CN110079895B - 一种钛酸盐与二氧化钛复合物纳米线及其制备方法 - Google Patents

一种钛酸盐与二氧化钛复合物纳米线及其制备方法 Download PDF

Info

Publication number
CN110079895B
CN110079895B CN201910423982.8A CN201910423982A CN110079895B CN 110079895 B CN110079895 B CN 110079895B CN 201910423982 A CN201910423982 A CN 201910423982A CN 110079895 B CN110079895 B CN 110079895B
Authority
CN
China
Prior art keywords
titanate
solution
titanium dioxide
nanowire
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910423982.8A
Other languages
English (en)
Other versions
CN110079895A (zh
Inventor
刘语舟
李星
黄水平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201910423982.8A priority Critical patent/CN110079895B/zh
Publication of CN110079895A publication Critical patent/CN110079895A/zh
Application granted granted Critical
Publication of CN110079895B publication Critical patent/CN110079895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种钛酸盐与二氧化钛复合物纳米线及其制备方法,本发明采用静电纺丝技术将钛酸四丁酯、乙酸钴·四水合物、醋酸锂为溶于N,N‑二甲基甲酰胺、乙醇、醋酸的混合溶剂中,然后加入聚乙烯吡咯烷酮,搅拌,得到前驱体混合物溶液;然后在一定的电压、流率、温度及一定的相对湿度氛围下进行静电纺丝;收集静电纺丝产品在马弗炉中空气氛围下进行烧结,得到本发明所述的钛酸盐与二氧化钛复合物纳米线,该复合物纳米线具有良好的电化学性能,可应用于锂离子电池的电极材料,在整个制备过程中,操作简单,原料成本低,设备投资少,适合批量生产。

Description

一种钛酸盐与二氧化钛复合物纳米线及其制备方法
技术领域
本发明属于材料化学领域,具体涉及到一种钛酸盐与二氧化钛复合物纳米线及其制备方法。
背景技术
静电纺丝技术是指将聚合物溶液或熔体在高压静电场力作用下发生喷射拉伸,通过溶剂挥发或熔体固化,得到超细纤维的一种技术,该技术起源于20世纪30年代,制造成本低廉、工艺简单、具有超大比表面积和极高孔隙率,且结构、尺寸、形貌可控,可快速获得直径分布为几纳米至几微米的超细纤维,因此得到了科学家们的广泛关注。目前,利用静电纺丝技术制备的纳米纤维包括有机纳米纤维、有机/无机杂化复合物纳米纤维、无机纳米纤维、碳纳米纤维等,在过滤材料、能源材料、生物医疗、传感器和光催化等领域得到了十分广泛的应用。其中,静电纺丝有机/无机杂化纳米纤维实现了两种及两种以上组分在纳米尺度上的复合,使其在发挥组分各自优势的同时,还新增了单一组分所不具备的功能性,现已成为静电纺丝技术的研究热点之一,呈现出广阔的应用前景。
随着当今世界科技和经济的快速发展,人类社会对能源的依赖程度不断加剧,目前社会的主要能源供给依然是三大化石能源:煤、石油、天然气,这些能源不可再生且对环境污染极大,因此改变现有的不合理的能源结构和发展绿色环保的新型可再生能源迫在眉睫。目前,大力发展的新型可再生能源有风能,太阳能,潮汐能和地热能等,但是这些能源极易容易受到天气、季节、地域等各种不确定性因素的影响,所以必须配置相应的能量储存系统与之相辅助,所以发展高效便捷的储存技术成为了目前的研究热点。以锂离子电池为代表的绿色电源受到科研工作者的青睐,作为绿色化学能源,凭借其诸多的优点而受到研究者的广泛关注,比如工作电压高、能量密度大、循环寿命长、工作温度范围宽、绿色环保且没有记忆效应,广泛应用于笔记本电脑、手机、航空航天、电动汽车等领域。现在电池的能量密度是制约发展的重要因素,为了增强的能量密度,开发高容量和快速Li+传输速率的负极材料显得尤为重要。纳米材料具有比表面积高,活性位点多的特点,在Li+嵌入/脱出过程中会增大反应面积和反应活性位点,从而提高电极比容量和能量密度。此外,纳米级的电极不仅具有较稳定和较薄的SEI膜,同时又能增加电极与电解液的接触面积,缩短Li+和电子的传输路径,因此能加快充放电速率,最终增大锂离子电池的功率密度。将纳米结构电极与导电性良好材料复合,能有效减小复合材料的界面电阻,增加其可逆容量。因此,开发研究纳米结构的负极材料成为获取优异锂离子电池性能的重要途径。
目前,市场上常用的锂离子电池负极材料主要是碳材料,包括天然石墨、合成石墨、碳纤维、中间相小球碳素等,碳材料因其价格低廉、资源丰富等优点被广泛用作商业化锂离子电池的负极材料(Energy Environ.Sci.,2011,4,268)。但碳负极材料在放电至较低电压时,会产生锂枝晶,导致电池短路,易造成严重的安全问题;同时,在不断的充放电过程中,碳负极的表面不可避免地形成一层不稳定的电子绝缘固体电解质界面膜(SEI),导致容量的快速衰减和性能的恶化,制约着碳负极材料的发展和应用。钛基氧化物材料相对于传统碳负极材料具有较高的电压平台、充放电过程中体积变化小等优点,具有很好的安全性和循环稳定性,被认为是一种非常有应用前景、可替代碳的新型负极材料。
本发明采用静电纺丝技术成功合成了钛酸盐与二氧化钛复合物纳米纤维线材料,其化学式为Li2CoTi3O8·CoTiO3·TiO2,测试结果显示,该复合物纳米线结合了各自组分的优势,电化学性能得到有效提高,比容量高,循环可逆性能好。
发明内容
本发明所要解决的技术问题是针对现有技术,提供一种热稳定性能高、具有一维纳米纤维结构的钛酸盐与二氧化钛复合物纳米线及其制备方法。
本发明解决上述技术问题所采取的技术方案为:
一种钛酸盐与二氧化钛复合物纳米线的制备方法,其特征在于,采用以钛酸四丁酯、乙酸钴、醋酸锂、醋酸钠为主要原料,加入适量的高分子为粘合剂,利用静电纺丝技术,制备静电纺丝产品,随后在马弗炉中进行烧结,得到一种钛酸盐与二氧化钛复合物纳米线,其化学式为Li2CoTi3O8·CoTiO3·TiO2,具体包括以下步骤:
(1)将一定量乙酸钴·四水合物(C4H6CoO4·4H2O)溶于N,N-二甲基甲酰胺(DMF)搅拌0.5h,形成溶液A;
(2)将一定量的醋酸锂(CH3COOLi)和钛酸四丁酯(C16H36O4Ti)溶于无水乙醇,加入适量的冰醋酸,搅拌0.5h,形成溶液B;
(3)将溶液B和溶液A混合,加入K-120型聚乙烯吡咯烷酮(PVP),搅拌6h,形成澄清的纺丝前驱溶液C,用冰醋酸调控pH=2~3.5;
(4)将澄清透明的纺丝前驱溶液C吸入注射器中,在15~19kV的电压,针头与接收器的距离为15~20cm,流率为0.3~0.6mL h-1,温度为28~35℃,相对湿度15~30%条件下进行静电纺丝;
(5)收集得到的静电纺丝产物置于100℃下干燥6~12h,随后将干燥好的静电纺丝产物转移到马弗炉中,在750℃~850℃温度下烧结5~8h,得到Li2CoTi3O8·CoTiO3·TiO2复合物纳米线。
所述钴盐为醋酸钴·四水合物,分子式为C4H6CoO4·4H2O;
所述钛酸四丁酯的化学式为C16H36O4Ti;
所述聚乙烯吡咯烷酮为K-120型,分子量为1,390,000;
所述反应的溶剂、试剂或原料均为化学纯。
本发明所制备的复合物纳米线作为电池负极材料充放电循环200次放电比容量能保持在208.5mAh·g-1以上,库伦效率能保持99.8%。
与现有技术相比,本发明采用静电纺丝技术合成的钛酸盐与二氧化钛复合物纳米线具有如下特点:
(1)本发明合成的钛酸盐与二氧化钛复合物纳米线,与传统的合成方法相比,材料长径比更大,稳定性高;(2)该复合物纳米线材料是由Li2CoTi3O8、CoTiO3和TiO2复合而成,具有比表面积高,活性位点多;(3)本发明所制备的复合物纳米线作为锂电池电极材料,能有效抑制锂枝晶的生长,安全性好,循环可逆性好。
附图说明
图1为本发明制得的钛酸盐与二氧化钛复合物纳米线的XRD图;
图2为本发明制得的钛酸盐与二氧化钛复合物纳米线的SEM图;
图3为本发明制得的钛酸盐与二氧化钛复合物纳米线作为电池负极材料的充放电循环图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
在烧杯A中加入5.0mL的N,N-二甲基甲酰胺(DMF),再加入2.0mmoL(0.4982g)乙酸钴·四水合物(C4H6CoO4·4H2O),搅拌0.5h,使乙酸钴·四水合物完全溶解,得到溶液A,钴离子的浓度为0.4mmol/mL;在烧杯B中加入2.0mmoL(0.1320g)醋酸锂(C2H3LiO2),再分别加入2.0mL钛酸四丁酯(C16H36O4Ti)、5.0mL无水乙醇、2.0mL醋酸,搅拌0.5h,使醋酸锂完全溶解,得到溶液B,锂离子的浓度约为0.22mmol/mL;将B烧杯中的溶液缓慢倒入A烧杯中,搅拌0.5h,使A、B溶液混合完全,加入1.40g PVP(K-120,聚乙烯吡咯烷酮),搅拌6h,形成清的纺丝前驱溶液C,用冰醋酸调控溶液C的pH=2;将澄清溶液C吸入注射器中,在15kV的电压,接收距离为15cm,流率为0.3mL h-1,温度为28℃,相对湿度15%条件下,进行静电纺丝;将得到的静电纺丝产物放于100℃下干燥6h;将干燥好的静电纺丝产物转移到马弗炉中,在750℃下烧结8h,得到钛酸盐与二氧化钛复合物纳米线;将得到的复合物纳米线进行X射线粉末衍射XRD测试,结果显示衍射峰与相应化合物的衍射峰相对应(图1);扫描电子显微镜SEM观察形貌,结果显示材料呈现纳米线形(图2);用电化学测试仪测试其电化学性能(图3)。由图3可知,所制备的复合物纳米线作为电池负极材料充放电循环200次放电比容量能保持在208.5mAh·g-1以上,库伦效率能保持99.8%。
实施例2
在烧杯A中加入5.0mL的N,N-二甲基甲酰胺(DMF),再加入2.00mmoL(0.4982g)乙酸钴·四水合物(C4H6CoO4·4H2O),搅拌0.5h,使乙酸钴·四水合物完全溶解,得到溶液A;在烧杯B中加入2.0mmoL(0.1320g)醋酸锂(C2H3LiO2),再分别加入2.0mL钛酸四丁酯(C16H36O4Ti)、5.0mL无水乙醇、2.0mL醋酸,搅拌0.5h,使醋酸锂完全溶解,得到溶液B;将B烧杯中的溶液缓慢倒入A烧杯中,搅拌0.5h,使A、B溶液混合完全,加入1.40g PVP(K-120,聚乙烯吡咯烷酮),搅拌6h,形成清的纺丝前驱溶液C,用冰醋酸调控溶液C的pH=3.5;将澄清的溶液C吸入注射器中,在19kV的电压,接收距离为20cm,流率为0.6mL h-1,温度为35℃,相对湿度30%条件下,进行静电纺丝;将得到的静电纺丝产物放于100℃下干燥12h;将干燥好的纺丝产物转移到马弗炉中,在850℃下烧结5h,得到钛酸盐与二氧化钛复合物纳米线。
实施例3
在烧杯A中加入5.0mL的N,N-二甲基甲酰胺(DMF),再加入2.0mmoL(0.4982g)乙酸钴·四水合物(C4H6CoO4·4H2O),搅拌0.5h,使乙酸钴·四水合物完全溶解,得到溶液A;在烧杯B中加入2.0mmoL(0.1320g)醋酸锂(C2H3LiO2),再分别加入2.0mL钛酸四丁酯(C16H36O4Ti)、5.0mL无水乙醇、2.0mL醋酸,搅拌0.5h,使醋酸锂完全溶解,得到溶液B;将B烧杯中的溶液缓慢倒入A烧杯中,搅拌0.5h,使A、B溶液混合完全,加入1.40g PVP(K-120,聚乙烯吡咯烷酮),搅拌6h,形成清的纺丝前驱溶液C,用冰醋酸调控溶液C的pH=2.5;将澄清的溶液C吸入注射器中,在18kV的电压,接收距离为17.5cm,流率为0.4mL h-1,温度为30℃,相对湿度25%条件下,进行静电纺丝;将得到的静电纺丝产物放于100℃下干燥10h;将干燥好的静电纺丝产物转移到马弗炉中,在800℃下烧结7h,得到钛酸盐与二氧化钛复合物纳米线。

Claims (2)

1.一种钛酸盐与二氧化钛复合物纳米线的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将一定量的钴盐溶于N,N-二甲基甲酰胺,搅拌0.5h,形成溶液A;
(2)将一定量的醋酸锂和钛酸四丁酯溶于无水乙醇,加入适量的冰醋酸,搅拌0.5h,形成溶液B;
(3)将溶液B和溶液A混合、搅拌,加入聚乙烯吡咯烷酮,搅拌6h,形成澄清的纺丝前驱溶液C,用冰醋酸调控溶液C的pH=2~3.5;
(4)将澄清透明的纺丝前驱溶液C吸入注射器中,在15~19kV的电压,针头与接收器的距离为15~20cm,流率为0.3~0.6mL h-1,温度为28~35℃,相对湿度15~30%条件下进行静电纺丝;
(5)将得到静电纺丝的产品置于100℃下干燥6~12h,随后将干燥好的静电纺丝产物转移到马弗炉中,在750℃~850℃温度下烧结5~8h,得到钛酸盐与二氧化钛复合物纳米线,其化学式为Li2CoTi3O8·CoTiO3·TiO2
所述钴盐为醋酸钴·四水合物,分子式为C4H6CoO4·4H2O;
所述钛酸四丁酯的化学式为C16H36O4Ti;
所述聚乙烯吡咯烷酮为K-120型,分子量为1,390,000;
所述的纺丝前驱溶液C中钴、锂、钛酸四丁酯的用量比为2.0mmol:2.0mmol:2.0mL;
参加反应的溶剂、试剂或原料均为化学纯。
2.一种如权利要求1所述的制备方法得到的钛酸盐与二氧化钛复合物纳米线,其特征在于,该纳米线作为锂离子电池负极材料,其充放电循环200次放电比容量能保持在208.5mAh·g-1以上,库伦效率能保持99.8%。
CN201910423982.8A 2019-05-21 2019-05-21 一种钛酸盐与二氧化钛复合物纳米线及其制备方法 Active CN110079895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910423982.8A CN110079895B (zh) 2019-05-21 2019-05-21 一种钛酸盐与二氧化钛复合物纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910423982.8A CN110079895B (zh) 2019-05-21 2019-05-21 一种钛酸盐与二氧化钛复合物纳米线及其制备方法

Publications (2)

Publication Number Publication Date
CN110079895A CN110079895A (zh) 2019-08-02
CN110079895B true CN110079895B (zh) 2021-09-17

Family

ID=67421114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910423982.8A Active CN110079895B (zh) 2019-05-21 2019-05-21 一种钛酸盐与二氧化钛复合物纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN110079895B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697800A (zh) * 2019-10-17 2020-01-17 宁波大学 一种镍、钛掺杂锰酸锂纳米颗粒的制备方法
CN110813298B (zh) * 2019-11-06 2023-03-17 齐鲁工业大学 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用
CN110862111B (zh) * 2019-11-27 2022-04-05 宁波大学 一种碳包覆Co、Ni复合氧化物纳米颗粒的制备方法
CN113181919B (zh) * 2021-04-27 2022-06-07 吉林化工学院 一种纤维状钛酸钴与氮化碳复合的光催化剂的制备及应用
CN113816419A (zh) * 2021-08-04 2021-12-21 绿宸新能源科技(苏州)有限公司 一种改性二氧化钛钴酸锰复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140124A (zh) * 2014-07-31 2014-11-12 中国科学技术大学 一维TiO2纳米线的制备方法和TiO2/MoS2复合物的制备方法
CN105948108A (zh) * 2016-04-29 2016-09-21 宁波大学 一种钛酸锂钠纳米线及其制备方法
CN105967226A (zh) * 2016-04-29 2016-09-28 宁波大学 一种钛酸盐纳米纤维及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140124A (zh) * 2014-07-31 2014-11-12 中国科学技术大学 一维TiO2纳米线的制备方法和TiO2/MoS2复合物的制备方法
CN105948108A (zh) * 2016-04-29 2016-09-21 宁波大学 一种钛酸锂钠纳米线及其制备方法
CN105967226A (zh) * 2016-04-29 2016-09-28 宁波大学 一种钛酸盐纳米纤维及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning;Guorui Yang et al.;《Materials Letters》;20140207;117-120 *
Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances;Shimei Guo et al.;《Journal of Materials Chemistry A》;20151022;第3卷(第47期);23859-23904 *
Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries;Li Wang et al.;《Electrochimica Acia》;20120530;77-82 *

Also Published As

Publication number Publication date
CN110079895A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN110079895B (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN107681142B (zh) 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
Li et al. Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry
CN103337641A (zh) 一种锂空气电池用氧电极复合催化剂及其制备方法
Zhao et al. Intercalating petroleum asphalt into electrospun ZnO/Carbon nanofibers as enhanced free-standing anode for lithium-ion batteries
CN110299516A (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN110042503B (zh) 一种MoSe2@C电纺中空纳米纤维及其制备方法和应用
Jiang et al. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries
CN111193014B (zh) 蛋壳-蛋黄结构的四氧化三钴-氮掺杂碳/碳纳米笼复合材料及其制备方法和应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN107579250A (zh) 一种复合碳材料导电剂
CN111924864A (zh) 一种锂离子电池MnO/MgO复合负极材料及其制备方法
CN113594427B (zh) 一种MoS2-MoP量子点@碳复合钠离子电池负极材料及其制备方法
CN107119349B (zh) 一种碳包覆Na2Li2Ti6O14纳米纤维及其制备方法
CN113571681A (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
CN111540887B (zh) 一种碳包覆四氧化三钴与二氧化锡复合物锂电池材料及其制备方法
CN109904436B (zh) 一种钛酸钴二氧化钛复合物纳米线及其制备方法
CN108649201B (zh) 一种LaTi21O38·CoO·CuLaO2复合物纳米线的制备方法
CN113437279B (zh) 一种MOFs包覆高导电多壁碳纳米管复合材料的制备方法及其在钾离子电池中的应用
CN110571429A (zh) 一种碳包覆钴、二氧化钛与钛酸锂复合材料及其制备方法
CN114050248B (zh) 一种MXene/MnOx纳米纤维的静电纺丝制备方法
CN110350174B (zh) 一种锰酸锂、钛酸锂与TiO2复合物纳米线及其制备方法
CN111945252B (zh) 一种基于静电纺丝制备中空锑基二元合金复合纳米纤维材料的方法及其储钾应用
CN110862111B (zh) 一种碳包覆Co、Ni复合氧化物纳米颗粒的制备方法
CN110112396B (zh) 一种二氧化钛碳纤维制备Na8Ti5O14-C纳米纤维负极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant