CN112371104A - 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用 - Google Patents

一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112371104A
CN112371104A CN202011423520.5A CN202011423520A CN112371104A CN 112371104 A CN112371104 A CN 112371104A CN 202011423520 A CN202011423520 A CN 202011423520A CN 112371104 A CN112371104 A CN 112371104A
Authority
CN
China
Prior art keywords
titanate
bismuth
calcium
composite photocatalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011423520.5A
Other languages
English (en)
Other versions
CN112371104B (zh
Inventor
王传义
史梦琳
章柯
林敬淇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202011423520.5A priority Critical patent/CN112371104B/zh
Publication of CN112371104A publication Critical patent/CN112371104A/zh
Application granted granted Critical
Publication of CN112371104B publication Critical patent/CN112371104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/003Wastewater from hospitals, laboratories and the like, heavily contaminated by pathogenic microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用,所述方法包括步骤1,在KOH溶液中加入钛酸四丁酯混合均匀,之后水洗后离心,得到一水合二氧化钛水凝胶;步骤2,在一水合二氧化钛水凝胶中加入去离子水、四水合硝酸钙和五水合硝酸铋混合均匀,得到混合体系,去离子水、四水合硝酸钙、五水合硝酸铋和KOH的比例为70mL:(0.012~0.018)mol:(0.002~0.008)mol:56.11g,用KOH溶液将混合体系的pH值调节至14,得到前驱液;步骤3,将前驱液在140~180℃下进行水热处理,得到的反应液经清洗后干燥,具有良好的光催化性能,能够用于光催化氧化降解四环素、去除NOx等方面。

Description

一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用
技术领域
本发明涉及光催化材料技术领域,具体为一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用。
背景技术
光催化技术是近三十年来发展起来的一种新兴技术,在能源和环境领域具有广阔的应用前景。钛酸钙(CaTiO3)是最基本的钙钛矿结构材料,稳定且原材料廉价,综合各项性能较弱,但在基础科学领域具有重要意义,进一步改性就能得到较好的催化、铁电、介电等性能,具有潜在的实际应用价值。然而钛酸钙带隙宽,不易激发,光催化活性低。传统的钛酸钙光催化材料为白色粉末,只能吸收紫外光,并被激发从而产生光生电荷,进而起到光催化氧化或者光电转换的作用,不能够完全利用太阳光中的绝大部分能源。
而Bi2Ti2O7具有可见光区吸收、稳定性好、热稳定性、化学稳定性、机械稳定性、合成方法多样、操作简单、原材料廉价等优点。由于CaTiO3带隙比较宽,不易被激发,因此为了提高其光催化活性,可将其与Bi2Ti2O7进行原位复合,从理论上讲可以克服CaTiO3电子-空穴易复合的缺点,也能提升复合材料的光催化性能,但目前还没有相关报道。
发明内容
针对现有技术中存在的问题,本发明提供一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用,环境友好且成本低廉,利用率高,高分散、高比活性,具有良好的光催化性能,能够用于光催化氧化降解四环素、去除NOx等方面。
本发明是通过以下技术方案来实现:
一种钛酸钙/钛酸铋复合光催化剂的制备方法,包括如下步骤:
步骤1,在KOH溶液中加入钛酸四丁酯混合均匀,之后水洗后离心,得到一水合二氧化钛水凝胶;
步骤2,在一水合二氧化钛水凝胶中加入去离子水、四水合硝酸钙和五水合硝酸铋混合均匀,得到混合体系,去离子水、四水合硝酸钙、五水合硝酸铋和步骤1中KOH的比例为70mL:(0.012~0.018)moL:(0.002~0.008)mol:56.11g,用KOH溶液将混合体系的pH值调节至14,得到前驱液;
步骤3,将前驱液在140~180℃下进行水热处理,得到的反应液经清洗后干燥,得到钛酸钙/钛酸铋复合光催化剂。
优选的,步骤1中所述KOH溶液的浓度为2mol/L。
进一步,所述的钛酸四丁酯与KOH的比例为0.02mol:56.11g。
优选的,步骤1中在KOH溶液中加入钛酸四丁酯后在加热的状态下搅拌2~3小时。
优选的,步骤3将前驱液在所述温度下进行水热处理3小时。
优选的,步骤3中所述的干燥为真空干燥。
一种由上述任意一项所述的钛酸钙/钛酸铋复合光催化剂的制备方法得到的钛酸钙/钛酸铋复合光催化剂。
进一步,所述的钛酸钙/钛酸铋复合光催化剂为白色、浅黄色或淡黄色。
钛酸钙/钛酸铋复合光催化剂在降解四环素中的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明一种钛酸钙/钛酸铋复合光催化剂的制备方法,先在KOH溶液中加入钛酸四丁酯来制备二氧化钛水凝胶,之后加入一定比例的去离子水、四水合硝酸钙、五水合硝酸铋,在强碱性条件下得到前驱液,这样在140~180℃下进行水热处理,水凝胶态的一水合二氧化钛能更充分的和硝酸钙、硝酸铋反应,过量的氢氧化钠有效抑制了二氧化钛水解,使得反应向钛酸钙和钛酸铋物复合物的生成方向移动,最终可见光驱动的Bi2Ti2O7/CaTiO3复合材料通过原位水热法合成得到。与纯CaTiO3相比,Bi2Ti2O7/CaTiO3复合材料在可见光照射下表现出更高的光催化活性,表征结果证实了CaTiO3和Bi2Ti2O7之间形成了异质结,其中窄带隙的Bi2Ti2O7起到敏化剂的作用,使复合材料能够在可见光照射下有效地去除水中污染物四环素(TCs),异质结系统促进光生电子的转移,从而抑制光生电荷载流子的复合,这是光催化性能增强的原因,为构建高效可见光驱动的复合光催化剂提供了一种新的策略。
附图说明
图1为本发明实施例2制备的CaTiO3/Bi2Ti2O7的XRD光图谱图。
图2为本发明实施例1制备的CaTiO3/Bi2Ti2O7的XRD光图谱图。
图3为扫描电镜图:CaTiO3(a-c)、本发明实施例1制备的CaTiO3/Bi2Ti2O7(d-f)。
图4为本发明实施例15mg Bi2Ti2O7/CaTiO3降解四环素(50mg/L)活性图。
图5为本发明实施例1制备的BTO/CTO-2 160℃的电子自旋共振(ESR)光谱。
图6为本发明实施例1制备的BTO/CTO-2 160℃的活性物种捕获图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明制备纳米CaTiO3/Bi2Ti2O7复合光催化剂,具体操作按下列步骤进行:
a、将56.11g KOH加入500mL烧杯中,加入50mL超纯水配制2mol/L的KOH溶液,搅拌30分钟,KOH溶液作为前驱体合成的溶剂以及调节水热前驱液的pH;
b、取300mL步骤a溶液,在步骤a溶液中缓慢加入0.02mol钛酸四丁酯溶液,加热搅拌2-3小时,水洗3次并用离心机分离,得到固态的一水合二氧化钛水凝胶;
c、将步骤b中的水凝胶转移至250mL烧杯中,加入70mL的去离子水,在室温下搅拌,加入0.012~0.018mol的四水合硝酸钙,和0.002~0.008mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,140~180℃水热3小时,得到纳米CaTiO3/Bi2Ti2O7
加入的四水合钛酸钙和五水合钛酸铋的量不同所得到的CaTiO3/Bi2Ti2O7光催化剂的颜色为白色、浅黄色或淡黄色。
d、将步骤c中纳米CaTiO3/Bi2Ti2O7经过50mL去离子水、50mL乙醇分别清洗3次,真空干燥,即得到纳米CaTiO3/Bi2Ti2O7光催化剂。
仅在步骤c中不加入五水合硝酸铋,其余均采用相同的上述步骤,得到CaTiO3(a-c)。
实施例1
a、将56.11g KOH加入500mL烧杯中,加入50mL超纯水配制2mol/L的KOH溶液,搅拌30分钟,KOH溶液作为前驱体合成的溶剂以及调节水热前溶液的pH;
b、取300mL步骤a溶液,在步骤a溶液中缓慢加入0.02mol钛酸四丁酯溶液,加热搅拌2小时,水洗3次并用离心机分离,得到一水合二氧化钛水凝胶;
c、将步骤b中水凝胶固体转移至250mL烧杯中,加入70mL的去离子水,在室温下搅拌,加入0.016mol的四水合硝酸钙,和0.008mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,分别在140℃、160℃、180℃水热3小时;
d、将步骤c中纳米CaTiO3/Bi2Ti2O7经过50mL去离子水、50mL乙醇分别清洗3次,真空干燥,即得到纳米CaTiO3/Bi2Ti2O7-a、CaTiO3/Bi2Ti2O7-b、CaTiO3/Bi2Ti2O7-c光催化剂,即图2中的BTO/CTO-2 140℃,BTO/CTO-2 160℃和BTO/CTO-2 180℃,分别是白色,淡黄色,浅黄色。
实施例2
a、将56.11g KOH加入500mL烧杯中,加入50mL超纯水配制2mol/L的KOH溶液,搅拌30分钟,KOH溶液作为前驱体合成的溶剂以及调节水热前溶液的pH;
b、取300mL步骤a溶液,在步骤a溶液中缓慢加入0.02mol钛酸四丁酯溶液,加热搅拌3小时,水洗3次并用离心机分离,得到一水合二氧化钛水凝胶;
c、将步骤b中水凝胶固体转移至250mL烧杯中,加入70mL的去离子水,在室温下搅拌,
(1)加入0.018mol的四水合硝酸钙,和0.002mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,160℃水热3小时,得到白色的固体CTO/BTO-1;
(2)加入0.016moL的四水合硝酸钙,和0.004mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,160℃水热3小时,得到淡黄色的固体CTO/BTO-2;
(3)加入0.014mol的四水合硝酸钙,和0.00 6mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,160℃水热3小时,得到浅黄色的CTO/BTO-3;
(4)加入0.012mol的四水合硝酸钙,和0.008mol的五水合硝酸铋,搅拌30分钟,并用步骤a溶液调节pH值等于14,转移到100mL聚四氟乙烯反应釜,160℃水热3小时,得到浅黄色的CTO/BTO-4;
d、将步骤c中纳米CaTiO3/Bi2Ti2O7经过50mL去离子水、50mL乙醇分别清洗3次,真空干燥,即得到纳米CTO/BTO-1、CTO/BTO-2、CTO/BTO-3、CTO/BTO-4光催化剂。
实施例1-2中任意一种淡黄色的CaTiO3/Bi2Ti2O7光催化剂进行X射线衍射分析、透射电子显微镜分析,所得结果见附图,证明本实施例中制备的CaTiO3/Bi2Ti2O7光催化剂为淡黄色的CaTiO3/Bi2Ti2O7光催化剂。
如图1、图2所示,所制备样品的XRD图谱的尖峰表明了所制备样品的高结晶度。
图1中CTO样品显示四个以33.1°,47.4°,59.3°和69.4°为中心的典型衍射峰,它们分别分配给(112),(040),(123)和(242)平面。所有的峰都与CaTiO3的纯正交相的相应反射良好匹配(JCPDS PDF No.40–0423)。此外,BTO样品的衍射峰可以对应于Bi2Ti2O7的纯立方相(JCPDS PDF No.32–0693),其中2θ=28.7、30.1、34.6和49.7°的峰对应于(622),(444),(800)和(880)晶面。
图1显示,BTO/TCO-1样品由于其含量低,没有观察到明显的BTO特征峰。而对于BTO/TCO-2,BTO/TCO-3和BTO/TCO-4,发现了CTO和BTO的典型衍射峰。由其XRD结果反映,随着复合材料中BTO比例的增加,CTO峰的强度降低,而BTO峰的强度增加。通过XRD分析从这些图案中未检测到对应于TiO2,Bi2O3或Bi4Ti3O12的杂质峰。这些结果表明通过原位水热合成途径成功形成了不同剂量比BTO/TCO-x复合材料。
从图2可以看到,在160℃的反应温度下制备的BTO/TCO-2复合物具有最佳的结晶度。但是,随着合成温度升高到180℃,BTO/TCO-2的结晶度降低,这表明高温不利于BTO和CTO组分的组合。因此,对于BTO/TCO复合材料,最佳合成温度为160℃。
如图3所示,用SEM观察了纯CTO和CaTiO3/Bi2Ti2O7复合材料的形貌和微观结构。
图3a和图3b,图3c放大倍数不同,但合成的纯CTO主要由许多片状的花瓣组成,片的大小均为100-200nm。
图3d和图3e,图3f放大倍数不同,但BTO/CTO-2样品的FESEM图像均显示,CTO花瓣被不规则形状的BTO颗粒密集地装饰。
如图4所示,在可见光照射下,Bi2Ti2O7/CaTiO3复合材料比纯CaTiO3具有更好的光催化活性。在所有复合材料中,BTO/CTO-2 160℃表现出最高的光催化活性,可在14分钟内去除83.1%的TCs。
光催化性能的提高主要是由于可见光区的光吸收能力、氧空位缺陷的存在(图5可以证明)通过原位水热方法合成,有利于BTO/CTO-2 160℃中OVs的形成,此外,对于BTO/CTO-2 160℃样品,从图5可知检测到g=2.002的归因于OV缺陷的信号峰,这表明Bi2Ti2O7与CaTiO3的耦合使表面有OV缺陷产生,以及CaTiO3和Bi2Ti2O7之间异质结的形成,导致界面处的有效电荷分离,O2 -和h+是主要的活性物质(图6可以证明)。此外,所得Bi2Ti2O7/CaTiO3复合材料具有良好的稳定性,有利于在医院以及畜牧业水污染治理中的实际应用。
四环素类抗生素(TCs)在兽药中使用最广泛,这是由于其成本低,光谱范围广和抗菌活性高等原因。由于对动物的吸收较差,因此大部分剂量的TCs会排出体外作为粪便和尿液中的原始(未代谢的)化合物。相关文献综述了TCs的暴露状态,吸附和降解行为以及效果评估。结果表明,TCs在环境中暴露量很大,具有很强的吸附能力,光和温度会影响其稳定性。环境中的暴露对植物,水生生物,微生物群落结构以及数量和抗性基因有负面影响。通过总结TCs的环境风险评估现状,人们应更加注意环境中TCs的污染,为去除TCs提供参考。近年来,在规模化养殖过程中,兽用抗生素被广泛用于预防和治疗畜禽疾病、促进动物生长。据统计全球牲畜的兽药杭生素消耗量至少为63000t,预计到2030年将增至106600t。地表径流的侵蚀、不饱和水带的渗透、动物粪便的农田施用以及水产养殖都可以使兽用抗生素进入环境。研究表明,兽用抗生素经过动物机体代谢后,30%~90%的抗生素以原形或代谢产物的形式排出体外。进入环境的抗生素对环境中的动物植物以及微生物都产生了生态毒性作用,或通过植物吸收富集进入食物链影响人们的健康,甚至会诱导抗性基因的产生和加速传播,给公共健康带来威胁。由于兽用抗生素在畜牧业养殖业的大量使用,已被广泛认作一种环境污染物。与其他兽用抗生素相比,四环素类抗生素在环境中的暴露量相对较高,其中在每千克粪便中的暴露浓度达到几十甚至几百毫克,所以粪肥的农田施用可能是四环素类抗生素进入环境的重要途经。其次,四环素类抗生素在土壤和水体中的暴露浓度接近甚至超过国际兽药协调委员会(veterinary international cooperation onharmonisation,VICH)建议的环境风险触发值(100μg/kg和1μg/L),有必要进行环境风险评估。本发明采用现有方法进行了活性测试实验,实验室模拟牲畜养殖场排放量浓度为50mg/L的四环素标准溶液进行测试,投入15mg的CaTiO3/Bi2Ti2O7-2,降解率为83.1%。

Claims (9)

1.一种钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,包括如下步骤:
步骤1,在KOH溶液中加入钛酸四丁酯混合均匀,之后水洗后离心,得到一水合二氧化钛水凝胶;
步骤2,在一水合二氧化钛水凝胶中加入去离子水、四水合硝酸钙和五水合硝酸铋混合均匀,得到混合体系,去离子水、四水合硝酸钙、五水合硝酸铋和步骤1中KOH的比例为70mL:(0.012~0.018)mol:(0.002~0.008)mol:56.11g,用KOH溶液将混合体系的pH值调节至14,得到前驱液;
步骤3,将前驱液在140~180℃下进行水热处理,得到的反应液经清洗后干燥,得到钛酸钙/钛酸铋复合光催化剂。
2.根据权利要求1所述的钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,步骤1中所述KOH溶液的浓度为2mol/L。
3.根据权利要求2所述的钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,所述的钛酸四丁酯与KOH的比例为0.02mol:56.11g。
4.根据权利要求1所述的钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,步骤1中在KOH溶液中加入钛酸四丁酯后在加热的状态下搅拌2~3小时。
5.根据权利要求1所述的钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,步骤3将前驱液在所述温度下进行水热处理3小时。
6.根据权利要求1所述的钛酸钙/钛酸铋复合光催化剂的制备方法,其特征在于,步骤3中所述的干燥为真空干燥。
7.一种由权利要求1~6中任意一项所述的钛酸钙/钛酸铋复合光催化剂的制备方法得到的钛酸钙/钛酸铋复合光催化剂。
8.根据权利要求7所述的钛酸钙/钛酸铋复合光催化剂,其特征在于,所述的钛酸钙/钛酸铋复合光催化剂为白色、浅黄色或淡黄色。
9.如权利要求7~8所述的钛酸钙/钛酸铋复合光催化剂在降解四环素中的应用。
CN202011423520.5A 2020-12-08 2020-12-08 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用 Active CN112371104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011423520.5A CN112371104B (zh) 2020-12-08 2020-12-08 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011423520.5A CN112371104B (zh) 2020-12-08 2020-12-08 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112371104A true CN112371104A (zh) 2021-02-19
CN112371104B CN112371104B (zh) 2022-09-16

Family

ID=74589408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011423520.5A Active CN112371104B (zh) 2020-12-08 2020-12-08 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112371104B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145099A (zh) * 2021-04-27 2021-07-23 陕西科技大学 铋负载的钛酸铋/钛酸钙复合光催化剂及制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508797A1 (de) * 1984-03-12 1985-09-12 TDK Corporation, Tokio/Tokyo Ferroelektrische keramische zusammensetzung
JP2000084405A (ja) * 1998-08-24 2000-03-28 Degussa Huels Ag 酸化窒素―蓄積物質及びそれから製造される酸化窒素―蓄積触媒
CN101204671A (zh) * 2006-12-22 2008-06-25 中国石油大学(北京) 二氧化钛/氧化铝复合氧化物的制造方法
CN103736476A (zh) * 2014-01-23 2014-04-23 云南大学 一种钛酸钙/氧化钙复合光催化剂及其制法和用途
CN106179316A (zh) * 2016-07-09 2016-12-07 常州大学 一种钛酸盐纳米管阵列的制备方法及应用
CN106179311A (zh) * 2014-11-20 2016-12-07 熊菊莲 一种石墨烯‑钛酸铋复合材料的光催化剂
WO2018025445A1 (ja) * 2016-08-04 2018-02-08 花王株式会社 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508797A1 (de) * 1984-03-12 1985-09-12 TDK Corporation, Tokio/Tokyo Ferroelektrische keramische zusammensetzung
JP2000084405A (ja) * 1998-08-24 2000-03-28 Degussa Huels Ag 酸化窒素―蓄積物質及びそれから製造される酸化窒素―蓄積触媒
CN101204671A (zh) * 2006-12-22 2008-06-25 中国石油大学(北京) 二氧化钛/氧化铝复合氧化物的制造方法
CN103736476A (zh) * 2014-01-23 2014-04-23 云南大学 一种钛酸钙/氧化钙复合光催化剂及其制法和用途
CN106179311A (zh) * 2014-11-20 2016-12-07 熊菊莲 一种石墨烯‑钛酸铋复合材料的光催化剂
CN106179316A (zh) * 2016-07-09 2016-12-07 常州大学 一种钛酸盐纳米管阵列的制备方法及应用
WO2018025445A1 (ja) * 2016-08-04 2018-02-08 花王株式会社 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAQIONG WANG ET AL.: "Ferroelectric and photocatalytic properties of Aurivillius phase Ca2Bi4Ti5O18", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
蔡诗一: "Ti基钙钛矿氧化物的生长及光催化性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145099A (zh) * 2021-04-27 2021-07-23 陕西科技大学 铋负载的钛酸铋/钛酸钙复合光催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN112371104B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN112337459A (zh) 一种钨酸铋复合光催化剂的制备方法
CN108126718B (zh) 一种In2S3/BiPO4异质结光催化剂的制备方法及其应用
CN107362805B (zh) 一种基于生物质炭的磁性氧化铋复合光催化剂的制备方法及用途
CN108311162A (zh) 一种ZnO/BiOI异质结光催化剂的制备方法及其应用
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN112371104B (zh) 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用
CN107376950B (zh) 一种纳米复合光催化薄膜材料及其制备方法
CN103112896B (zh) 微波法制备八面体纳米尺寸的钒酸铋光催化剂的方法
CN117582977A (zh) 一种用于降解四环素的LCQDs/Bi2MoO6球花状复合光催化剂的制备方法与应用
CN109748317B (zh) 一种氟化氢氧化锌纳米材料的可控合成方法
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN110935448A (zh) 一种Ag纳米颗粒复合ZnO纳米棒阵列的制备方法
CN114558595B (zh) 一种用于抗生素残留物降解的可见光催化剂
CN116273029A (zh) 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用
CN115845832A (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
CN113145099B (zh) 铋负载的钛酸铋/钛酸钙复合光催化剂及制备方法和应用
CN112973738B (zh) 一种磁性自组装MoS2@Fe3O4@Cu2O光催化剂的制备方法及其应用
CN110743579B (zh) 一种Cu2O@TiOF2/TiO2光催化剂及其制备方法和应用
CN109939690B (zh) 一种花状β-Bi2O3@CoO异质结光催化剂及其制备方法和应用
CN114054030A (zh) 一种二维镍铝ldh复合材料的制备方法及其在光催化降解抗生素中的应用
CN113244940A (zh) 用于合成碳酸二甲酯的固体碱催化剂及其制备方法和碳酸二甲酯的制备方法
CN108745415B (zh) 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN112619668A (zh) 一种光催化用CdS@SnS2复合材料及其制备方法和应用
CN111185137A (zh) 一种利用辣椒秸秆制备同时具有磁性和光催化性的生物炭的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant