CN111729682A - 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法 - Google Patents

一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法 Download PDF

Info

Publication number
CN111729682A
CN111729682A CN202010634952.4A CN202010634952A CN111729682A CN 111729682 A CN111729682 A CN 111729682A CN 202010634952 A CN202010634952 A CN 202010634952A CN 111729682 A CN111729682 A CN 111729682A
Authority
CN
China
Prior art keywords
rgo
preparation
photocatalyst
solution
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010634952.4A
Other languages
English (en)
Inventor
鲍智勇
邢孟孟
周宇
施细秀
秦永强
吕珺
崔接武
韩骐震
汪嘉恒
孙振杰
张茂峰
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010634952.4A priority Critical patent/CN111729682A/zh
Publication of CN111729682A publication Critical patent/CN111729682A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种光催化剂g‑C3N4/RGO/Bi2O3,存在如下含量的组分:RGO质量分数为0.5%‑5%,Bi2O3质量分数为15%‑25%,g‑C3N4质量分数为75%‑85%。其制备方法如下:以GO为基体,Bi(NO3)3·5H2O为铋源,聚乙烯吡咯烷酮(PVP)为表面活性剂,尿素为添加剂和还原剂,采用溶剂热法合成了5‑10nm Bi2O3纳米颗粒修饰二维RGO薄片的RGO/Bi2O3复合材料;用三聚氰胺前躯体烧制制备g‑C3N4块体材料,热剥离得到g‑C3N4纳米片;最后再采用浸渍和自组装法复合形成g‑C3N4/RGO/Bi2O3三元复合材料。本发明的光催化剂能实现光生载流子的有效分离,从而提升光催化性能;能够耦合目标功能团,使其能够作为第二个特定的产氧催化剂,有利于对电子的捕获。

Description

一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
技术领域
本发明涉及一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法,属于材料技术领域。
背景技术
随着人们生活质量的不断提升,自然界水资源的污染也在不断加剧,如工业废水和生活污水的排放,对我们周边的水资源环境都有破坏。如何有效净水杀菌,降解废水中的有机物分子以及治理重金属离子污染,已经成为人们关注的焦点。针对此问题,研究人员已经开发了一系列治理水污染的技术及方法,如絮凝、膜过滤、吸附和光催化等。其中光催化法由于能利用太阳能进行净水处理而被认为是最有发展潜力的方法,它利用太阳能杀菌消毒、降解有机物、还原重金属离子等,从而达到净化水的目的。其机理是在可见光照射下,光催化剂激发出的电子-空穴对成为活性载流子,活性载流子与水反应会得到羟基自由基(·OH)和超氧阴离子自由基(·O2-)。此时具有强氧化性的活性氧会与染料、氯苯等有机污染物,CN-、Au(CN)2 -等无机污染物等发生反应,并且分解生物大分子杀死细菌病毒等有害生物,光催化反应产物生成二氧化碳和水。除此之外,光激发材料后光生电子可以还原废水中的重金属离子(如Cr6+),得到金属单质后分离,不产生有害副产物。
光催化过程进行要满足反应动力学和热力学要求,既需要光催化材料具有较窄的禁带宽度,能够吸收更多的光能生成光生电子-空穴,又要求光催化材料的具有适当大的禁带宽度,以便具有合适的氧化还原势发生催化反应。单一的材料很难满足以上两个要求,所以发明光催化剂复合材料迫在眉睫。在众多的光催化剂中,二维材料g-C3N4的禁带宽度为2.7eV,导带和价带跨立在H+/H2和H2O/O2还原电势的两侧,其中导带能级为-1.1eV,光生电子具有强还原性,因可在可见光照射下可还原重金属离子和分解水产生氢气而备受关注。但由于g-C3N4材料自身的电子-空穴复合率高等原因,实际应用效果不佳,所以如何将g-C3N4与其他高效光催化材料耦合至关重要。
发明内容
本发明的目的在于:提供一种g-C3N4/RGO/Bi2O3光催化材料及其制备方法,该g-C3N4/RGO/Bi2O3异质结光催化材料能够解决上述问题,既可以让光生电子-空穴复合率降低,又使得材料同时具有强氧化性和强化原性。
为了实现上述目的,本发明提供如下技术方案:
一种光催化剂g-C3N4/RGO/Bi2O3,存在三种组分:RGO、Bi2O3、g-C3N4,其中,RGO质量分数为0.5%-5%,Bi2O3质量分数为15%-25%,g-C3N4质量分数为75%-85%。
一种光催化剂g-C3N4/RGO/Bi2O3的制备方法,包括以下几个步骤:
(1)RGO/Bi2O3异质结材料的制备
(1.1)将GO通过超声波分散在乙二醇中,然后再往其中加入PVP和尿素,搅拌直至溶质全部溶解无沉淀,标记为溶液A;将Bi(NO3)3·5H2O超声分散在HNO3溶液中,标记为溶液B;
(1.2)将溶液B逐滴地加入到溶液A中得到混合溶液C,然后将混合溶液C转移到具有特氟龙内衬的不锈钢反应釜中进行溶剂热反应,反应结束后等待混合溶液C冷却至室温,然后通过高速离心收集所得的沉淀物,并用乙醇和去离子水反复洗涤数次,将所得样品放置在真空干燥箱中55-65℃干燥8-12h得到RGO/Bi2O3异质结材料;
(2)g-C3N4纳米薄片的制备
称取三聚氰胺,在马弗炉进行固相反应处理,随后将固相反应生成的块体g-C3N4研磨成粉末,放在马弗炉进行热氧化反应,接着取出样品,加入乙醇和去离子水混合溶液进行搅拌和超声,得到层状的g-C3N4溶液,离心后将所得产品放置在真空干燥箱中55-65℃干燥8-12h;
(3)g-C3N4/RGO/Bi2O3三元光催化复合材料的制备
将g-C3N4纳米薄片分散在甲醇中,然后加入RGO/Bi2O3异质结材料进行搅拌分散;随后在油浴锅中边搅拌边干燥以去除甲醇,甲醇溶液蒸干后进行退火处理。
优选地,所述步骤(1.1)中,溶液A和B中四种原料GO、Bi(NO3)3·5H2O、PVP和尿素的质量比为1-10:30-70:60:16。
优选地,所述步骤(1.1)中,HNO3溶液的浓度为0.1M,乙二醇和HNO3溶液的体积比为5:1。
优选地,所述步骤(1.2)中溶剂热反应的温度为100-150℃,溶剂热反应的时间为3-5h。
优选地,所述步骤(2)中固相反应条件为:在400-600℃下保温11-13h;热氧化反应的条件为:在530-550℃条件下保温2-3h。
优选地,步骤(2)中离心速度为5000-8000转/分钟,离心时间为8-12min;步骤(2)中搅拌速率500-800转/分钟,搅拌时间为45-85min;步骤(2)中超声条件为:常温超声35-55min,超声机工作频率40-60kHz,功率80-100W。
优选地,所述步骤(3)中g-C3N4纳米薄片和RGO/Bi2O3异质结材料的质量比为1-2.5:4.5-6。
优选地,所述步骤(3)中,当g-C3N4纳米薄片的质量为60mg时,甲醇用量为10-20ml,油浴温度为80-100℃。
优选地,所述步骤(3)中搅拌分散时搅拌速率500-800转/分钟,搅拌时间为45-85min。
本发明中g-C3N4基光催化剂,是将g-C3N4与预制备的RGO/Bi2O3材料复合形成三元异质结结构,/Bi2O3纳米颗粒的禁带宽度为2.8eV,可吸收可见光,同时其价带位于+3.2eV,激发后的空穴具有强氧化性,能够有效降解有机污染物和杀菌消毒。同时RGO纳米片是一个理想的电子传递中介体,具有优异的电子传输特性,可以连接强氧化性催化剂Bi2O3和强还原性催化剂g-C3N4,此时在RGO界面上电子和空穴的有效分离有利于加速氧化还原反应。该三元复合材料的电子传递链大大降低电子-空穴复合率,因此光催化剂g-C3N4/RGO/Bi2O3体系形成。
本发明的效益在于:
本发明制备的g-C3N4/RGO/Bi2O3光催化剂,相较于传统的单一相g-C3N4光催化剂,能实现光生载流子的有效分离,从而提升光催化性能;其次,RGO纳米片具有较大的比表面积,能够耦合目标功能团,使其能够作为第二个特定的产氧催化剂,有利于对电子的捕获。同时RGO具有类似于g-C3N4层堆叠的π共轭结构,可以与同样是二维材料的g-C3N4通过堆叠纳米片之间的π-π静电吸附来产生紧密的g-C3N4/RGO异质结,有益于g-C3N4/RGO间的电荷传输;除此之外,制备过程中形成的Bi2O3颗粒粒径尺寸为5-10nm,催化性能优异,是氧化反应的活性位点,而且能有效捕获入射光光子,从而促进提升了系统的光催化性能。
附图说明
图1为光催化剂g-C3N4/RGO/Bi2O3的制备流程图;
图2为光催化剂g-C3N4/RGO/Bi2O3的XRD图谱;
图3为光催化剂g-C3N4/RGO/Bi2O3的FTIR图谱;
图4为SEM和EDS能谱图;其中,a,b为RGO/Bi2O3的SEM及EDS能谱图;c,d为g-C3N4/RGO/Bi2O3的SEM及EDS能谱图;
图5为TEM和HRTEM图;其中,a-c为RGO/Bi2O3的TEM及HRTEM图;d-f为g-C3N4/RGO/Bi2O3的TEM及HRTEM;
图6为光催化剂g-C3N4/RGO/Bi2O3的UV-Vis图谱;
图7为光催化剂g-C3N4/RGO/Bi2O3的PL图谱。
具体实施方式
实施例1
(1)RGO/Bi2O3异质结材料的制备
(1.1)将10mg二维薄片状氧化石墨烯(GO)通过超声波分散在乙二醇中(常温超声20min,超声机工作频率50kHz,功率90W),然后再往其中加入300mg PVP和80mg尿素,搅拌直至溶质全部溶解无沉淀,标记为溶液A。将162.5mg Bi(NO3)3·5H2O超声分散在5ml 0.1M的HNO3溶液中,标记为溶液B(常温超声20min,超声机工作频率50kHz,功率90W)。
(1.2)将溶液B逐滴地加入到溶液A中得到混合溶液C,然后将混合溶液C转移到具有特氟龙内衬的不锈钢反应釜中,在150℃下溶剂热3h,反应结束后等待混合溶液C冷却至室温,然后通过高速离心收集所得的沉淀物(离心速度为6300g,离心时间为10min),并用乙醇和去离子水反复洗涤数次(离心速度为6300g,离心时间为10min)。最后将所得产品放置在真空干燥箱中60℃干燥10h即可得到得到RGO/Bi2O3异质结材料,标记为RGO/Bi2O3-3h;
(2)g-C3N4纳米薄片的制备
量取10g三聚氰胺,将其置于坩埚中,再取另外一个坩埚作为盖子,盖好之后放置在马弗炉中,在530℃下保温12h后结束,即可得到块体g-C3N4样品。收集所得样品,在玛瑙研钵中研磨成粉末状,然后再放置于马弗炉中在550℃下保温2h经过热氧化处理以得到包含更多缺陷的g-C3N4。煅烧结束后取出样品,在乙醇与水的体积比为1:1的溶液中进行搅拌和超声(搅拌条件为:搅拌速率600转/分钟,搅拌时间为60min;超声条件为:常温超声50min,超声机工作频率50kHz,功率90W),得到层状的g-C3N4溶液,然后于6000转/分钟下离心10min,最后将所得产品放置在真空干燥箱中60℃干燥10h。
(3)g-C3N4/RGO/Bi2O3三元光催化复合材料的制备
将60mgg-C3N4纳米薄片分散在10ml甲醇中,然后加入13mg RGO/Bi2O3-3h样品搅拌分散(搅拌速率600转/分钟,搅拌时间为65-85min)。随后在80℃的油浴锅中边搅拌边蒸发干燥以去除甲醇,甲醇溶液蒸干后收取样品,在150℃下进行退火处理2h,以加强RGO/Bi2O3异质结与g-C3N4基体之间的联结作用。加热结束后即可得到样品g-C3N4/RGO/Bi2O3-3h。
实施例2
(1)RGO/Bi2O3异质结材料的制备
(1.1)将10mgGO通过超声波分散在乙二醇中(常温超声20min,超声机工作频率50kHz,功率90W),然后再往其中加入300mg PVP和80mg尿素,搅拌直至溶质全部溶解无沉淀,标记为溶液A。将162.5mg Bi(NO3)3·5H2O超声分散在5ml 0.1M的HNO3溶液中,标记为溶液B(常温超声20min,超声机工作频率50kHz,功率90W)。
(1.2)将溶液B逐滴地加入到溶液A中得到混合溶液C,然后将混合溶液C转移到具有特氟龙内衬的不锈钢反应釜中,在150℃下溶剂热4h,反应结束后等待混合溶液C冷却至室温,然后通过高速离心收集所得的沉淀物(离心速度为6300g,离心时间为10min),并用乙醇和去离子水反复洗涤数次(离心速度为6300g,离心时间为10min)。最后将所得产品放置真空干燥箱中60℃干燥8-12h,即可得到得到RGO/Bi2O3异质结材料,标记为RGO/Bi2O3-4h;
(2)g-C3N4纳米薄片的制备
量取10g三聚氰胺,将其置于坩埚中,再取另外一个坩埚作为盖子,盖好之后放置在马弗炉中,在530℃下保温12h后结束,即可得到块体g-C3N4样品。收集所得样品,在玛瑙研钵中研磨成粉末状,然后再放置于马弗炉中在550℃下保温2h经过热氧化处理以得到包含更多缺陷的g-C3N4。煅烧结束后取出样品,在乙醇与水的体积比为1:1的溶液中进行搅拌和超声(搅拌条件为:搅拌速率600转/分钟,搅拌时间为60min;超声条件为:常温超声50min,超声机工作频率50kHz,功率90W),得到层状的g-C3N4溶液,然后于6000转/分钟下离心10min,最后将所得产品放置在真空干燥箱中60℃干燥10h。
(3)g-C3N4/RGO/Bi2O3三元光催化复合材料的制备
将60mg g-C3N4纳米薄片分散在10ml甲醇中,然后加入13mg RGO/Bi2O3-4h悬浊液(1mg/ml)进行搅拌分散(搅拌速率600转/分钟,搅拌时间为70min)。随后在80℃的油浴锅中边搅拌干燥以去除甲醇,甲醇溶液蒸干后收取样品,在150℃下进行退火处理2h,以加强RGO/Bi2O3异质结与g-C3N4基体之间的联结。加热结束后即可得到样品g-C3N4/RGO/Bi2O3-4h。
对说明书附图做进一步的说明如下:
(1).XRD分析
RGO/Bi2O3样品的XRD衍射图谱如附图2所示。在2θ角分别约为27°、33°和47°处有明显的“馒头峰”。与Bi2O3的PDF标准卡片(PDF#00-041-1449)吻合,是典型的Bi2O3峰位。然而,未发现RGO的衍射峰。推测是加入GO含量较低。对于g-C3N4/RGO/Bi2O3三元复合物,出现明显的g-C3N4的衍射峰位于13°和27°,其中在2θ=27°处的衍射峰明显增强,是g-C3N4的峰与Bi2O3的峰位置叠加的结果。
(2).FTIR分析
傅里叶变换红外光谱仪测试样品的FTIR图谱,如附图3所示。RGO/Bi2O3材料在波数为518cm-1和764cm-1的位置分别属于Bi-O和Bi-O-Bi键的振动峰,在1501cm-1位置属于RGO的-C=C键的振动吸收峰。通过对比g-C3N4/RGO/Bi2O3与RGO/Bi2O3的FTIR图谱,前者在于在波数为1241cm-1和1576cm-1有吸收峰,对应于-C-N和-C=N振动,这是g-C3N4的特征吸收峰,说明三元复合物的成功合成。
(3).SEM及EDS能谱分析
测试该样品SEM及EDS,其结果如附图4所示。从图4b中的EDS测试结果可知,RGO/Bi2O3样品内存在Bi、C、O元素;对比4d中的EDS能谱结果,发现g-C3N4/RGO/Bi2O3样品中多了N元素,说明g-C3N4/RGO/Bi2O3成功合成。另外,图4b、d中出现的Au元素是在制样过程中喷金所致,图4d中出现的Si元素是硅片基底的信号。图4a、c则分别是RGO/Bi2O3和g-C3N4/RGO/Bi2O3得SEM图片,对比二者可知RGO/Bi2O3近似呈片状,在其表面能看到细小的颗粒突起部分为Bi2O3颗粒,而在复合入g-C3N4其g-C3N4/RGO/Bi2O34h形貌变化较大,具有比RGO/Bi2O3-4h更大的比表面积和优良的光催化性能。
(4).TEM及HRTEM分析
对RGO/Bi2O3和g-C3N4/RGO/Bi2O3两组样品进行了TEM和HRTEM测试,其结果如附图5所示。从图5a、b和c中,我们可以看出在RGO/Bi2O3样品内,RGO呈薄片状,而Bi2O3呈粒径在5-10nm颗粒状,遍布在RGO薄片表面。相较于图5a中的片状RGO,图5d中表明复合片状的g-C3N4后出现了明显的层状重叠结构。图5e、f中,均出现了三种材料的晶格条纹,分别是晶面间距约为0.66nm的RGO、0.35nm的g-C3N4和0.32nm的Bi2O3,这说明三种材料成功复合形成了三元光催化材料,与前面表征结果相互验证。
(5).UV-vis分析
样品的UV-Vis图谱如附图6所示,g-C3N4的特征吸收峰位于300-340nm,与文献报道吻合。本发明合成的RGO/Bi2O3在250-280nm处存在一个特征峰,与文献报道RGO吸收峰位在250-280nm吻合。另外由于Bi2O3的制备复合,RGO/Bi2O3异质结材料整体吸收吸收拓宽到可见光区域,在380-460nm范围内均有吸收,与文献报道Bi2O3纳米颗粒吸收在390-450nm吻合,而RGO/Bi2O3异质结材料吸收边带>600nm,所以复合Bi2O3后RGO/Bi2O3材料吸光性能提升。RGO/Bi2O3异质结材料与g-C3N4复合后,由于g-C3N4质量比重大、吸光性能强,三元复合材料吸收特征与g-C3N4相似,其特征吸收峰位于300-340nm。但随着RGO/Bi2O3异质结材料的加入,可以发现三元复合材料g-C3N4/RGO/Bi2O3在>390nm范围的光吸收能力显著增强。
(6).PL分析
样品的荧光光谱淬灭表征出RGO/Bi2O3样品的荧光最弱,因为RGO以及Bi2O3在室温下均为非荧光物质。g-C3N4样品的荧光最强,因为g-C3N4电子-空穴复合几率高。同等质量的g-C3N4中引入RGO/Bi2O3异质结材料,其荧光强度降到g-C3N4材料的一半。说明g-C3N4/RGO/Bi2O3三元复合材料中电子的有效传递降低电子-空穴的复合,促进电子参与催化反应。这些结构和光学表征证明了g-C3N4/RGO/Bi2O3三元复合光催化材料的的成功制备,以及该异质结结构在光催化(如有机物降解,杀菌消毒)方面具有极大的潜在应用。

Claims (10)

1.一种光催化剂g-C3N4/RGO/Bi2O3,其特征在于:存在三种组分:RGO、Bi2O3、g-C3N4,其中,RGO质量分数为0.5%-5%,Bi2O3质量分数为15%-25%,g-C3N4质量分数为75%-85%。
2.一种如权利要求1所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:包括以下几个步骤:
(1)RGO/Bi2O3异质结材料的制备
(1.1)将GO通过超声波分散在乙二醇中,然后再往其中加入PVP和尿素,搅拌直至溶质全部溶解无沉淀,标记为溶液A;将Bi(NO3)3·5H2O超声分散在HNO3溶液中,标记为溶液B;
(1.2)将溶液B逐滴地加入到溶液A中得到混合溶液C,然后将混合溶液C转移到具有特氟龙内衬的不锈钢反应釜中进行溶剂热反应,反应结束后等待混合溶液C冷却至室温,然后通过高速离心收集所得的沉淀物,并用乙醇和去离子水反复洗涤数次,将所得样品放置在真空干燥箱中55-65℃干燥8-12h得到RGO/Bi2O3异质结材料;
(2)g-C3N4纳米薄片的制备
称取三聚氰胺,在马弗炉进行固相反应处理,随后将固相反应生成的块体g-C3N4研磨成粉末,放在马弗炉进行热氧化反应,接着取出样品,加入乙醇和去离子水混合溶液进行搅拌和超声,得到层状的g-C3N4溶液,离心后将所得产品放置在真空干燥箱中55-65℃干燥8-12h;
(3)g-C3N4/RGO/Bi2O3三元光催化复合材料的制备
将g-C3N4纳米薄片分散在甲醇中,然后加入RGO/Bi2O3异质结材料进行搅拌分散;随后在油浴锅中边搅拌边干燥以去除甲醇,甲醇溶液蒸干后进行退火处理。
3.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(1.1)中,溶液A和B中四种原料GO、Bi(NO3)3·5H2O、PVP和尿素的质量比为1-10:30-70:60:16。
4.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(1.1)中,HNO3溶液的浓度为0.1M,乙二醇和HNO3溶液的体积比为5:1。
5.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(1.2)中溶剂热反应的温度为100-150℃,溶剂热反应的时间为3-5h。
6.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(2)中固相反应条件为:在400-600℃下保温11-13h;热氧化反应的条件为:在530-550℃条件下保温2-3h。
7.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:步骤(2)中离心速度为5000-8000转/分钟,离心时间为8-12min;步骤(2)中搅拌速率500-800转/分钟,搅拌时间为45-85min;步骤(2)中超声条件为:常温超声35-55min,超声机工作频率40-60kHz,功率80-100W。
8.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(3)中g-C3N4纳米薄片和RGO/Bi2O3异质结材料的质量比为1-2.5:4.5-6。
9.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(3)中,当g-C3N4纳米薄片的质量为60mg时,甲醇用量为10-20ml,油浴温度为80-100℃。
10.根据权利要求2所述的光催化剂g-C3N4/RGO/Bi2O3的制备方法,其特征在于:所述步骤(3)中搅拌分散时搅拌速率500-800转/分钟,搅拌时间为45-85min。
CN202010634952.4A 2020-07-03 2020-07-03 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法 Pending CN111729682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010634952.4A CN111729682A (zh) 2020-07-03 2020-07-03 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010634952.4A CN111729682A (zh) 2020-07-03 2020-07-03 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法

Publications (1)

Publication Number Publication Date
CN111729682A true CN111729682A (zh) 2020-10-02

Family

ID=73401267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010634952.4A Pending CN111729682A (zh) 2020-07-03 2020-07-03 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法

Country Status (1)

Country Link
CN (1) CN111729682A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973757A (zh) * 2021-03-08 2021-06-18 合肥工业大学 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
CN112973756A (zh) * 2021-03-08 2021-06-18 合肥工业大学 一种棒状钒酸铋/rgo/石墨相氮化碳光催化材料及其制备方法
CN113333012A (zh) * 2021-06-02 2021-09-03 成都理工大学 Bi掺杂的多孔碳氮化合物及其制备方法
CN113921823A (zh) * 2021-10-09 2022-01-11 西安热工研究院有限公司 一种CuO/O-g-C3N4锂离子电池负极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012210A1 (zh) * 2015-07-21 2017-01-26 北京化工大学 金属氧化物-氮化碳复合材料及其制备方法和应用
CN106378125A (zh) * 2016-10-08 2017-02-08 合肥工业大学 一种具有微纳结构的棒状Bi2O3光催化材料及其制备方法
CN107233906A (zh) * 2017-06-08 2017-10-10 江苏大学 一种还原氧化石墨烯/钒酸铋/氮化碳复合材料的制备方法及用途
CN108525695A (zh) * 2018-04-04 2018-09-14 镇江市高等专科学校 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
CN110538672A (zh) * 2019-07-25 2019-12-06 广东工业大学 一种复合可见光响应光催化剂材料及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012210A1 (zh) * 2015-07-21 2017-01-26 北京化工大学 金属氧化物-氮化碳复合材料及其制备方法和应用
CN106378125A (zh) * 2016-10-08 2017-02-08 合肥工业大学 一种具有微纳结构的棒状Bi2O3光催化材料及其制备方法
CN107233906A (zh) * 2017-06-08 2017-10-10 江苏大学 一种还原氧化石墨烯/钒酸铋/氮化碳复合材料的制备方法及用途
CN108525695A (zh) * 2018-04-04 2018-09-14 镇江市高等专科学校 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
CN110538672A (zh) * 2019-07-25 2019-12-06 广东工业大学 一种复合可见光响应光催化剂材料及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JINHUA ZHANG ET.AL: "The Const ruction of the Het erostructu ral Bi2O3/g-C3N4 Composites with an Enhanced Photocatalytic Activity", 《NANO:BRIEF REPORTS AND REVIEWS》 *
XINJUAN LIU ET.AL: "Visible light photocatalytic degradation of dyes by bismuth oxide-reduced grapheme oxide composites prepared via microwave-assisted method", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
ZHUO DENG ET.AL: "Enhanced Electrochemical Performance of Bi2O3/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries", 《ACS APPLIED MATERIALS & INTERFACES》 *
张芬等: "RGO/C3N4复合材料的制备及可见光催化性能", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973757A (zh) * 2021-03-08 2021-06-18 合肥工业大学 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
CN112973756A (zh) * 2021-03-08 2021-06-18 合肥工业大学 一种棒状钒酸铋/rgo/石墨相氮化碳光催化材料及其制备方法
CN113333012A (zh) * 2021-06-02 2021-09-03 成都理工大学 Bi掺杂的多孔碳氮化合物及其制备方法
CN113921823A (zh) * 2021-10-09 2022-01-11 西安热工研究院有限公司 一种CuO/O-g-C3N4锂离子电池负极材料及其制备方法

Similar Documents

Publication Publication Date Title
Jing et al. Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation
CN111729682A (zh) 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
Ghoreishian et al. Construction of 2D/2D/2D rGO/p-C3N4/Cu3Mo2O9 heterostructure as an efficient catalytic platform for cascade photo-degradation and photoelectrochemical activity
CN111450819A (zh) 生物炭改性钒酸铋催化剂、制备方法及其应用
Smrithi et al. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation
CN110560092A (zh) 一种MoS2/BiVO4异质结复合光催化剂的制备方法及其应用
CN110523420A (zh) 一种Bi4O5Br2/薄层Ti3C2复合型光催化剂的制备方法及其应用
CN109847780A (zh) 一种AgBr/BiOI/g-C3N4三元复合催化材料的制备方法及其应用
Han et al. Enhanced photocatalytic activity over g-C3N4/(BiO) 2 (OH) xCl2− x Z-scheme heterojunction
CN115555042B (zh) 碳纳米管催化剂的制备方法、碳纳米管催化剂及其应用
CN111437856A (zh) 一种卤氧化铋/g-C3N4异质结光催化剂的制备
CN107790129A (zh) 氧化亚铜/石墨烯可见光光催化剂的制备方法及其产品和应用
Wang et al. Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO4 and PANI
Fu et al. Study on preparation, photocatalytic performance and degradation mechanism of polymeric carbon nitride/Pt/nano-spherical MoS2 composite
Huo et al. Fabrication ternary dual electron transfer Ag2MoO4/SrWO4/g-C3N4 heterojunction photocatalyst for the highly efficient visible-light-driven degradation of tetracycline
CN112191262B (zh) 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法
Zhang et al. Simultaneous removal of Cr (vi) and TC over BiO 1− X Br/CeVO 4 S-scheme heterostructures: oxygen vacancy boosted charge separation and analysis of intermediates
CN116273029A (zh) 一种BiVO4/CoNiFe-LDH光催化剂及其制备和应用
CN115779889A (zh) 一种木质素炭/钼酸铋复合光催化剂及其制备方法和应用
CN112973757B (zh) 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
Liang et al. High performance photocatalytic degradation by graphene/titanium nanotubes under near visible light with low energy irradiation
CN112808290B (zh) 烯醇-酮式共价有机骨架/石墨相氮化碳复合光催化剂及其制备方法和应用
Wei et al. Synthesis of novel MoS 2/gC 3 N 4 nanocomposites for enhanced photocatalytic activity
CN114669289A (zh) 一种碳量子点/ZnO复合光催化剂的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201002