CN116273029A - 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用 - Google Patents

一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用 Download PDF

Info

Publication number
CN116273029A
CN116273029A CN202310300200.8A CN202310300200A CN116273029A CN 116273029 A CN116273029 A CN 116273029A CN 202310300200 A CN202310300200 A CN 202310300200A CN 116273029 A CN116273029 A CN 116273029A
Authority
CN
China
Prior art keywords
bivo
conife
ldh
photocatalyst
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310300200.8A
Other languages
English (en)
Inventor
罗金
周小松
邱海珍
金蓓
周训富
宁小媚
占亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingnan Normal University
Original Assignee
Lingnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lingnan Normal University filed Critical Lingnan Normal University
Priority to CN202310300200.8A priority Critical patent/CN116273029A/zh
Publication of CN116273029A publication Critical patent/CN116273029A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种BiVO4/CoNiFe‑LDH光催化剂及其制备和应用。具体是将一维玉米棒状结构的BiVO4与三维花状结构的CoNiFe‑LDH复合,得到可见光响应的一维/三维BiVO4/CoNiFe‑LDH复合光催化剂,加速了光生载流子的分离,使其能高效、稳定地降解四环素、环丙沙星和左氧氟沙星等有机污染物。

Description

一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用
技术领域
本发明属于光催化材料领域。更具体地,涉及一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用。
背景技术
近年来,随着医药产业和临床上对抗生素的广泛使用、水产养殖业和畜牧业对抗生素药物的滥用,逐渐产生了大量的抗生素废水。抗生素废水具有生物毒害大、浓度高、成分复杂、可生物降解性低等问题,对水环境造成了极大的破坏,严重威胁着生态环境平衡和人类健康安全,因此,开发高效的抗生素废水处理技术成为目前污水治理的当务之急。
光催化降解技术是一种新型高级氧化技术,以太阳能为驱动力实现废水中有机污染物的消除,具有反应条件温和、反应过程环境友好、操作简单、净化能力强、能耗低及无二次污染等优点,被认为是解决目前日趋严重的抗生素污染问题最有前景的技术之一。然而,制备能高效降解水体中抗生素污染物的稳定、绿色的光催化材料仍十分困难。
钒酸铋(BiVO4)作为一种新型的n型半导体光催化材料,因其具有绿色无毒、禁带宽度适宜(2.4eV)、抗光腐蚀、化学稳定性高等优点,被广泛应用于光催化领域。然而,BiVO4作为光催化剂,存在光量子利用率低、光生电子-空穴对复合率高等问题,光催化活性较低,极大地限制了其在光催化领域的实际应用。此外,层状双金属氢氧化物,简称水滑石(LDH),因其层板金属阳离子及层间阴离子种类可调控、层板不同价态金属阳离子高度分散、比表面积高等优势,在光催化降解有机污染物方面具有巨大的应用潜力。然而,光生电子和空穴在LDH内部极易复合,导致光催化活性较低。
为提升BiVO4的光量子利用率与光生电子-空穴对分离效率,现有技术将NiCo-LDH与BiVO4复合,构建得到一种复合光催化材料,但这种复合材料的光催化活性仍然有限。
发明内容
本发明针对现有技术的不足,将一维玉米棒状结构的BiVO4与三维花状结构的CoNiFe-LDH复合,得到一种光催化活性显著提升的复合材料BiVO4/CoNiFe-LDH,使其在可见光下能高效降解四环素、环丙沙星和左氧氟沙星等有机污染物。
本发明的第一目的是提供一种BiVO4/CoNiFe-LDH复合光催化剂。
本发明的第二目的是提供一种BiVO4/CoNiFe-LDH复合光催化剂的制备方法。
本发明的第三目的是提供上述方法制备得到的BiVO4/CoNiFe-LDH复合光催化剂。
本发明的第四目的是提供上述BiVO4/CoNiFe-LDH复合光催化剂在光催化降解有机污染物中的应用。
本发明上述目的通过以下技术方案实现:
本发明提供了一种BiVO4/CoNiFe-LDH复合光催化剂,该催化剂由BiVO4与CoNiFe-LDH复合得到。
该BiVO4/CoNiFe-LDH复合光催化剂利用玉米棒状结构的BiVO4促进了花状结构的CoNiFe-LDH光生载流子的有效分离,从而高效、稳定地降解四环素、环丙沙星和左氧氟沙星等有机污染物,适用于水体净化。
本发明还提供了一种BiVO4/CoNiFe-LDH复合光催化剂的制备方法,具体是将BiVO4、Fe(NO3)3、Ni(NO3)2、Co(NO3)2、H2NCONH2与NH4F进行反应即得。
优选地,所述BiVO4由Bi(NO3)3、Na3VO4与PVP(聚乙烯吡咯烷酮,k-30)反应得到。
进一步优选地,所述Bi(NO3)3、Na3VO4与PVP的质量比为0.98~2.97:0.46~1.38:1。
进一步优选地,所述反应在有机溶液中进行,包括但不限于乙二醇溶液。
进一步优选地,所述反应为水热反应。
更优选地,所述水热反应的温度为150~180℃。
更优选地,所述水热反应的时间为4~12h。
进一步优选地,所述反应还进行后处理,具体为进行冷却、离心、洗涤、干燥。更优选地,所述干燥为在70~90℃下干燥12~24h。
优选地,BiVO4与Fe(NO3)3的质量比为0.2~2.1:1。
优选地,Fe(NO3)3、Ni(NO3)2、Co(NO3)2、H2NCONH2和NH4F的质量比为0.32~1.31:0.37~1.48:0.37~1.49:1.63~6.55:1。
优选地,所述反应为水热反应。
进一步优选地,所述水热反应的温度为100~140℃。
进一步优选地,所述水热反应的时间为5~24h。
优选地,所述反应后还进行后处理,具体为进行冷却、离心、洗涤、干燥。
进一步优选地,所述干燥为在70~90℃下干燥12~24h。
本发明通过合理的组分调控和结构设计,将一维玉米棒状结构的BiVO4与三维花状结构的CoNiFe-LDH复合,得到可见光响应的一维/三维BiVO4/CoNiFe-LDH复合光催化剂,加速了光生载流子的分离,使其能高效、稳定地降解四环素、环丙沙星和左氧氟沙星等有机污染物,适用于水体净化,因此,上述方法制备得到的BiVO4/CoNiFe-LDH复合光催化剂,以及上述BiVO4/CoNiFe-LDH复合光催化剂在光催化降解有机污染物中的应用应在本发明的保护范围之内。
优选地,所述有机污染物为抗生素。
进一步优选地,所述抗生素为四环素、环丙沙星、左氧氟沙星中的一种或几种。
优选地,所述BiVO4/CoNiFe-LDH复合光催化剂的使用方法为:在可见光照射下,将BiVO4/CoNiFe-LDH复合光催化剂加入到含有机污染物的废水中即可。
进一步优选地,所述可见光为氙灯。
进一步优选地,所述可见光的照射时间为0.5~6.0h。
进一步优选地,所述可见光的功率为200~400W,更优选为300W。
进一步优选地,所述废水的温度为20~30℃。
进一步优选地,所述废水的pH为4.0~10.0。
进一步优选地,所述有机污染物在废水中的浓度为5~40mg/L。
进一步优选地,所述BiVO4/CoNiFe-LDH复合光催化剂在废水中的浓度为0.2~1g/L。
本发明具有以下有益效果:
1.本发明针对单一BiVO4与单一CoNiFe-LDH均存在光生电子和空穴易复合的缺点,将BiVO4与CoNiFe-LDH复合,通过界面效应有效地促进光生载流子的分离,所制备的BiVO4/CoNiFe-LDH异质结光催化剂表现出显著增强的光催化降解抗生素活性,适用于光催化降解有机污染物。
2.本发明BiVO4/CoNiFe-LDH复合光催化剂的原料廉价易得,制备工艺简单方便。
附图说明
图1为实施例1所得BiVO4、对比例1所得CoNiFe-LDH光催化剂、实施例1所得BiVO4/CoNiFe-LDH复合光催化剂的XRD谱图。
图2a为实施例1所得BiVO4的SEM图,图2b为对比例1所得CoNiFe-LDH的SEM图,图2c为实施例1所得BiVO4/CoNiFe-LDH的SEM图。
图3为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂的EDS谱图。
图4为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂和对比例1所得CoNiFe-LDH的荧光光谱图。
图5为实施例1~3和对比例1~3所得产物降解四环素的活性图。
图6为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂的循环性能测试结果图。
图7为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂降解环丙沙星和左氧氟沙星的活性图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1BiVO4/CoNiFe-LDH复合光催化剂的制备
S1.制备BiVO4
首先,称取0.9701g Bi(NO3)3·5H2O溶于30mL乙二醇得到溶液A;称取0.3678gNa3VO4溶于30mL乙二醇得到溶液B;称取0.4g PVP(聚乙烯吡咯烷酮,k-30)溶于20mL去离子水得到溶液C。其次,待其全部溶解后,先将溶液A逐滴加到溶液C中,再将溶液B逐滴加到溶液C中,然后于25℃下搅拌4h。再次,将上述混合液转入到100mL聚四氟乙烯反应釜中,并置于干燥箱内160℃反应5h。最后,待其冷却至25℃后,离心,分别用去离子水和乙醇洗涤3次,80℃干燥12h后得到BiVO4光催化剂。
S2.制备BiVO4/CoNiFe-LDH:
首先,称取0.15g BiVO4加到40mL去离子水中,超声30min,使其完全分散在水中得到溶液A;称取0.202g Fe(NO3)3·9H2O、0.2181g Ni(NO3)2·6H2O、0.2183g Co(NO3)2·6H2O、0.606g H2NCONH2和0.1852g NH4F溶于30mL去离子水中得到溶液B。其次,将溶液B逐滴加到溶液A中,然后继续25℃搅拌30min。再次,将其转入到100mL聚四氟乙烯反应釜中,并置于干燥箱内120℃反应8h。最后,待其冷却至25℃后,离心,分别用去离子水和乙醇洗涤3次,80℃干燥12h后得到BiVO4/CoNiFe-LDH复合光催化剂。
实施例2BiVO4/CoNiFe-LDH复合光催化剂的制备
同实施例1,区别在于,S2所用BiVO4的质量为0.2g。
实施例3BiVO4/CoNiFe-LDH复合光催化剂的制备
同实施例1,区别在于,S2所用BiVO4的质量为0.1g。
对比例1CoNiFe-LDH光催化剂的制备
首先,称取0.202g Fe(NO3)3·9H2O、0.2181g Ni(NO3)2·6H2O、0.2183gCo(NO3)2·6H2O、0.606g H2NCONH2和0.1852g NH4F溶于70mL去离子水中,25℃搅拌30min。其次,将其转入到100mL聚四氟乙烯反应釜中,并置于干燥箱内120℃反应8h。最后,待其冷却至25℃后,离心,分别用去离子水和乙醇洗涤3次,80℃干燥12h后得到CoNiFe-LDH光催化剂。
对比例2NiCo-LDH光催化剂
首先,称取0.2181g Ni(NO3)2·6H2O、0.2183g Co(NO3)2·6H2O、0.606gH2NCONH2和0.1852g NH4F溶于70mL去离子水中,25℃搅拌30min。其次,将其转入到100mL聚四氟乙烯反应釜中,并置于干燥箱内120℃反应8h。最后,待其冷却至25℃后,离心,分别用去离子水和乙醇洗涤3次,80℃干燥12h后得到NiCo-LDH光催化剂。
对比例3BiVO4/NiCo--LDH复合光催化剂的制备
S1.按实施例1中S1的方法制备BiVO4
S2.制备BiVO4/NiCo--LDH:
首先,称取0.15g BiVO4加到40mL去离子水中,超声30min,使其完全分散在水中得到溶液A;称取0.2181g Ni(NO3)2·6H2O、0.2183g Co(NO3)2·6H2O、0.606g H2NCONH2和0.1852g NH4F溶于30mL去离子水中得到溶液B。其次,将溶液B逐滴加到溶液A中,然后继续25℃搅拌30min。再次,将其转入到100mL聚四氟乙烯反应釜中,并置于干燥箱内120℃反应8h。最后,待其冷却至25℃后,离心,分别用去离子水和乙醇洗涤3次,80℃干燥12h后得到BiVO4/NiCo-LDH复合光催化剂。
实验例1结构表征
(1)对实施例1所得BiVO4、对比例1所得CoNiFe-LDH光催化剂、实施例1所得BiVO4/CoNiFe-LDH复合光催化剂进行粉末X射线衍射,得到的XRD谱图如图1所示。可见,制得的BiVO4曲线与BiVO4的标准卡片(JCPDS#14-0688)完全一致,衍射峰窄而尖锐且无杂峰,说明制备的是纯相BiVO4;CoNiFe-LDH曲线显示了如(003)、(006)、(012)、(015)、(018)、(110)、(113)等代表CoNiFe-LDH的特征峰,表明合成的材料是CoNiFe-LDH;BiVO4/CoNiFe-LDH曲线中含有BiVO4和CoNiFe-LDH的特征衍射峰,表明合成的是BiVO4与CoNiFe-LDH的复合物。
(2)对实施例1所得BiVO4、对比例1所得CoNiFe-LDH光催化剂、实施例1所得BiVO4/CoNiFe-LDH复合光催化剂进行扫描电镜分析,得到的SEM图如图2所示。其中,图2a为实施例1所得BiVO4的SEM图,图2b为对比例1所得CoNiFe-LDH的SEM图,图2c为实施例1所得BiVO4/CoNiFe-LDH的SEM图。可见,图2a中单一BiVO4是由大量零维的纳米颗粒组装形成一维的玉米棒状结构;图2b中单一CoNiFe-LDH是由大量二维的纳米片组装形成三维的纳米花状结构,片与片之间有较大的孔隙;图2c中大量具有一维玉米棒状形貌的BiVO4堆积在三维纳米花形貌的CoNiFe-LDH孔隙中,证明一维/三维BiVO4/CoNiFe-LDH复合光催化剂已成功制备。
(3)对实施例1所得BiVO4/CoNiFe-LDH复合光催化剂进行元素分析,得到的EDS谱图如图3所示,可见,所制备的复合光催化剂中确实含有Bi、V、O、Co、Ni、Fe等元素,与BiVO4/CoNiFe-LDH组成元素一致,进一步表明BiVO4/CoNiFe-LDH复合光催化剂已成功制备。
(4)对实施例1所得BiVO4/CoNiFe-LDH复合光催化剂和对比例1所得CoNiFe-LDH进行荧光光谱分析,得到的荧光光谱图如图4所示,可见,与单一CoNiFe-LDH相比,BiVO4/CoNiFe-LDH复合光催化剂具有更低的荧光发射强度,表明其具有更低的光生载流子复合速率,即更高的光生载流子分离效率。
实验例2光催化降解四环素实验
一、实验方法
检测实施例1~3和对比例1~3所得产物对四环素的可见光降解效果,具体操作如下:
(1)依次向500mL的夹套玻璃烧杯中加入150mL四环素溶液(20mg/L)和50mg光催化剂;
(2)在黑暗条件下,将上述悬浊液磁力搅拌60min,以达到吸附-脱附平衡;
(3)在300W氙灯(λ≥420nm)照射下进行催化反应,每10min取一次样,离心分离后取上层清夜,用分光光度计测其吸光度。
光催化降解率公式为:η=(C0-C)/C0×100%=(A0-A)/A0×100%
式中C0为四环素溶液吸附-脱附平衡后的浓度;C为四环素溶液经光催化反应后的浓度;A0为四环素溶液吸附-脱附平衡后的吸光度;A为四环素溶液经光催化反应后的吸光度。
二、实验结果
图5为实施例1~3和对比例1~3所得产物降解四环素的活性图。可见,在可见光照射下,CoNiFe-LDH光催化剂降解四环素的活性显著高于NiCo-LDH光催化剂。此外,实施例1~3所得BiVO4/CoNiFe-LDH复合光催化剂的光催化性能明显优于单一BiVO4和单一CoNiFe-LDH,显示出良好的光催化活性,尤其是实施例1制备的BiVO4/CoNiFe-LDH复合光催化剂具有最高的光降解四环素活性;在可见光照射50min后,实施例1制备的BiVO4/CoNiFe-LDH复合光催化剂四环素降解率高达52%,分别是单一BiVO4、单一CoNiFe-LDH和BiVO4/NiCo-LDH的2.0倍、5.5倍和1.6倍,表明将一维玉米棒状的BiVO4与三维花状的CoNiFe-LDH复合构建一维/三维BiVO4/CoNiFe-LDH复合光催化剂能有效提升其光降解四环素活性。
实验例3光催化降解四环素稳定性实验
一、实验方法
检测实施例1所得BiVO4/CoNiFe-LDH复合光催化剂的稳定性和循环使用效果,具体操作如下:
(1)依次向500mL的夹套玻璃烧杯中加入150mL四环素溶液(20mg/L)和50mg光催化剂;
(2)在黑暗条件下,将上述悬浊液磁力搅拌60min,以达到吸附-脱附平衡;
(3)在300W氙灯(λ≥420nm)照射下进行催化反应,每10min取一次样,离心分离后取上层清夜,用分光光度计测其吸光度。
光催化降解率公式为:η=(C0-C)/C0×100%=(A0-A)/A0×100%
式中C0为四环素溶液吸附-脱附平衡后的浓度;C为四环素溶液经光催化反应后的浓度;A0为四环素溶液吸附-脱附平衡后的吸光度;A为四环素溶液经光催化反应后的吸光度。
(4)光催化反应后,将剩余的悬浊液离心、洗涤、烘干;
(5)将烘干后的光催化剂连续重复步骤(1)至(4),进行5次循环测试。
二、实验结果
图6为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂的循环性能测试结果图。可见,本发明的BiVO4/CoNiFe-LDH复合光催化剂具有良好的稳定性和循环使用效果。
实验例4光催化降解其它抗生素实验
一、实验方法
检测实施例1所得BiVO4/CoNiFe-LDH复合光催化剂对抗生素类污染物去除的广谱性,具体操作如下:
(1)依次向500mL的夹套玻璃烧杯中加入150mL环丙沙星或左氧氟沙星溶液(10mg/L)和50mg光催化剂;
(2)在黑暗条件下,将上述悬浊液磁力搅拌60min,以达到吸附-脱附平衡;
(3)在300W氙灯(λ≥420nm)照射下进行催化反应,每10min取一次样,离心分离后取上层清夜,用分光光度计测其吸光度。
光催化降解率公式为:η=(C0-C)/C0×100%=(A0-A)/A0×100%
式中C0为抗生素溶液吸附-脱附平衡后的浓度;C为抗生素溶液经光催化反应后的浓度;A0为抗生素溶液吸附-脱附平衡后的吸光度;A为抗生素溶液经光催化反应后的吸光度。
二、实验结果
图7为实施例1所得BiVO4/CoNiFe-LDH复合光催化剂降解环丙沙星和左氧氟沙星的活性图。可见,本发明的BiVO4/CoNiFe-LDH复合光催化剂不仅可很好地降解四环素,还同时可高效降解环丙沙星和左氧氟沙星活性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种BiVO4/CoNiFe-LDH复合光催化剂,其特征在于,由BiVO4与CoNiFe-LDH复合得到。
2.一种BiVO4/CoNiFe-LDH复合光催化剂的制备方法,其特征在于,将BiVO4、Fe(NO3)3、Ni(NO3)2、Co(NO3)2、H2NCONH2与NH4F进行反应。
3.根据权利要求2所述制备方法,其特征在于,BiVO4与Fe(NO3)3的质量比为0.2~2.1:1。
4.根据权利要求2所述制备方法,其特征在于,Fe(NO3)3、Ni(NO3)2、Co(NO3)2、H2NCONH2和NH4F的质量比为0.32~1.31:0.37~1.48:0.37~1.49:1.63~6.55:1。
5.根据权利要求2所述制备方法,其特征在于,所述反应为水热反应。
6.根据权利要求5所述制备方法,其特征在于,所述水热反应的温度为100~140℃;所述水热反应的时间为5~24h。
7.权利要求2~6任一所述方法制备得到的BiVO4/CoNiFe-LDH复合光催化剂。
8.权利要求7所述BiVO4/CoNiFe-LDH复合光催化剂在光催化降解有机污染物中的应用。
9.根据权利要求8所述应用,其特征在于,所述有机污染物为抗生素。
10.根据权利要求9所述应用,其特征在于,所述抗生素为四环素、环丙沙星、左氧氟沙星中的一种或几种。
CN202310300200.8A 2023-03-22 2023-03-22 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用 Pending CN116273029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310300200.8A CN116273029A (zh) 2023-03-22 2023-03-22 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310300200.8A CN116273029A (zh) 2023-03-22 2023-03-22 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
CN116273029A true CN116273029A (zh) 2023-06-23

Family

ID=86816597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310300200.8A Pending CN116273029A (zh) 2023-03-22 2023-03-22 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN116273029A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889875A (zh) * 2023-07-28 2023-10-17 中国科学院地理科学与资源研究所 一种BiVO4/CoAlLa-LDH复合光催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354476A (zh) * 2017-06-27 2017-11-17 青岛鲁润中科环境工程技术开发有限公司 铁基双金属氢氧化物/钒酸铋光阳极的制备方法及其应用
CN108393083A (zh) * 2018-02-27 2018-08-14 成都新柯力化工科技有限公司 一种用于污水处理的钒酸铋光催化剂及制备方法
CN109078639A (zh) * 2018-07-25 2018-12-25 华南师范大学 一种BiVO4/NiCo LDHs多孔纤维及其制备方法和应用
US20190048482A1 (en) * 2017-08-10 2019-02-14 Board Of Trustees Of The University Of Arkansas 3d reduced graphene oxide foams embedded with nanocatalysts, synthesizing methods and applications of same
CN109569630A (zh) * 2019-01-23 2019-04-05 西北师范大学 一种负载镍钴水滑石纳米粒子的钒酸铋复合材料制备及在光电水氧化中的应用
CN113788590A (zh) * 2021-10-25 2021-12-14 郝冬亮 一种高效环保污水处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354476A (zh) * 2017-06-27 2017-11-17 青岛鲁润中科环境工程技术开发有限公司 铁基双金属氢氧化物/钒酸铋光阳极的制备方法及其应用
US20190048482A1 (en) * 2017-08-10 2019-02-14 Board Of Trustees Of The University Of Arkansas 3d reduced graphene oxide foams embedded with nanocatalysts, synthesizing methods and applications of same
CN108393083A (zh) * 2018-02-27 2018-08-14 成都新柯力化工科技有限公司 一种用于污水处理的钒酸铋光催化剂及制备方法
CN109078639A (zh) * 2018-07-25 2018-12-25 华南师范大学 一种BiVO4/NiCo LDHs多孔纤维及其制备方法和应用
CN109569630A (zh) * 2019-01-23 2019-04-05 西北师范大学 一种负载镍钴水滑石纳米粒子的钒酸铋复合材料制备及在光电水氧化中的应用
CN113788590A (zh) * 2021-10-25 2021-12-14 郝冬亮 一种高效环保污水处理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LUO JIN 等: "Construction of cerium oxide nanoparticles immobilized on the surface of zinc vanadate nanoflowers for accelerated photocatalytic degradation of tetracycline under visible light irradiation", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》, vol. 587, 13 November 2020 (2020-11-13), pages 831 - 844, XP086473567, DOI: 10.1016/j.jcis.2020.11.044 *
WANG QIZHAO 等: "NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting", 《CHINESE JOURNAL OF CATALYSIS》, vol. 39, no. 4, 14 April 2018 (2018-04-14), pages 1 - 2 *
ZHU BIAO 等: "g-C3N4/CoNiFe-LDH Z-scheme heterojunction for efficient CO2 photoreduction and MB dye photodegradation", 《CATALYSIS SCIENCE & TECHNOLOGY》, vol. 11, no. 23, 30 November 2021 (2021-11-30), pages 7728 *
史苏琦 等: "钒酸铋晶面调控制备及其降解四环素类抗生素性能研究", 《无机盐工业》, vol. 53, no. 11, 15 April 2021 (2021-04-15), pages 115 *
罗金 等: "Z-型FeOOH/ZnIn2S4复合光催化材料的构筑及其降解四环素废水综合实验设计", 《实验技术与管理》, vol. 39, no. 3, 25 March 2022 (2022-03-25), pages 160 - 164 *
黄小倩: "光阳极的调控制备及其光电催化氧化性能提升研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 9, 15 September 2021 (2021-09-15), pages 015 - 61 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889875A (zh) * 2023-07-28 2023-10-17 中国科学院地理科学与资源研究所 一种BiVO4/CoAlLa-LDH复合光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
Wang et al. Template-free synthesis of oxygen-containing ultrathin porous carbon quantum dots/gC 3 N 4 with superior photocatalytic activity for PPCPs remediation
CN109317183B (zh) 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用
CN108067267B (zh) 一种可见光响应碲化镉/二氧化钛z型光催化剂及其制备方法和应用
CN106732713A (zh) 一种三元磁性复合光催化纳米材料及其制备方法和用途
CN107890877B (zh) 一种Bi3O4Cl/CdS复合材料及制备方法和用途
CN112337459A (zh) 一种钨酸铋复合光催化剂的制备方法
CN111659453B (zh) 一种可见光-臭氧协同催化的催化剂及其制备方法
CN111729682A (zh) 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
CN108479772B (zh) 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
CN106268908A (zh) 一种去除有机污染物的石墨相C3N4掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN111437856A (zh) 一种卤氧化铋/g-C3N4异质结光催化剂的制备
CN116273029A (zh) 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用
CN113134350A (zh) 一种掺杂碳量子点改性钒酸铋复合材料、制备方法及应用
Hu et al. Perovskite-type SrFeO3/g-C3N4 S-scheme photocatalyst for enhanced degradation of Acid Red B
CN106984298B (zh) 一种纳米片状氧化铋的制法和用途
CN117643900B (zh) 一种s型异质结铜铁氧体/硫锌铟可见光催化剂的制备方法及其应用
CN109158117B (zh) 一种全光谱响应双掺杂氟化镧/凹凸棒石上转换复合光催化材料及其制备方法与应用
Liu et al. Current status of research on BiOX-based heterojunction photocatalytic systems: Synthesis methods, photocatalytic applications and prospects
Zhang et al. Simultaneous removal of Cr (vi) and TC over BiO 1− X Br/CeVO 4 S-scheme heterostructures: oxygen vacancy boosted charge separation and analysis of intermediates
CN108160038B (zh) 一种氮掺杂的碳-镁复合纳米片的制备方法及应用
CN111151238B (zh) 一种钒酸铋异质结BiVO4/Bi25VO40材料及其制备方法和应用
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN108793312B (zh) 利用氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂催化去除抗生素的方法
CN107983377B (zh) 钨酸镉修饰的银/碘化银复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination