CN103337641A - 一种锂空气电池用氧电极复合催化剂及其制备方法 - Google Patents

一种锂空气电池用氧电极复合催化剂及其制备方法 Download PDF

Info

Publication number
CN103337641A
CN103337641A CN2013100783399A CN201310078339A CN103337641A CN 103337641 A CN103337641 A CN 103337641A CN 2013100783399 A CN2013100783399 A CN 2013100783399A CN 201310078339 A CN201310078339 A CN 201310078339A CN 103337641 A CN103337641 A CN 103337641A
Authority
CN
China
Prior art keywords
composite catalyst
lithium
oxygen electrode
air battery
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100783399A
Other languages
English (en)
Inventor
黄博文
廖小珍
马紫峰
阳炳检
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SINOPOLY BATTERY CO Ltd
Shanghai Jiaotong University
Original Assignee
SINOPOLY BATTERY CO Ltd
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SINOPOLY BATTERY CO Ltd, Shanghai Jiaotong University filed Critical SINOPOLY BATTERY CO Ltd
Priority to CN2013100783399A priority Critical patent/CN103337641A/zh
Publication of CN103337641A publication Critical patent/CN103337641A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种锂空气电池用氧电极复合催化剂及其制备方法。所述复合催化剂整体形貌呈现纳米纤维网状结构,所述复合催化剂包括多孔碳纳米纤维主体骨架和以凸嵌方式均匀生长于所述碳纳米纤维主体骨架上的金属颗粒和/或金属氧化物颗粒。该复合催化剂的制备方法,包括如下步骤:将高分子聚合物和金属盐溶解于溶剂中并搅拌至完全溶解,形成具有一定粘度的静电纺丝溶液;对所述静电纺丝溶液进行静电纺丝获取直径范围在300~800nm之间的纳米级高分子聚合物纤维;对所述纳米级高分子聚合物纤维真空干燥去除残余溶剂后进行低温预热处理和高温碳化处理后得到纳米纤维复合催化剂。通过本发明制备的复合催化剂提高了锂空气电池的倍率性能和循环性能。

Description

一种锂空气电池用氧电极复合催化剂及其制备方法
技术领域
本发明涉及金属空气电池技术领域,特别涉及一种锂空气电池用氧电极纳米纤维复合催化剂的制备方法。
背景技术
日益增长的能源需求同化石能源短缺问题之间的矛盾是人类社会面临的巨大挑战性问题之一,不断寻找新型能源和发展优良的储能技术是人类可持续发展的必经之路。锂离子电池自20世纪90年代商品化以来,在众多的小型移动设备中得到广泛的应用;然而目前存在的比能量密度低(~100Whkg-1),安全性能较差,价格高等问题,制约着锂离子电池在新能源动力汽车中的应用。锂空气电池由于具有超高的理论比能量密度11140Whkg-1,从根本上能满足新能源动力汽车对高比能量密度(≥300Whkg-1)的需求而受到人们的极大关注。
锂空气电池是一种具有体积小,比能量密度超高,环境友好等优点的新型储能体系;锂空气电池作为一种新型的二次电池,在电池放电过程(ORR)中,将会在电池的多孔阴极上发生氧气与锂的电化学反应生成过氧化锂(Li2O2)或氧化锂(Li2O)等产物;而在给该电池体系充电再生过程(OER)中,覆盖在电池多孔阴极上的放电产物(Li2O2)将会被重新分解生成氧气和金属锂。由于阴极使用空气中的氧气作为活性物质,取之不尽,用之不竭,理论上正极容量可无限大,比能量密度也高达11140Whkg-1,因此锂空气电池将会具有广泛的应用前景。
阴极催化剂作为锂空气电池的核心组成部分,通过提供能促使过氧化锂生成与分解的催化活性中心而使得锂空气电池在充放电过程中取得良好的电化学性能,因此高效的锂空气电池阴极催化剂的选取至关重要。催化剂催化性能的优劣取决于催化剂种类及其微观形貌;研究者通过选取不同的催化剂来研究锂空气电池的性能,以期望得到高性能的锂空气电池催化剂。Sun Bin等(NanoRes,5(7):460-469,2012)研究了氧化亚钴与介孔碳复合催化剂(CoO/Mesoporous carbon)的催化剂性能,得到了较好的首次放电性能,且该催化剂结构在一定程度上抑制了该锂空气电池在循环过程中的衰减效应;Yang shao-Horn等(J.AM.Chem.Soc.133,19048-19051,2011)通过对比研究,探讨了多种贵重金属的催化性能,并对催化剂在锂空气电池中的催化机理做出了初步探索;Arjun Kumar Thapa等(J.Power Sources196(2011)7016–7020)研究了介孔a-MnO2与金属Pd复合催化剂的催化性能,该催化剂有效地降低了锂空气电池的充电电压,有助于锂空气电池中有机电解液的稳定;综合以上研究者的研究成果发现,使用上述报道的催化剂并没有非常好的提高锂空气电池的循环性能,其原因归结于电解液,催化剂和氧气在阴极催化剂结构中不能形成良好的三相反应界面,而不利于反应产物的扩散和转移,导致反应产物的沉积而阻碍氧气在催化剂中的扩散,同时由于反应产物的导电性较差而增大了锂空气电池的电化学极化,进而过高的充电电压将分解电池体系中的有机电解液而致使锂空气电池不能正常工作。因此,设计或寻找一种能够与有机电解液和氧气形成良好的三相反应界面的催化剂,同时能有效促进反应产物扩散和转移的催化剂是锂空气电池研究领域的一个重大挑战课题。
发明内容
本发明的目的在于克服现有技术的上述不足,提出了一种锂空气电池用氧电极复合催化剂及其制备方法,该复合催化剂能增加催化剂的比表面积,提高锂空气电池的充放电容量和倍率性能,循环性能亦得到较好的改善。
本发明的技术方案如下:一种锂空气电池用氧电极复合催化剂,所述复合催化剂整体形貌呈现纳米纤维网状结构,所述复合催化剂包括碳纳米纤维主体骨架和以凸嵌方式生长于所述碳纳米纤维主体骨架上的金属颗粒和/或金属氧化物颗粒。
所述碳纳米纤维直径为100-500nm,呈蜂窝多孔状结构。
本发明还公开了一种锂空气电池用氧电极复合催化剂的制备方法,包括如下步骤:
(1)将高分子聚合物和金属盐溶解于溶剂中并搅拌至完全溶解,形成具有一定粘度的静电纺丝溶液;
(2)对所述静电纺丝溶液进行静电纺丝获取直径范围在300~800nm之间的高分子聚合物纤维;
(3)对所述纳米级高分子聚合物纤维真空干燥去除残余溶剂后进行低温预热处理和高温碳化处理后得到纳米纤维复合催化剂。
其中所述高分子聚合物选自聚氧化乙烯(PEO)、聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)及其共混物或共聚物。
其中所述金属盐选自金属钴(Co)、锰(Mn)、镍(Ni)、铁(Fe)、铈(Ce)的醋酸盐、硝酸盐、硫酸盐、草酸盐以及氯化物或其共混物。
其中所述溶剂选用乙醇、丙酮、N,N'-二甲基甲酰胺(DMF)、高纯水或其任意二者组成的共混溶液。
其中所述静电纺丝溶液中高分子聚合物的含量为8~15wt%;所述静电纺丝溶液中金属盐含量为高分子聚合物质量的1~20wt%。
其中步骤(1)和(2)静电纺丝操作条件是在室温10~35℃,相对湿度10~40RH,纺丝电压10~20kV下进行;所述静电纺丝过程中针尖毛细管口与纤维收集板之间距离10~15cm,纺丝流体的流动速率0.1~0.5ml/h。
其中所述纳米级高分子聚合物纤维是在70-90℃真空环境下干燥8-12h除去纤维中的残留溶剂。
其中所述低温预热处理步骤是在空气气氛中进行,温度180~250℃,升温速率1~2K/min,预热处理时间4-6h。
其中所述高温碳化处理步骤是在氩气气氛中进行,温度600~900℃,升温速率1~2K/min,碳化时间0.5~2h。
本发明的效果优点在于该复合型催化剂形貌呈现纤维网状结构,其多孔碳纳米纤维主体骨架上不但分布着大量介孔尺寸大小的凹孔,而且还存在着以凸嵌方式均匀生长于碳骨架表面的大量纳米级金属颗粒和/或金属氧化物颗粒;这一结构中存在的大量凹孔和向外生长凸出的纳米级颗粒群,i)能增加催化剂的比表面积,提高锂空气电池的充放电容量和倍率性能;ii)有助于锂空气电池中电解液浸润催化剂形成高效的三相反应界面;iii)有助于形成稳定的氧气扩散传输通道以及放电不溶产物Li2O2的转移;iv)有助于提高复合催化剂和空气电极的导电性能,促进氧气的电化学还原反应。
附图说明
图1是实施例1图中复合催化剂纳米纤维电镜照片,其中,a)和b)分别为纳米纤维复合催化剂烧结前和烧结后扫描电镜照片;c)为高温为烧结后获得MnO-Ni/C纳米纤维复合催化剂透射电镜照片;
图2是实施例1得到的锂空气电池用氧电极复合催化剂组装成电池后的充放电曲线图;
图3是实施例1得到的锂空气电池用氧电极复合催化剂组装成电池后的放电倍率性能图;
图4是实施例1得到的锂空气电池用氧电极复合催化剂组装成电池后的循环性能曲线图。
具体实施方式
以下结合附图对本发明实施方案进一步描述:以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于上述的实施例。
以下实例中的锂空气电池用氧电极制备及电池组装方法如下:
将所述制备的多孔碳纤维复合催化剂与粘结剂PTFE按质量比90:10均匀混合制成极片,以该极片为锂空气电池氧电极(正极),以有机溶剂1MLiTFSI/TEGDME为电解液,以金属锂片为负极,在充满氩气的手套箱中组装成Swagelok锂空气电池。
以下实例中的锂空气电池电化学测试方法如下:
在室温恒定为25℃下,将Swagelok锂空气电池密封于一个特制的玻璃干燥器中,并维持玻璃干燥器中气氛为1atm纯氧无水气氛;进行电化学性能测试时,充放电区间参数设置为4.2~2.0V,充放电电流大小设置为0.1mA/cm2;首次充放电模式为:先放电至2.0V,然后充电至4.2V。锂空气电池比容量的换算使用复合催化剂单位质量g-1。充放电测试系统装置为武汉金诺公司生产,型号为:LAND CT2001。
实施例1:
室温下,将10mlN'-二甲基甲酰胺(DMF)溶剂加入至20ml密封瓶中,搅拌下加入0.5603g四水醋酸锰,0.05325g四水醋酸镍,待其完全溶解后,继续搅拌并缓缓加入1.0g高分子聚合物聚丙烯腈(PAN),继续搅拌并开始缓慢加热至50℃,在50℃恒温条件下,搅拌8h形成具有一定粘度的均匀静电纺丝溶液;常温静置该静电纺丝溶液4h至溶液中气泡完全消失,将已静置除气泡的静电纺丝溶液进行静电纺丝制取直径为600nm的高分子聚合物纳米纤维;上述采用静电纺丝技术获得的高分子聚合物纳米纤维上在80℃真空环境下干燥12h除去纤维中的残留溶剂后,接着在空气气氛中进行低温预热处理,温度控制在230℃,升温速率为1K/min,预热处理时间为6h,最后在氩气气氛中进行高温碳化处理,温度控制在900℃,升温速率为1K/min,碳化时间2h,即可得到具有空间一维结构的多孔碳纤维复合催化剂MnO-Ni/C。
图1a,1b和1c分别是实施例1得到的锂空气电池用氧电极催化剂扫描电镜和透射电镜照片。从电镜照片可以看出,复合催化剂形貌呈现为多孔纤维结构,孔径大小为20~30nm;催化剂活性组分纳米颗粒以凸嵌方式生长于多孔的碳纤维上,纳米颗粒大小为50nm左右;图2a,b,c分别是实施例1得到的锂空气电池用氧电极催化剂制备成的锂空气电池充放电曲线图,放电倍率性能图,循环性能曲线图,电池首次放电容量为3823.5mAh(g相对催化剂质量)-1(电流密度为0.1mA/cm2),放电平台为~2.72V,放电倍率性能得到良好的提高,循环次数达到15以上次。
实例2:
室温下,将8mlN'-二甲基甲酰胺(DMF)溶剂和2ml丙酮依次加入至20ml密封瓶中,搅拌下加入0.6239g四水醋酸锰,待其完全溶解后,继续搅拌并依次缓缓加入0.9g高分子聚合物聚丙烯腈(PAN)和0.1g聚氧化乙烯(PEO),继续搅拌并开始缓慢加热至50℃,在50℃恒温条件下,搅拌8h形成具有一定粘度的均匀静电纺丝溶液;常温静置该静电纺丝溶液3h至溶液中气泡完全消失,将已静置除气泡的静电纺丝溶液进行静电纺丝制取直径为300nm的高分子聚合物纳米纤维;上述采用静电纺丝技术获得的高分子聚合物纳米纤维上在80℃真空环境下干燥12h除去纤维中的残留溶剂后,接着在纯氧气氛中进行低温预热处理,温度控制在250℃范围之间,升温速率为1K/min,预热处理时间为6h,最后在氩气气氛中进行高温碳化处理,温度控制在800℃,升温速率为1K/min,碳化时间0.5h,即可得到具有空间一维结构的多孔碳纤维复合催化剂MnO/C。
将复合催化剂MnO/C组装成锂空气电池测试,电池首次放电容量为3808.4mAh(g相对催化剂质量)-1(电流密度为0.1mA/cm2),放电平台为2.78V。
实例3:
室温下,将8mlN'-二甲基甲酰胺(DMF)溶剂和2ml无水乙醇依次加入至20ml密封瓶中,搅拌下依次加入0.6227g四水醋酸钴,待其完全溶解后,继续搅拌并依次缓缓加入0.8g高分子聚合物聚丙烯腈(PAN)和0.1g聚乙烯吡咯烷酮(PVP),继续搅拌并开始缓慢加热至50℃,在50℃恒温条件下,搅拌8h形成具有一定粘度的均匀静电纺丝溶液;常温静置该静电纺丝溶液5h至溶液中气泡完全消失,将已静置除气泡的静电纺丝溶液进行静电纺丝制取直径为500nm的高分子聚合物纳米纤维;上述采用静电纺丝技术获得的高分子聚合物纳米纤维上在80℃真空环境下干燥12h除去纤维中的残留溶剂后,接着在空气气氛中进行低温预热处理,温度控制在250℃,升温速率为1K/min,预热处理时间为6h,最后在氩气气氛中进行高温碳化处理,温度控制在800℃,升温速率为1K/min,碳化时间在1.5h,即可得到具有空间一维结构的多孔碳纤维复合催化剂Co/C。
将复合催化剂Co/C组装成锂空气电池测试,电池首次放电容量为3908.4mAh(g相对催化剂质量)-1(电流密度为0.1mA/cm2),放电平台为2.82V。
实例4:
室温下,将10ml高纯水加入至20ml密封瓶中,搅拌下依次加入0.71317g六水氯化镍,待其完全溶解后,继续搅拌并缓缓加入1.0g高分子聚合物聚乙烯醇(PVA),继续搅拌并开始缓慢加热至90℃,在90℃恒温条件下,搅拌8h形成具有一定粘度的均匀静电纺丝溶液;常温静置该静电纺丝溶液8h至溶液中气泡完全消失,将已静置除气泡的静电纺丝溶液进行静电纺丝制取直径为800nm的高分子聚合物纳米纤维;上述采用静电纺丝技术获得的高分子聚合物纳米纤维上在80℃真空环境下干燥12h除去纤维中的残留溶剂后,接着在纯氧气氛中进行低温预热处理,温度控制在250℃,升温速率为1K/min,预热处理时间为6h,最后在5%H2/Ar气氛中进行高温碳化处理,温度控制在800℃,升温速率为1K/min,碳化时间2h,即可得到具有空间一维结构的多孔碳纤维复合催化剂Ni/C。
将复合催化剂Ni/C组装成锂空气电池测试,电池首次放电容量为3608.6mAh(g相对催化剂质量)-1(电流密度为0.1mA/cm2),放电平台为2.75V。

Claims (11)

1.一种锂空气电池用氧电极复合催化剂,其特征在于,所述复合催化剂整体形貌呈现纳米纤维网状结构,所述复合催化剂包括多孔碳纳米纤维主体骨架和以凸嵌方式生长于所述碳纳米纤维主体骨架上的金属颗粒和/或金属氧化物颗粒。
2.如权利要求1所述的锂空气电池用氧电极催化剂,其特征在于,所述多孔碳纳米纤维直径为100-500nm,呈蜂窝多孔状结构。
3.一种锂空气电池用氧电极复合催化剂的制备方法,包括如下步骤:
(1)将高分子聚合物和金属盐溶解于溶剂中并搅拌至完全溶解,形成具有
一定粘度的静电纺丝溶液;
(2)对所述静电纺丝溶液进行静电纺丝获取直径范围在300~800nm之间
的高分子聚合物纤维;
(3)对所述纳米级高分子聚合物纤维真空干燥去除残余溶剂后进行低温预热处理和高温碳化处理后得到纳米纤维复合催化剂。
4.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述高分子聚合物选自聚氧化乙烯(PEO)、聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)及其共混物或共聚物。
5.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述金属盐选自金属钴(Co)、锰(Mn)、镍(Ni)、铁(Fe)、铈(Ce)的醋酸盐、硝酸盐、硫酸盐、草酸盐以及氯化物或其共混物。
6.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述溶剂选用乙醇、丙酮、N,N'-二甲基甲酰胺(DMF)、高纯水或其任意二者组成的共混溶液。
7.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述静电纺丝溶液中高分子聚合物的含量为8~15wt%;所述静电纺丝溶液中金属盐含量为高分子聚合物质量的1~20wt%。
8.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述步骤(1)和(2)是在室温10~35℃,相对湿度10~40RH,纺丝电压10~20kV下进行;静电纺丝过程中针尖毛细管口与纤维收集板之间距离10~15cm,纺丝流体的流动速率0.1~0.5ml/h。
9.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述纳米级高分子聚合物纤维是在70-90℃真空环境下干燥8-12h除去纤维中的残留溶剂。
10.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述低温预热处理步骤是在空气气氛中进行,温度180~250℃,升温速率1~2K/min,预热处理时间4-6h。
11.如权利要求3所述的锂空气电池用氧电极复合催化剂的制备方法,其特征在于,所述高温碳化处理步骤是在氩气气氛中进行,温度600~900℃,升温速率1~2K/min,碳化时间0.5~2h。
CN2013100783399A 2013-03-12 2013-03-12 一种锂空气电池用氧电极复合催化剂及其制备方法 Pending CN103337641A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100783399A CN103337641A (zh) 2013-03-12 2013-03-12 一种锂空气电池用氧电极复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100783399A CN103337641A (zh) 2013-03-12 2013-03-12 一种锂空气电池用氧电极复合催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN103337641A true CN103337641A (zh) 2013-10-02

Family

ID=49245767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100783399A Pending CN103337641A (zh) 2013-03-12 2013-03-12 一种锂空气电池用氧电极复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN103337641A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560256A (zh) * 2013-10-28 2014-02-05 南开大学 锂空气电池正极及其制备方法
CN104226292A (zh) * 2014-09-18 2014-12-24 中国科学院合肥物质科学研究院 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法
CN104538652A (zh) * 2014-12-15 2015-04-22 深圳鸿源博得新能源技术发展有限公司 用于金属空气电池的空气电极及金属空气电池
CN104709895A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种具有多级孔分布结构的电极材料及其制备和应用
CN104766973A (zh) * 2015-03-18 2015-07-08 江苏乐能电池股份有限公司 高性能锂离子电池所用磷酸铁锂及其制备方法
CN104775185A (zh) * 2015-04-14 2015-07-15 济南大学 一种四氧化三钴珠链状纤维及其制备方法
WO2016039695A1 (en) * 2014-09-11 2016-03-17 Agency For Science, Technology And Research Electrospun conductive carbon fibers
CN105489972A (zh) * 2016-01-13 2016-04-13 深圳先进技术研究院 多级孔道结构的纳米管状锂空气电池空气电极催化剂
CN106654301A (zh) * 2016-12-20 2017-05-10 苏州大学 一种碳/金属氧化物纳米纤维复合催化剂的制备方法
CN106784896A (zh) * 2017-01-16 2017-05-31 谭淞文 锌空气电池用过渡金属氧化物高分散掺杂多孔碳催化剂
CN108063270A (zh) * 2017-12-29 2018-05-22 成都新柯力化工科技有限公司 一种质子交换膜燃料电池非铂催化剂及制备方法和应用
CN108390023A (zh) * 2018-01-12 2018-08-10 华南理工大学 一种自支撑多孔碳纳米纤维包覆的CoS纳米颗粒材料及其制备方法
CN108642606A (zh) * 2018-04-11 2018-10-12 西安交通大学 四氧化三钴/碳纳米纤维复合材料及其制备方法和应用
CN109004185A (zh) * 2018-06-13 2018-12-14 福建翔丰华新能源材料有限公司 一种制备柔性锂离子电池独立负极材料的方法
CN109390591A (zh) * 2018-11-19 2019-02-26 上海华普汽车有限公司 一种电池电极及其制备方法和应用
CN110085447A (zh) * 2019-04-28 2019-08-02 江苏理工学院 一种Cu-MnO/碳纳米纤维复合材料及其制备方法和应用
CN111088562A (zh) * 2019-12-24 2020-05-01 北京化工大学 一种复合微纳中空纤维材料及其制备方法和应用
CN112538692A (zh) * 2020-11-05 2021-03-23 中国地质大学(北京) 一种Co-Mn双金属有机骨架衍生的多孔碳纤维及其制备方法和应用
CN112853529A (zh) * 2020-12-31 2021-05-28 厦门大学 一种镍基造孔剂及其在燃料电池中的应用
CN113943158A (zh) * 2021-12-20 2022-01-18 杭州德海艾科能源科技有限公司 一种液流电池用石墨毡制备方法
CN114023982A (zh) * 2021-11-01 2022-02-08 北京欧菲金太科技有限责任公司 一种银-碳芯壳催化剂及其制备方法和应用
CN114597423A (zh) * 2021-11-08 2022-06-07 北京机械设备研究所 一种空气电池、复合空气电极及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637879A (zh) * 2012-04-09 2012-08-15 中南大学 一种锂空气电池用微纳结构正极材料及其制备方法
CN102646839A (zh) * 2012-03-30 2012-08-22 中国科学院青岛生物能源与过程研究所 碳材料及碳复合材料用于锂空气电池空气电极
US20120270115A1 (en) * 2004-02-20 2012-10-25 Excellatron Solid State, Llc Lithium Oxygen Batteries Having a Carbon Cloth Current Collector and Method of Producing Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270115A1 (en) * 2004-02-20 2012-10-25 Excellatron Solid State, Llc Lithium Oxygen Batteries Having a Carbon Cloth Current Collector and Method of Producing Same
CN102646839A (zh) * 2012-03-30 2012-08-22 中国科学院青岛生物能源与过程研究所 碳材料及碳复合材料用于锂空气电池空气电极
CN102637879A (zh) * 2012-04-09 2012-08-15 中南大学 一种锂空气电池用微纳结构正极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIWEN JI ET AL.: ""Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries"", 《ELECTROCHEMISTRY COMMUNICATIONS》, vol. 11, no. 4, 30 April 2009 (2009-04-30), pages 795 - 798, XP026075558, DOI: 10.1016/j.elecom.2009.01.039 *
S.K. NATARAJ ET AL.: ""Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers"", 《MATERIALS SCIENCE AND ENGINEERING B》, vol. 162, no. 2, 25 May 2009 (2009-05-25), pages 75 - 81, XP026173137, DOI: 10.1016/j.mseb.2009.03.008 *
S.K. NATARAJ ET AL.: ""Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning"", 《MATERIALS LETTERS》, vol. 63, no. 2, 31 January 2009 (2009-01-31), pages 218 - 220, XP025684840, DOI: 10.1016/j.matlet.2008.09.060 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560256A (zh) * 2013-10-28 2014-02-05 南开大学 锂空气电池正极及其制备方法
CN103560256B (zh) * 2013-10-28 2016-03-16 南开大学 锂空气电池正极及其制备方法
CN104709895A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种具有多级孔分布结构的电极材料及其制备和应用
CN104709895B (zh) * 2013-12-15 2017-02-15 中国科学院大连化学物理研究所 一种具有多级孔分布结构的电极材料及其制备和应用
WO2016039695A1 (en) * 2014-09-11 2016-03-17 Agency For Science, Technology And Research Electrospun conductive carbon fibers
CN104226292A (zh) * 2014-09-18 2014-12-24 中国科学院合肥物质科学研究院 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法
CN104226292B (zh) * 2014-09-18 2016-10-19 中国科学院合肥物质科学研究院 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法
CN104538652A (zh) * 2014-12-15 2015-04-22 深圳鸿源博得新能源技术发展有限公司 用于金属空气电池的空气电极及金属空气电池
CN104766973A (zh) * 2015-03-18 2015-07-08 江苏乐能电池股份有限公司 高性能锂离子电池所用磷酸铁锂及其制备方法
CN104775185A (zh) * 2015-04-14 2015-07-15 济南大学 一种四氧化三钴珠链状纤维及其制备方法
CN104775185B (zh) * 2015-04-14 2017-02-22 济南大学 一种四氧化三钴珠链状纤维及其制备方法
CN105489972A (zh) * 2016-01-13 2016-04-13 深圳先进技术研究院 多级孔道结构的纳米管状锂空气电池空气电极催化剂
CN106654301A (zh) * 2016-12-20 2017-05-10 苏州大学 一种碳/金属氧化物纳米纤维复合催化剂的制备方法
CN106784896A (zh) * 2017-01-16 2017-05-31 谭淞文 锌空气电池用过渡金属氧化物高分散掺杂多孔碳催化剂
CN108063270A (zh) * 2017-12-29 2018-05-22 成都新柯力化工科技有限公司 一种质子交换膜燃料电池非铂催化剂及制备方法和应用
CN108390023A (zh) * 2018-01-12 2018-08-10 华南理工大学 一种自支撑多孔碳纳米纤维包覆的CoS纳米颗粒材料及其制备方法
CN108642606A (zh) * 2018-04-11 2018-10-12 西安交通大学 四氧化三钴/碳纳米纤维复合材料及其制备方法和应用
CN109004185B (zh) * 2018-06-13 2021-12-24 福建翔丰华新能源材料有限公司 一种制备柔性锂离子电池独立负极材料的方法
CN109004185A (zh) * 2018-06-13 2018-12-14 福建翔丰华新能源材料有限公司 一种制备柔性锂离子电池独立负极材料的方法
CN109390591A (zh) * 2018-11-19 2019-02-26 上海华普汽车有限公司 一种电池电极及其制备方法和应用
CN110085447A (zh) * 2019-04-28 2019-08-02 江苏理工学院 一种Cu-MnO/碳纳米纤维复合材料及其制备方法和应用
CN111088562A (zh) * 2019-12-24 2020-05-01 北京化工大学 一种复合微纳中空纤维材料及其制备方法和应用
CN112538692A (zh) * 2020-11-05 2021-03-23 中国地质大学(北京) 一种Co-Mn双金属有机骨架衍生的多孔碳纤维及其制备方法和应用
CN112853529A (zh) * 2020-12-31 2021-05-28 厦门大学 一种镍基造孔剂及其在燃料电池中的应用
CN114023982A (zh) * 2021-11-01 2022-02-08 北京欧菲金太科技有限责任公司 一种银-碳芯壳催化剂及其制备方法和应用
CN114597423A (zh) * 2021-11-08 2022-06-07 北京机械设备研究所 一种空气电池、复合空气电极及制备方法
CN113943158A (zh) * 2021-12-20 2022-01-18 杭州德海艾科能源科技有限公司 一种液流电池用石墨毡制备方法

Similar Documents

Publication Publication Date Title
CN103337641A (zh) 一种锂空气电池用氧电极复合催化剂及其制备方法
CN103811190B (zh) 锑掺杂二氧化锡包覆多孔二氧化锰复合电极材料及制备
CN103545123A (zh) 一种兼具锌离子电池和超级电容器的混合储能器件
CN110079895B (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN112928255B (zh) 一种锂硫电池复合正极材料及其制备方法与应用
CN109037718A (zh) 一种生物质碳载过渡金属氧化物复合材料及其制备方法与应用
CN106099108A (zh) 一种电池级石墨/活性炭复合材料的制备方法
CN103579638A (zh) 锂空气电池的空气电极催化剂及其制备方法
CN106876682A (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
CN107437620A (zh) 高镍三元ncm622‑纳米线材料的制备方法
CN109065808A (zh) 一种用于锂硫电池的功能性隔层的制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN106449136B (zh) α-氢氧化镍钴电极材料及其制备方法与应用
CN107394118A (zh) 一种自支撑柔性电极的制备方法及其应用
CN107541811A (zh) 一种碳纳米棒复合材料及其制备方法和应用
CN111235700A (zh) 一种红磷掺杂TiO2/C纳米纤维负极材料的制备方法
CN106784693A (zh) 一种表面具有均匀碳包覆层的富氮纳米钛酸锂电极材料的制备方法
CN113930866A (zh) 一种胶囊结构的超级电容器电极材料及其制备方法和应用
CN109698330B (zh) 一种锂离子电池
CN110681417A (zh) 一种纳米Co3O4/碳纳米管一体式空气电极催化材料的制备方法
CN114149024A (zh) 一种硼掺杂多孔二氧化钛/碳纤维负极材料及制备方法
CN109192532A (zh) 一种超级电容器电极材料及其制备方法
CN108666144A (zh) 一种三维花状氢氧化钴-石墨烯复合材料及其制备方法
CN107119349A (zh) 一种碳包覆Na2Li2Ti6O14纳米纤维及其制备方法
CN106906537A (zh) 一种钠电池负极用锡/碳复合纳米纤维材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131002