CN110808173B - 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法 - Google Patents

一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法 Download PDF

Info

Publication number
CN110808173B
CN110808173B CN201911169776.5A CN201911169776A CN110808173B CN 110808173 B CN110808173 B CN 110808173B CN 201911169776 A CN201911169776 A CN 201911169776A CN 110808173 B CN110808173 B CN 110808173B
Authority
CN
China
Prior art keywords
composite material
nio
preparation
electrostatic spinning
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911169776.5A
Other languages
English (en)
Other versions
CN110808173A (zh
Inventor
张春勇
苏蕾
李雯
刘海涛
赵渝越
黄琳娜
李健宁
秦恒飞
舒莉
程洁红
朱炳龙
程庆霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201911169776.5A priority Critical patent/CN110808173B/zh
Publication of CN110808173A publication Critical patent/CN110808173A/zh
Application granted granted Critical
Publication of CN110808173B publication Critical patent/CN110808173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种链珠状Cu2O‑Mn3O4/NiO复合材料,该复合材料是以静电纺丝法为主要制备方法,再辅以炭化过程合成的,在材料中,金属Cu离子和Mn离子的质量分数为5wt%‑15wt%;制备时,首先将聚丙烯腈溶于DMF中,搅拌均匀形成溶液;接着将镍盐、锰盐和铜盐分别依次加入到上步制备的溶液中,搅拌均匀后转移到针筒内,在一定条件下进行静电纺丝;最后将静电纺丝后得到的复合纳米纤维垫置于马弗炉中煅烧即得。该复合材料具有良好的纤维结构,是一种电容量大、长寿命、低污染的电极材料,容易转移电子/离子,可提高超级电容器的稳定性;本发明优化了工艺反应条件,大幅简化了合成工艺并缩减了成本。

Description

一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法
技术领域
本发明涉及材料合成技术领域,具体涉及一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法。
背景技术
随着新型储能装置的发展,结合高能和大功率密度的电化学储能装置 (EESD)成为研究热点。其中,超级电容器(SCs)由于具有快速充放电、高比电容、安全环保等特点,已经部分取代现有的可充电电池,被应用在移动电子产品和电动汽车等领域。超级电容器被认为是最适合用于弥合低能量密度电容器和低功率密度锂离子电池之间差距的能量系统。1975年,Conway发现过渡金属氧化物是极具发展前景的赝电容电极材料,但是RuO2类金属氧化物虽能够提供足够高的比电容,但价格太过昂贵,因此,低成本金属氧化物如NiO、Co3O4、 MnO2和Fe3O4成为电极的优选材料。氧化镍因具有高表面积,高导电性的特性而备受关注,为了进一步提高NiO的比电容,人们对制备方法进行了不断的探索和研究。
静电纺丝是一种特殊的纤维制造工艺,该方式可生产出纳米级直径的聚合物细丝,细丝直径最小可至1纳米,静电纺丝更是以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,成为有效制备纳米纤维材料的主要途径之一。
在各种类型的功能纳米材料中,活性金属可通过锂插入反应形成合金来储存大量锂,因此它们适用于可充电LIB中的高容量阳极材料。但是,因为锂嵌入或萃取反应引起的体积变化和结构破坏,这些活性金属在循环过程中遭受严重的颗粒聚集和容量劣化。除了活性金属之外,非活性金属(例如Cu)可以在电极中形成导电通路以增强电接触。金属离子Cu有助于提高电极导电性,提高库仑效率,并提高最终电极的循环性能。
而在众多无机功能材料之中,氧化锰类材料具有安全无毒性、高比容量和活性位点多、较低价格等优点,由它制备的电极材料更是具有比容量高、稳定性高等特点,是超级电容器的良好电极材料。
目前,还未有将金属氧化物CuOx、MnxOy与NiO相结合的复合材料作为超级电容器的电极材料这方面的报道。
发明内容
针对现有技术中存在的问题,本发明公开一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法。Cu2O-Mn3O4/NiO表现出较强的表面与体积比,且活性位点多,电子/离子转移较容易。
本发明的技术方案为:一种链珠状Cu2O-Mn3O4/NiO复合材料,该复合材料是以静电纺丝法为主要制备方法,再辅以炭化过程合成的,在材料中,金属Cu 离子、Mn离子的质量分数为5wt%-15wt%。
一种链珠状Cu2O-Mn3O4/NiO复合材料的制备方法,具体包括如下步骤:
1)首先将聚丙烯腈溶于DMF中,搅拌均匀形成质量分数为14wt%的溶液;
2)将镍盐、锰盐和铜盐分别依次加入到步骤1制备的溶液中,搅拌均匀后转移到10mL针筒内,在一定条件下进行静电纺丝;
3)将步骤2得到的复合纳米纤维垫置于马弗炉中煅烧。
在步骤2中,镍盐、锰盐和铜盐的质量比为2:1:1。
在步骤2中,所述镍盐选自包括乙酸镍、硝酸镍在内的易溶解镍盐;所述锰盐选自包括乙酸锰、硝酸锰在内的易溶解锰盐;所述铜盐选自包括乙酸铜、硝酸铜在内的易溶解铜盐。
在步骤2中,进行静电纺丝的条件为:高度为10~20cm、流速0.1~0.8mL/h、电压为10~20kV。
在步骤3中,煅烧温度为从室温逐步升温至500℃,煅烧11h。
本发明的有益效果为:
1.本发明以静电纺丝法为主要制备方法,再经炭化生成Cu2O-Mn3O4/NiO复合材料,该纳米复合材料具有良好的纤维结构,直径小、纤维均一、有较大的比表面积,是一种电容量大、长寿命、低污染的电极材料,容易转移电子/离子,可提高超级电容器的稳定性;
2.本发明优化了工艺反应条件,大幅简化了合成工艺并缩减了成本,采用静电纺丝方法可直接制备出直径为纳米级的丝,制备过程更加简单高效。
附图说明
图1为不同材料的XRD图,其中,A为对比例1制得的NiO的XRD图,B 为对比例2制得的Cu2O/NiO的XRD图,C为对比例3制得的Mn3O4/NiO的XRD 图,D为实施例1制得的Cu2O-Mn3O4/NiO的XRD图;
图2为不同材料的SEM形貌图,其中,A为对比例1制得的NiO的SEM 形貌图,B为对比例2制得的Cu2O/NiO的SEM形貌图,C为对比例3制得的 Mn3O4/NiO的SEM形貌图,D为实施例1制得的Cu2O-Mn3O4/NiO的SEM形貌图;
图3为图2中D图像的放大图;
图4为对比例1制得的NiO、对比例2制得的Cu2O/NiO、对比例3制得的 Mn3O4/NiO和实施例1制得的Cu2O-Mn3O4/NiO的循环伏安图;
图5为对比例1制得的NiO、对比例2制得的Cu2O/NiO、对比例3制得的 Mn3O4/NiO和实施例1制得的Cu2O-Mn3O4/NiO的比电容图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1
一种Cu2O-Mn3O4/NiO复合材料的制备方法,包括以下步骤:
(1)称取2.007g的聚乙烯吡咯烷酮溶于12.003g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.013g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)称取0.502g醋酸锰倒入溶液B中,室温下搅拌0.5h,得到混合溶液 C;
(4)称取0.504g醋酸铜倒入溶液C中,室温下搅拌0.5h,得到混合溶液 D;
(5)将混合溶液D放置于针筒内,在17kV电压,流速为0.2mL/h以及高度为15cm的条件下进行静电纺丝,制得Cu-Mn/PVP纳米纤维;
(6)将步骤(5)所得纳米纤维置于瓷舟中,在空气条件下,从室温逐步加热到500℃,煅烧11h,制得样品Cu2O-Mn3O4/NiO。
对比例1
一种NiO纳米纤维的制备方法,包括以下步骤:
(1)称取2.003g的聚乙烯吡咯烷酮溶于12.002g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.013g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)将混合溶液B放置于针筒内,在17kV电压,流速为0.2mL/h以及高度15cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得纳米纤维垫;
(4)将步骤(3)所得纳米纤维置于瓷舟中,在通空气的条件下,从室温逐步加热到500℃,煅烧11h,制得样品NiO。
对比例2
一种Cu2O/NiO复合材料的制备方法,包括以下步骤:
(1)称取2.005g的聚乙烯吡咯烷酮溶于12.003g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.011g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)称取0.503g醋酸铜倒入溶液C中,室温下搅拌0.5h,得到混合溶液 C;
(4)将混合溶液C放置于针筒内,在17kV电压,流速为0.2mL/h以及高度15cm的条件下进行静电纺丝作用,制得Cu/PVP纳米纤维;
(5)将步骤(4)所得纳米纤维置于瓷舟中,在空气的条件下,从室温逐步加热到500℃,煅烧11h,制得样品Cu2O/NiO。
对比例3
一种Mn3O4/NiO复合材料的制备方法,包括以下步骤:
(1)称取2.012g的聚乙烯吡咯烷酮溶于12.021g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.004g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)称取0.512g醋酸锰倒入溶液B中,室温下搅拌0.5h,得到混合溶液 C;
(4)将混合溶液C放置于针筒内,在17kV电压,流速为0.2mL/h以及高度15cm的条件下进行静电纺丝作用,制得Mn/PVP纳米纤维。
(5)将步骤(4)所得纳米纤维置于瓷舟中,在空气条件下,从室温逐步加热到500℃,煅烧11h,制得样品Mn3O4/NiO。
相关性能测试:
图1为实施例1、对比例1-3制得的四种材料的XRD图。从图中可以看出在无负载的情况下制备出了的晶形较好NiO,随着Mn源、Cu源的加入,分别在相应的位置出现了Cu2O和Mn3O4的衍射峰,与标准卡片峰位置相一致。
图2为实施例1、对比例1-3制得的四种材料的SEM图,从A、B图中可以看出NiO、Cu2O/NiO整体呈小颗粒状,C图中的Mn3O4/NiO呈纤维状,D图中的Cu2O-Mn3O4/NiO呈珠链状,从图3中更可以清楚的看出Cu2O-Mn3O4/NiO材料的链珠结构。
将实施例1、对比例1-3所制备的材料应用于超级电容器的阳电极材料并进行电化学测试。
利用电化学工作站(CHI760E)对纳米纤维进行了电化学分析。电极体系为三电极体系,工作电极为泡沫镍,对电极为铂网电极,参比电极为饱和甘汞电极。将电极材料、PVDF和乙炔黑按8:1:1的质量比,加入异丙醇作为分散剂,均匀搅拌和涂层之前准备泡沫镍,应用领域是1.0厘米×1.0厘米,在60℃的真空干燥箱干燥12小时。
图4是在扫描速率5mV/s下NiO、Cu2O/NiO、Mn3O4/NiO和Cu2O-Mn3O4/NiO 作为电极材料时在6M KOH中的循环伏安图。从图4可知,循环伏安曲线出现了明显的还原氧化峰。循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度,若反应是可逆的,则曲线上下对称。从图4 可知,Cu2O-Mn3O4/NiO电极的循环伏安曲线出现的面积明显比NiO、Cu2O/NiO、Mn3O4/NiO电极大,且曲线上下对称,间接反映出Cu2O-Mn3O4/NiO电极具有比其他3中材料大的比电容,且曲线中还原峰(向上的峰)峰电流越大,越容易还原,氧化峰(向下的峰)峰电流越大,越容易氧化,说明Cu2O-Mn3O4/NiO复合材料具有赝电容性能;这说明所制得的Cu2O-Mn3O4/NiO复合材料中活性物质较多,低价态铜和低价态的锰较其他物质能够很容易的被氧化还原。
测得实施例1和对比例1~3制备的材料的比电容如图5所示,比电容按下式计算:
Figure BDA0002288360160000061
其中Cs为比电容(F/g),I为电流(A),m为电极材料质量(g),v为扫描速度(v/s),Δv为电压范围(v)。从图4中可以看到,纯NiO电极材料的比电容最小,在5mV/s下为818F/g;Cu2O/NiO电极材料的比电容在5mV/s下为867 F/g;Mn3O4/NiO电极材料的比电容在5mV/s下为972F/g;而Cu2O-Mn3O4/NiO 电极材料的比电容大于上述三种材料,电极材料在5mV/s下最大比电容为1306 F/g。
实施例2
一种Cu2O-Mn3O4/NiO复合材料的制备方法,包括以下步骤:
(1)称取2.002g的聚乙烯吡咯烷酮溶于12.003g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取2.003g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)称取1.002g醋酸锰倒入溶液B中,室温下搅拌0.5h,得到混合溶液 C;
(4)称取1.005g醋酸铜倒入溶液C中,室温下搅拌0.5h,得到混合溶液 D;
(5)将混合溶液D放置于针筒内,在15kV电压,流速为0.3mL/h以及高度15cm的条件下进行静电纺丝作用,制得Cu-Mn/PVP纳米纤维;
(6)将步骤(5)所得纳米纤维置于瓷舟中,在空气的条件下,从室温逐步加热到500℃,煅烧11h,制得样品Cu2O-Mn3O4/NiO。
实施例3
一种Cu2O-Mn3O4/NiO复合材料的制备方法,包括以下步骤:
(1)称取2.002g的聚乙烯吡咯烷酮溶于12.003g N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.503g六水合硝酸镍倒入溶液A中,室温下搅拌1h,得到混合溶液B;
(3)称取0.752g醋酸锰倒入溶液B中,室温下搅拌0.5h,得到混合溶液 C;
(4)称取0.751g醋酸铜倒入溶液C中,室温下搅拌0.5h,得到混合溶液 D;
(5)将混合溶液D放置于针筒内,在17kV电压,流速为0.2mL/h以及高度18cm的条件下进行静电纺丝作用,制得Cu-Mn/PVP纳米纤维;
(6)将步骤(5)所得纳米纤维置于瓷舟中,在空气的条件下,从室温逐步加热到500℃,煅烧11h,制得样品Cu2O-Mn3O4/NiO。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (3)

1.一种链珠状Cu2O-Mn3O4/NiO复合材料的制备方法,其特征在于,具体包括如下步骤:
1)首先将聚丙烯腈溶于DMF中,搅拌均匀形成质量分数为14 wt%的溶液;
2)将镍盐、锰盐和铜盐按2:1:1的质量比分别依次加入到步骤1制备的溶液中,搅拌均匀后转移到针筒内进行静电纺丝,进行静电纺丝的条件为:高度为10~20 cm、流速0.1~0.8 mL/h、电压为10~20 kV;
3)将步骤2得到的复合纳米纤维垫置于马弗炉中煅烧,煅烧温度从室温逐步升温至500℃,煅烧11 h即得Cu2O-Mn3O4/NiO复合材料;
所得复合材料中,金属Cu离子和Mn离子的质量分数为5 wt%-15 wt%。
2.如权利要求1所述的一种链珠状Cu2O-Mn3O4/NiO复合材料的制备方法,其特征在于,在步骤2中,所述镍盐选自乙酸镍、硝酸镍;所述锰盐选自乙酸锰、硝酸锰;所述铜盐选自乙酸铜、硝酸铜。
3.如权利要求1-2中任一项所述的一种链珠状Cu2O-Mn3O4/NiO复合材料的制备方法制备的链珠状Cu2O-Mn3O4/NiO复合材料,其特征在于,该复合材料是以静电纺丝法为主要制备方法,再辅以炭化过程合成的。
CN201911169776.5A 2019-11-26 2019-11-26 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法 Active CN110808173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911169776.5A CN110808173B (zh) 2019-11-26 2019-11-26 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911169776.5A CN110808173B (zh) 2019-11-26 2019-11-26 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110808173A CN110808173A (zh) 2020-02-18
CN110808173B true CN110808173B (zh) 2021-10-08

Family

ID=69491282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911169776.5A Active CN110808173B (zh) 2019-11-26 2019-11-26 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110808173B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326351A (zh) * 2020-03-04 2020-06-23 中国矿业大学 一种电容器用Cu2O/NiO材料的制备方法
CN112053854B (zh) * 2020-08-21 2022-02-08 益阳市开元电子有限公司 一种Co掺杂Mn3O4-碳纳米纤维基超级电容器电极材料及其制法
CN112881484B (zh) * 2021-01-14 2021-11-16 东北大学 一种非酶血糖检测的3d电极制备方法
CN113368869A (zh) * 2021-07-22 2021-09-10 深圳大学 一种可见光降解染料的纳米纤维材料、制备方法、应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922116B1 (ko) * 2012-04-19 2018-11-26 삼성전자주식회사 전기화학 커패시터용 전극 및 이를 포함하는 전기화학 커패시터
CN102751100B (zh) * 2012-06-26 2015-07-15 北京交通大学 一种超级电容器电极的制备方法
CN109904003B (zh) * 2019-01-29 2021-06-04 阜阳佳派生产力促进中心有限公司 一种传感器用二氧化锰-二硫化锡-氧化亚铜电极材料的制备方法
CN110085447A (zh) * 2019-04-28 2019-08-02 江苏理工学院 一种Cu-MnO/碳纳米纤维复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110808173A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN110808173B (zh) 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法
Prasanna et al. Highly porous CeO2 nanostructures prepared via combustion synthesis for supercapacitor applications
Chen et al. Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance
Wang et al. Template-free synthesis of multifunctional Co3O4 nanotubes as excellent performance electrode materials for superior energy storage
Zhu et al. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications
Cao et al. Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors
Tian et al. Direct growth of Ni–Mn–O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications
Cao et al. Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu
Li et al. A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte
Sun et al. Hydrothermal synthesis of a MnOOH/three-dimensional reduced graphene oxide composite and its electrochemical properties for supercapacitors
Yu et al. Electrospun ZnCo2O4/C composite nanofibers with superior electrochemical performance for supercapacitor
Zhao et al. Intercalating petroleum asphalt into electrospun ZnO/Carbon nanofibers as enhanced free-standing anode for lithium-ion batteries
Zhu et al. Facile synthesis of MOF-derived porous spinel zinc manganese oxide/carbon nanorods hybrid materials for supercapacitor application
Xu et al. Electrospun‐technology‐derived high‐performance electrochemical energy storage devices
KR102423807B1 (ko) 헥사고날 산화몰리브덴 나노 로드의 제조 방법
Wei et al. Inherently porous Co3O4@ NiO core–shell hierarchical material for excellent electrochemical performance of supercapacitors
Wang et al. Battery-type MnCo2O4@ carbon nanofibers composites with mesoporous structure for high performance asymmetric supercapacitor
CN105742075A (zh) 一种超级电容器用钒酸钴纳米材料及其制备方法和应用
CN109399691A (zh) 一种Cu-CuO/碳纳米纤维复合材料及其制备方法
Huang et al. Integration of RuO2/conductive fiber composites within carbonized micro-electrode array for supercapacitors
Shao et al. Construction of symmetric aqueous rechargeable battery with high voltage based on NiFe2O4 hollow microspheres
Lin et al. Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes
Teng et al. High-performance flexible SnO2 anode boosted by an N-doped graphite coating layer for lithium-ion and sodium-ion batteries
Chen et al. Low-temperature performance of aqueous electrochemical capacitors based on manganese oxides
CN112726192B (zh) 电纺碳纳米纤维/还原氧化石墨烯/聚苯胺/碱式碳酸镍复合电极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200218

Assignee: Jiangsu Ningda environmental protection Co.,Ltd.

Assignor: JIANGSU University OF TECHNOLOGY

Contract record no.: X2023980054656

Denomination of invention: A chain bead shaped Cu2O-Mn3O4/NiO composite material and its preparation method

Granted publication date: 20211008

License type: Common License

Record date: 20240103