cm,静电纺丝的温度为10℃;
(4)将所得纤维在90℃烘干16h;
(5)将烘干后的纤维装入坩埚中,在箱式电阻炉中,以1℃/min的升温速率升温到900℃烧结2h,再以2℃/min的降温速率冷却,得到Bi2Ca2Co2Oy纳米纤维。
实施例3
一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括如下步骤:
(1)将15ml的DMF和7.5ml的冰醋酸混合,加入0.735g的硝酸铋直至完全溶解,再向溶液中加入0.7155g的硝酸钙,完全溶解后再加入0.441g的硝酸钴,最后再加入4.05g的PVP;
(2)将混合溶液放在磁力搅拌器上搅拌7h,搅拌速度为100pm,获得静电纺丝液;
(3)通过静电纺丝法制备纤维,纺丝电压为15kV,溶液注射速度为0.4ml h-1,收丝筒转速为200r/min,接收距离为12cm,静电纺丝的温度为22℃;
(4)将所得纤维在100℃烘干12h;
(5)将烘干后的纤维装入坩埚中,在箱式电阻炉中,以3℃/min的升温速率升温到700℃烧结6h,再以3℃/min的降温速率冷却,得到Bi2Ca2Co2Oy纳米纤维。
实施例4
一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括如下步骤:
(1)将20ml的DMF和10ml的冰醋酸混合,加入0.98g的硝酸铋直至完全溶解,再向溶液中加入0.477g的硝酸钙,完全溶解后再加入0.588g的硝酸钴,最后再加入5.4g的PVP;
(2)将混合溶液放在磁力搅拌器上搅拌9h,搅拌速度为90rpm,获得静电纺丝液;
(3)通过静电纺丝法制备纤维,纺丝电压为18kV,溶液注射速度为0.4ml h-1,收丝筒转速为50r/min,接收距离为15cm,静电纺丝的温度为24℃;
(4)将所得纤维在85℃烘干18h;
(5)将烘干后的纤维装入坩埚中,在箱式电阻炉中,以4℃/min的升温速率升温到800℃烧结4h,再以4℃/min的降温速率冷却,得到Bi2Ca2Co2Oy纳米纤维。
实施例5
一种Bi2Ca2Co2Oy纳米纤维的制备方法,包括如下步骤:
(1)将25ml的DMF和12.5ml的冰醋酸混合,加入1.225g的硝酸铋直至完全溶解,再向溶液中加入0.5965g的硝酸钙,完全溶解后再加入0.735g的硝酸钴,最后再加入6.75g的PVP;
(2)将混合溶液放在磁力搅拌器上搅拌12h,搅拌速度为110rpm,获得静电纺丝液;
(3)通过静电纺丝法制备纤维,纺丝电压为20kV,溶液注射速度为0.2ml h-1,收丝筒转速为60r/min,接收距离为18cm,静电纺丝的温度为30℃;
(4)将所得纤维在70℃烘干24h;
(5)将烘干后的纤维装入坩埚中,在箱式电阻炉中,以2℃/min的升温速率升温到750℃烧结3h,再以5℃/min的降温速率冷却,得到Bi2Ca2Co2Oy纳米纤维。
对比例
溶胶凝胶法制备Bi2Ca2Co2Oy,具体包括以下步骤:
(1)在30ml的去离子水中加入5ml的冰醋酸后,依次向溶液中加入0.3167g的柠檬酸,0.49g的硝酸铋,0.2385g的硝酸钙和0.294g的硝酸钴;
(2)将混合溶液放在磁力搅拌器上搅拌12h,搅拌速度为80rpm;
(3)将获得的溶液在80℃下烘干;
(4)将烘干的Bi2Ca2Co2Oy前驱体装入坩埚中,在箱式电阻炉中,以0.5℃/min的升温速率升温到800℃烧结2h,再以1℃/min的降温速率冷却,得到Bi2Ca2Co2Oy电极材料。
将本对比例采用溶胶凝胶法制得的Bi2Ca2Co2Oy与实施例1制得的Bi2Ca2Co2Oy纳米纤维,在相同的条件下分别进行充放电测试,结果如图5所示。对比图4和图5可以看出采用静电纺丝法制备的Bi2Ca2Co2Oy纳米纤维的充放电时间更久,性能更好。

Claims (10)

1.一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于,包括以下步骤:
(a)称取0.245~1.225份硝酸铋、0.11925~0.59625份硝酸钙和0.147~0.735份硝酸钴依次溶解于DMF与冰醋酸的混合溶液,最后加入1.35~6.75份PVP;
(b)将混合溶液放在磁力搅拌器上搅拌,直至溶液成透明状,获得静电纺丝液;
(c)将得到的静电纺丝液通过静电纺丝法制备Bi2Ca2Co2Oy前驱体纤维;
(d)将获得的Bi2Ca2Co2Oy前驱体纤维放入烘箱中进行烘干;
(e)在700~900℃烧结,得到Bi2Ca2Co2Oy纳米纤维。
2.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(a)中,DMF与冰醋酸的体积比为5~25:2.5~7.5。
3.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(b)中,搅拌速度为80~120rpm,搅拌时间为6~12h。
4.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(c)中,静电纺丝电压为15~20kV,溶液注射速度为0.2~0.6ml h-1
5.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(c)中,静电纺丝机的收丝滚筒转速50~200r/min,接收距离为10~20cm。
6.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(c)中,静电纺丝的温度为10~30℃。
7.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(d)中,烘干温度为70~100℃,烘干时间为12~24h。
8.根据权利要求1所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法,其特征在于:所述步骤(e)中,升温速率为1~5℃/min,升高到700~900℃时保温2~6h,降温速率为1~5℃/min。
9.根据权利要求1~8所述的一种Bi2Ca2Co2Oy纳米纤维的制备方法所制得的Bi2Ca2Co2Oy纳米纤维,其特征在于:晶粒尺寸为60~250nm。
10.根据权利要求9所述的Bi2Ca2Co2Oy纳米纤维在超级电容器电极材料中的应用。
CN202011358846.4A 2020-11-27 2020-11-27 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用 Active CN112501718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011358846.4A CN112501718B (zh) 2020-11-27 2020-11-27 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011358846.4A CN112501718B (zh) 2020-11-27 2020-11-27 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用

Publications (2)

Publication Number Publication Date
CN112501718A true CN112501718A (zh) 2021-03-16
CN112501718B CN112501718B (zh) 2022-07-01

Family

ID=74967329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011358846.4A Active CN112501718B (zh) 2020-11-27 2020-11-27 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用

Country Status (1)

Country Link
CN (1) CN112501718B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137294U (ja) * 2007-05-30 2007-11-22 正崇 降井 合成樹脂繊維糸
CN101786862A (zh) * 2009-12-31 2010-07-28 清华大学 热电材料及其制备方法
US20120282484A1 (en) * 2011-04-22 2012-11-08 Cornell University Metal and ceramic nanofibers
WO2016146070A1 (zh) * 2015-03-18 2016-09-22 重庆文理学院 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN106381574A (zh) * 2016-08-30 2017-02-08 长春理工大学 一种制备Bi5O7I纳米纤维的方法
CN110747535A (zh) * 2019-09-18 2020-02-04 江苏科技大学 一种Ca3Co4O9纳米纤维的制备方法
CN111068715A (zh) * 2019-12-26 2020-04-28 西安理工大学 Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137294U (ja) * 2007-05-30 2007-11-22 正崇 降井 合成樹脂繊維糸
CN101786862A (zh) * 2009-12-31 2010-07-28 清华大学 热电材料及其制备方法
US20120282484A1 (en) * 2011-04-22 2012-11-08 Cornell University Metal and ceramic nanofibers
WO2016146070A1 (zh) * 2015-03-18 2016-09-22 重庆文理学院 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN106381574A (zh) * 2016-08-30 2017-02-08 长春理工大学 一种制备Bi5O7I纳米纤维的方法
CN110747535A (zh) * 2019-09-18 2020-02-04 江苏科技大学 一种Ca3Co4O9纳米纤维的制备方法
CN111068715A (zh) * 2019-12-26 2020-04-28 西安理工大学 Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN112501718B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110624558B (zh) 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途
CN107201573B (zh) 一种二硫化钴与碳纳米纤维复合材料的制备方法及其应用
CN109659519B (zh) TiO2纳米纤维包覆的锂离子电池三元正极材料制备方法及产品
CN102820460A (zh) 静电纺丝法制备稀土金属掺杂的纳米钛酸锂
CN108807001B (zh) 多级结构的球形钴酸镍-二氧化铈复合电极材料及其制备方法
CN110079895B (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN110808173B (zh) 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法
CN114883567B (zh) 一种中空管状结构锂离子电池正极材料及其制备方法和应用
CN106992288A (zh) 一种锑/碳纳米纤维柔性材料及其制备方法和应用
CN108538618B (zh) 一种多孔ZnO-C复合材料及其制备方法和应用
CN116230878A (zh) 一种钠离子正极材料及制备方法和钠离子正极极片
CN113224292A (zh) 一种高性能锂离子电池聚丙烯腈碳纤维负极材料及其制备方法
CN112501718B (zh) 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用
CN109306551A (zh) 一种硼掺杂二氧化钛纳米纤维及其制备方法和作为锂离子电池负极材料的应用
CN111924864A (zh) 一种锂离子电池MnO/MgO复合负极材料及其制备方法
KR102012106B1 (ko) 금속산화물 및 유기리간드를 포함하는 금속-유기 복합체, 이를 이용한 슈퍼커패시터용 전극, 및 이의 제조방법
CN110747535A (zh) 一种Ca3Co4O9纳米纤维的制备方法
CN108642607B (zh) MnO2/TiC/C复合多孔纳米纤维的制备方法
CN113921296B (zh) 双壳层镍-钴-锰-铈四元氧化物复合电极材料
CN114334484B (zh) 一种镍铜氧化物/碳复合纳米纤维电极材料及其制备方法
CN114497474B (zh) 一种富镍ncm811纳米颗粒的制备方法
CN113249827A (zh) 一种硫化钴/碳复合纳米纤维及其制备方法
CN110112396B (zh) 一种二氧化钛碳纤维制备Na8Ti5O14-C纳米纤维负极材料的方法
CN110085841B (zh) 一种二氧化钛碳纤维制备Na4Ti5O12-C纳米纤维负极材料的方法
CN108615615B (zh) NiO/TiC/C复合多孔纳米纤维的制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Dong Songtao

Inventor after: Yu Miaocheng

Inventor after: Wang Lei

Inventor after: Zhang Yamei

Inventor before: Yu Miaocheng

Inventor before: Dong Songtao

Inventor before: Wang Lei

Inventor before: Zhang Yamei

GR01 Patent grant
GR01 Patent grant