CN112191262B - 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法 - Google Patents

棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法 Download PDF

Info

Publication number
CN112191262B
CN112191262B CN202011117290.XA CN202011117290A CN112191262B CN 112191262 B CN112191262 B CN 112191262B CN 202011117290 A CN202011117290 A CN 202011117290A CN 112191262 B CN112191262 B CN 112191262B
Authority
CN
China
Prior art keywords
solution
silver
cotton fiber
tio
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011117290.XA
Other languages
English (en)
Other versions
CN112191262A (zh
Inventor
张辉
张馨月
李雯君
宋悦悦
本德萍
杨丽梦
盛翠红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011117290.XA priority Critical patent/CN112191262B/zh
Publication of CN112191262A publication Critical patent/CN112191262A/zh
Application granted granted Critical
Publication of CN112191262B publication Critical patent/CN112191262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开的棉纤维负载银掺杂石墨相氮化碳‑二氧化钛的制备方法,采用低温振动砸击方法制备出大尺寸g‑C3N4纳米片,吸附银离子,然后用水热法对棉纤维进行溶胀,再以溶胀后的棉纤维作为载体,使用TiO2前驱体钛酸异丙酯无水乙醇溶液,并添加掺杂银的g‑C3N4纳米片,最后基于水热合成技术制备棉纤维负载银掺杂g‑C3N4/TiO2光催化复合材料,以提高光催化性能。

Description

棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法
技术领域
本发明属于纺织工程技术领域,具体涉及棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法。
背景技术
石墨相氮化碳(g-C3N4)是一种不含金属的丰富层状材料,成本低廉且无毒,耐高温,化学稳定性良好,具有独特的结构和适当的电子能带结构,带隙适中,对可见光响应,在光催化领域具有极大的发展潜力。然而,g-C3N4的可见光利用率较低,比表面积较小,光生电子-空穴复合速率较快,这在一定程度上限制了g-C3N4在光催化领域中的推广和应用。一般认为将少量金属离子掺杂到g-C3N4结构单元中,可实现光生电子和空穴的有效分离,延长电子与空穴的复合时间,从而提高g-C3N4光催化性能。
TiO2是目前使用最为广泛的光催化剂,廉价无毒,具有良好的光稳定性和化学稳定性,对紫外线吸收较高,由于其禁带较宽,仅能吸收紫外线,对太阳光的利用率低,而且TiO2表面具有较高的电子–空穴复合几率。因此,极大地限制了TiO2在光催化领域的实际应用。构建g-C3N4与TiO2异质结光催化剂能够显著提高光催化活性,比如采用水热、煅烧和微波加热等方法可在g-C3N4和TiO2之间建立Z型或II型异质结,提高光生电荷转移速率,从而促进催化剂表面的氧化还原反应。研究表明,在g-C3N4/TiO2异质结体系中,光生电子从g-C3N4的导带通过Z型载流子运输转移到TiO2的价带,随后氧化和还原过程分别在TiO2的价带和g-C3N4的导带上同时进行,由于这两个过程分别在材料的不同位置进行,因此大大提高了光催化效率。
然而,粉体状的光催化剂很容易产生团聚,也很难从溶液中加以分离,为此人们将光催化剂固着到各种载体上。纺织纤维材料具有非常大的长度与直径之比,巨大的比表面积,以及良好的机械性能,能够解决粉体型光催化剂的不足,同时还能够富集目标降解物,捕获中间产物,增强对光能量的吸收,促进光催化反应,实现催化剂与载体间良好的协同效应,而且利于回收和重复使用,不会造成二次污染。由于g-C3N4材料大多情况下是采用煅烧方式来制取,而纺织纤维不耐高温,因此不能在制备g-C3N4的过程中直接将g-C3N4负载到纺织纤维上,而且颗粒状g-C3N4较纳米片g-C3N4的光催化性能会明显变差。采用涂层、自组装等方法虽然可以将g-C3N4固着到纺织纤维表面,但结合牢度差、不耐洗涤。目前,有关g-C3N4/TiO2异质结负载到纺织纤维上制备高光催化活性棉纤维复合材料的相关技术还未见报道。
发明内容
本发明的目的是提供一种棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法,提高g-C3N4/TiO2异质结与棉纤维的结合牢度,增强对紫外线和可见光的吸收能力。
本发明所采用的技术方案是,棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法,具体操作步骤如下:
步骤1,使用碱溶液清洗棉纤维;
步骤2,利用氢氧化钾和二甲基亚砜(DMSO)对步骤1清洗后棉纤维进行溶胀处理;
步骤3,使用三聚氰胺,尿素或双氰胺制备g-C3N4颗粒;
步骤4,利用步骤3制备的g-C3N4颗粒经低温振动砸击制备出大尺寸g-C3N4纳米片,使用聚吡咯烷酮的异丙醇溶液将大尺寸g-C3N4纳米片分散成单层g-C3N4纳米片;
步骤5,将单层g-C3N4纳米片加入配置好的AgNO3溶液中混合、离心,并与TiO2前驱体溶液钛酸异丙酯无水乙醇溶液进行冷冻研磨30min,得到银掺杂g-C3N4/TiO2溶液;
步骤6,将步骤2所得的溶胀棉纤维通过一步水热法负载步骤5所得的银掺杂g-C3N4/TiO2,制备得到棉纤维负载银掺杂g-C3N4/TiO2的光催化复合材料。
本发明的特点还在于,
步骤1中棉纤维碱处理的具体过程为:
将棉纤维剪成长度约2.0~8.0mm,浸入碱性溶液中,100℃水浴处理30~50min,然后用去离子水浸泡3次,每次30min,80~110℃真空干燥4~8h;
步骤1中,棉纤维与碱性混合液的浴比为1:50~80。
步骤1中,碱性溶液是摩尔浓度0.5M的NaOH溶液。
步骤2中棉纤维溶胀处理的具体过程为:
将步骤1清洗干净的棉纤维于90℃浸泡在二甲基亚砜溶液中,然后用去离子水洗涤2~3次,再将棉纤维浸泡在质量分数为50%的KOH溶液中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封;
将不锈钢反应釜加热升温至110~130℃,并以8~10r/min速率恒温处理3~5h;待反应结束反应釜自然冷却后,取出纤维用去离子水浸泡3次,每次30~50min,最后去离子水浸泡1~3次,冷冻干燥;
步骤2中,棉纤维与碱性溶液的浴比为1:50~80;KOH溶液的摩尔浓度为12M。
步骤3中,纳米g-C3N4颗粒的具体制备过程为:
将三聚氰胺、尿素或双氰胺放入带盖的氧化铝坩埚中,然后转移到箱式炉中,在氮氛环境下以1~3℃/min的加热速率升温至540℃~560℃并恒温处理2~4h,待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为纳米g-C3N4颗粒。
步骤4中,掺杂银的g-C3N4纳米片的具体制备过程为:
步骤4.1:将g-C3N4颗粒放入冷冻研磨机中,再将0.025~0.05g的季铵盐加入其中,预冷冻20~40min后进行低温振动砸击,在-65℃下,每振动砸击1min,间隔5min,共砸击30min;砸击结束即得到横向大尺寸g-C3N4纳米片;将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡,剥离出单层g-C3N4纳米片;
步骤4.2:配制浓度为1~5mmol/L的AgNO3溶液,将单层g-C3N4纳米片加入到配制的AgNO3溶液中,超声振荡10~30min,再浸泡10~30min,对产物进行多次离心清洗,50~80℃真空干燥,得到掺杂银的g-C3N4纳米片;
AgNO3溶液与单层g-C3N4纳米片的比例为10~50mL:0.025~0.05g;
步骤5中,银掺杂g-C3N4/TiO2溶液的具体制备过程为:
将钛酸异丙酯、分散剂聚乙二醇400和无水乙醇置于研磨罐中混合得到TiO2前驱体钛酸异丙酯无水乙醇溶液,再将掺杂银的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯无水乙醇溶液冷冻研磨30min,得到银掺杂g-C3N4/TiO2溶液;
钛酸异丙酯、分散剂聚乙二醇400、无水乙醇和单层g-C3N4纳米片的混合比例为0.3~0.6mL:0.5~2.0mL:15~18mL:0.025~0.05g。
步骤6具体如下
将步骤2溶胀处理后的棉纤维与银掺杂g-C3N4/TiO2溶液一起加入到聚四氟乙烯内胆中,用去离子水填充至反应釜体积的70~90%,加盖密封后装入均相反应器,以8~10r/min转速110~130℃恒温反应3~5h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤8~10min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2的光催化复合材料。
银掺杂g-C3N4/TiO2溶液与溶胀处理后的棉纤维质量比为1~2:20。
本发明的有益效果是,
(1)本发明采用水热法,以溶胀后的棉纤维为载体,以钛酸异丙酯为前驱体,添加掺杂银的g-C3N4纳米片,改性后的棉纤维溶胀状态良好,其表面均匀的负载有纳米颗粒和纳米片,而且纳米TiO2能够渗入到棉纤维内部,棉纤维表面负载的TiO2为锐钛矿TiO2,g-C3N4纳米片均匀地嵌入到TiO2颗粒层中,光催化性能增强,制备工艺简单,溶液最终呈中性,排放物不会对环境造成二次污染。
(2)本发明通过低温振动砸击的方法将g-C3N4颗粒制备成大尺寸g-C3N4纳米片,使其拥有较大的比表面积,较银离子掺杂TiO2颗粒相比,大尺寸的g-C3N4纳米片为吸附银离子提供了更多活性位点。经银修饰的g-C3N4纳米片能更好的实现光生电子和空穴的有效分离,提高光催化效率。
(3)本发明棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法是在棉纤维上通过一步水热法负载银掺杂g-C3N4/TiO2,将掺杂银的g-C3N4纳米片和钛酸异丙酯无水乙醇溶液进行冷冻研磨,让银离子充分吸附到g-C3N4纳米片上,发挥更好的协同作用。
附图说明
图1(a)和图1(b)为本发明实施例3所得的银掺杂g-C3N4/TiO2/棉纤维光催化复合材料的扫描电镜照片;
图2为本发明实施例3所得的银掺杂g-C3N4/TiO2/棉纤维光催化复合材料的X射线衍射图;
图3(a)和图3(b)为本发明实施例3所得的银掺杂g-C3N4/TiO2/棉纤维光催化复合材料的漫反射图谱;
图4为本发明实施例3所得的银掺杂g-C3N4/TiO2/棉纤维光催化复合材料的拉曼图谱;
图5为本发明实施对比例1所得的g-C3N4/TiO2/棉纤维光催化复合材料的XPS总谱图;
图6为本发明实施例3所得的银掺杂g-C3N4/TiO2/棉纤维光催化复合材料的光催化降解曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
本发明采用低温振动砸击方法制备出g-C3N4纳米片,吸附银离子,然后用水热法对棉纤维进行溶胀,再以溶胀后的棉纤维作为载体,使用TiO2前驱体钛酸异丙酯无水乙醇溶液,并添加掺杂银的g-C3N4纳米片,最后基于水热合成技术制备棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料,以提高光催化性能。
实施例1
按照浴比1:50,称取6g棉纤维,将其剪成长度约5mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理30min,然后用去离子水浸泡3次,每次30min,80℃真空干燥5h。配制40mL,质量分数为50%的DMSO的溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗涤2次,再将棉纤维浸泡在40mL的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至120℃,并以8r/min速率恒温处理3h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。将10g尿素放入带盖的氧化铝(α-Al2O3又称为刚玉)坩埚中,然后转移到箱式炉中,在氮氛环境下以1℃/min的加热速率升温至540℃并恒温处理2h。待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为g-C3N4。称取0.05g的g-C3N4颗粒放入冷冻研磨机中,再将0.025g季铵盐加入其中,预冷冻20min后进行低温振动砸击,在-65℃下,每砸击1min,间隔5min,共砸击30min。砸击结束即得到大尺寸g-C3N4纳米片。将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡10min,剥离出单层g-C3N4纳米片。配制体积为20mL(用氮气去除水中氧气)、浓度为3mmol/L的AgNO3溶液(避光)。称取质量为0.025g的g-C3N4纳米片,加入到配制的AgNO3溶液中,超声振荡20min,再浸泡15min(避光),60℃真空干燥(避光),得到掺杂银的g-C3N4纳米片。量取0.3mL钛酸异丙酯、0.5mL分散剂聚乙二醇400和15mL无水乙醇溶液于冷冻研磨罐中,接着将0.025g掺杂银离子的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯溶液中冷冻研磨30min,得到混合液a。将0.5g溶胀棉纤维与混合液a一起加入到50mL的聚四氟乙烯内胆中,用去离子水填充至反应釜体积的80%,加盖密封后装入均相反应器,以8r/min转速110℃恒温反应4h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤15min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料。
实施例2
按照浴比1:60,称取5g棉纤维,将其剪成长度约6mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理50min,然后用去离子水浸泡3次,每次30min,100℃真空干燥6h。配制40mL,质量分数为50%的DMSO的溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗涤2次,再将棉纤维浸泡在40mL的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至140℃,并以10r/min速率恒温处理5h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。将10g三聚氰胺放入带盖的氧化铝(α-Al2O3又称为刚玉)坩埚中,然后转移到箱式炉中,在氮氛环境下以3℃/min的加热速率升温至560℃并恒温处理4h。待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为g-C3N4颗粒。称取0.05g的g-C3N4颗粒放入冷冻研磨机中,再将0.03g季铵盐加入其中,预冷冻40min后进行低温振动砸击,在-65℃下,每砸击1min,间隔5min,共砸击30min。击砸结束即得到大尺寸g-C3N4纳米片。将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡20min,剥离出单层g-C3N4纳米片。配制体积为30mL(用氮气去除水中氧气)、浓度为5mmol/L的AgNO3溶液(避光)。称取质量为0.05g的g-C3N4纳米片,加入到配制的AgNO3溶液中,超声振荡30min,再浸泡20min(避光),80℃真空干燥(避光),即得到掺杂银的g-C3N4纳米片。量取0.6mL钛酸异丙酯、2.0mL分散剂聚乙二醇400和18mL无水乙醇溶液于冷冻研磨罐中,接着将0.05g掺杂银离子的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯溶液中冷冻研磨30min,得到混合液a。将0.5g溶胀棉纤维与混合液a一起加入到50mL的聚四氟乙烯内胆中,用去离子水填充至反应釜体积的80%,加盖密封后装入均相反应器,以10r/min转速130℃恒温反应5h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤20min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料。
实施例3
按照浴比1:80,称取3g棉纤维,将其剪成长度约4mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理30min,然后用去离子水浸泡3次,每次30min,110℃真空干燥。配制40mL,质量分数为50%的二甲基亚砜溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗涤3次,再将棉纤维浸泡在40mL的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至120℃,并以10r/min速率恒温处理4h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。将10g双氰胺放入带盖的氧化铝(α-Al2O3又称为刚玉)坩埚中,然后转移到箱式炉中,在氮氛环境下以2℃/min的加热速率升温至550℃并恒温处理3h。待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为g-C3N4。称取0.05g的g-C3N4颗粒放入冷冻研磨机中,再将0.04的季铵盐加入其中,预冷冻30min后进行低温振动砸击,在-65℃下,每振动砸击1min,间隔5min,共砸击30min。砸击结束即得到大尺寸g-C3N4纳米片。将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡30min,剥离出单层g-C3N4纳米片。配制体积为40mL(用氮气去除水中氧气)、浓度为4mmol/L的AgNO3溶液(避光)。称取质量为0.05g的g-C3N4纳米片,加入到配制的AgNO3溶液中,超声振荡15min,再浸泡30min(避光),70℃真空干燥(避光),即得到掺杂银的g-C3N4纳米片。量取0.6mL钛酸异丙酯、2.0mL分散剂聚乙二醇400和18mL无水乙醇溶液于冷冻研磨罐中,接着将0.05g掺杂银离子的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯溶液中冷冻研磨30min,得到混合液a。将0.5g溶胀棉纤维与混合液a一起加入到50mL的聚四氟乙烯内胆中,用去离子水填充至反应釜体积的80%,加盖密封后装入均相反应器,以10r/min转速120℃,恒温反应4h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤10min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料。
实施例4
按照浴比1:50,称取5g棉纤维,将其剪成长度约5mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理30min,然后用去离子水浸泡3次,每次30min,110℃真空干燥。配制40mL,质量分数为50%的DMSO的溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗涤2次,再将棉纤维浸泡在40mL的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至130℃,并以10r/min速率恒温处理4h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。将8g三聚氰胺,2g尿素放入带盖的氧化铝(α-Al2O3又称为刚玉)坩埚中,然后转移到箱式炉中,在氮氛环境下以2℃/min的加热速率升温至550℃并恒温处理3h。待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为g-C3N4。称取0.05g的g-C3N4颗粒放入冷冻研磨机中,再将0.05g季铵盐加入其中,预冷冻30min后进行低温振动砸击,在-65℃下,每砸击1min,间隔5min,共砸击30min。砸击结束即得到大尺寸g-C3N4纳米片。将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡30min,剥离出单层g-C3N4纳米片。配制体积为30mL(用氮气去除水中氧气)、浓度为2mmol/L的AgNO3溶液(避光)。称取质量为0.05g的g-C3N4纳米片,加入到配制的AgNO3溶液中,超声振荡30min,再浸泡20min(避光),80℃真空干燥(避光),即得到掺杂银的g-C3N4纳米片。量取0.4mL钛酸异丙酯、1.0mL分散剂聚乙二醇400和18mL无水乙醇溶液于冷冻研磨罐中,接着将0.03g掺杂银离子的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯溶液中冷冻研磨30min,得到混合液a。将0.5g溶胀棉纤维与混合液a一起加入到50mL的聚四氟乙烯内胆中,用去离子水填充至反应釜体积的80%,加盖密封后装入均相反应器,以10r/min转速110℃恒温反应3h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤20min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料。
对比例1
称取3g棉纤维,将其剪成长度约5mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理30min,然后用去离子水浸泡3次,每次30min,110℃真空干燥。配制40mL的DMSO的溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗2次,再将棉纤维浸泡在40mL,质量分数为50%的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至130℃,并以10r/min速率恒温处理3h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。将10g三聚氰胺放入带盖的氧化铝(α-Al2O3又称为刚玉)坩埚中,然后转移到箱式炉中,在氮氛环境下以2℃/min的加热速率升温至550℃并恒温处理3h。待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为g-C3N4。称取0.05g的g-C3N4颗粒放入冷冻研磨机中,再将0.03g的季铵盐加入其中,预冷冻30min,再研磨20min,在-65℃下,每砸击1min,间隔5min,共砸击30min。研磨结束即得到大尺寸g-C3N4纳米片。将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡30min,剥离出单层g-C3N4纳米片。量取0.6mL的钛酸异丙酯,分别溶解在18mL的无水乙醇溶液中,然后加入2ml分散剂聚乙二醇400于冷冻研磨罐中,接着将0.05g的g-C3N4纳米片,加入到TiO2前驱体钛酸异丙酯溶液中冷冻研磨30min,得到混合液。将0.5g溶胀棉纤维与混合液一起加入到50mL的聚四氟乙烯内胆中,用去离子水填充至反应釜体积的80%,加盖密封后装入均相反应器,以10r/min转速130℃恒温反应3h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤15min,重复3次,80℃烘干,即得棉纤维负载g-C3N4/TiO2光催化复合材料。
对比例2
称取3g棉纤维,将其剪成长度约5mm,浸入250mL、摩尔浓度0.5M的NaOH溶液中,100℃水浴处理30min,然后用去离子水浸泡3次,每次30min,110℃真空干燥。配制40mL,质量分数为50%的DMSO溶液,将称取的0.5g预处理的棉纤维于90℃浸泡在DMSO溶液中,然后用去离子水洗涤3次,再将棉纤维浸泡在40mL的KOH溶液(12M)中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封。将不锈钢反应釜加热升温至120℃,并以10r/min速率恒温处理3h。待反应结束反应釜自然冷却后取出纤维,分别用去离子水和无水乙醇反复清洗直至溶液呈中性,最后将棉纤维冷冻干燥。量取0.6mL的钛酸异丙酯,1.0mL分散剂聚乙二醇400和18mL无水乙醇溶液于冷冻研磨罐中,冷冻研磨30min,得到混合液。将上述混合液转移至50mL聚四氟乙烯内胆中,加盖密封后装入均相反应器,以10r/min转速120℃恒温反应4h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤15min,重复3次,80℃烘干,即得到棉纤维负载TiO2光催化复合材料。
本发明选择在可见光下光催化降解甲基橙染料来测试所制备的复合材料的光催化性能,具体过程为:将0.015g的银掺杂g-C3N4/TiO2改性棉纤维光催化复合材料加入到体积50mL、质量百分比浓度5mg/L的甲基橙溶液石英管中,超声振荡(28kHz、100W)15min后,将石英管放入光化学反应仪中,黑暗条件下磁力搅拌1h达到吸附平衡,取5mL溶液11000rpm速率离心15min,提取上清液用UV-1601型分光光度计测定甲基橙溶液最大吸收波长464nm处的吸光度。每隔30min取5mL溶液以11000rpm速率离心15min测定吸光度。根据甲基橙染料溶液标准工作曲线(At=-0.01081+0.07199Ct,R2=0.99)计算染料的浓度。并按照公式(1)计算甲基橙染料的降解率D。
Figure BDA0002730751630000141
式中:C0是吸附饱和后甲基橙溶液的起始浓度,Ct是照射一定时间后甲基橙B溶液的浓度,t为辐照时间。
测试结果为:本发明实施例3所得银掺杂g-C3N4/TiO2改性棉纤维光催化复合材料在可见光辐照150min后降解率为83.2%,本发明实施对比例2所得TiO2/棉纤维光催化复合材料在可见光辐照150min后降解率为55.6%。
图1(a)和(b)是实施本发明例3所得的复合材料的扫描电镜照片。可以看出,棉纤维表面不仅均匀负载了片状掺Ag的氮化碳,而且负载了颗粒状的TiO2。图2是实施本发明例3所得的复合材料的X射线衍射图。可以看出,对于纯TiO2样品,在25.3°,38.1°,48.2°,54.2°,62.5°,69.6°和75.1°处的衍射峰分别对应于锐钛矿(101),(004),(200),(211),(204),(220)和(215)晶面。对于纯g-C3N4样品,在13.1°和27.9°处有两个明显的衍射峰,分别对应于g-C3N4的(100)和(002)晶面。在g-C3N4/TiO2和银掺杂g-C3N4/TiO2/棉纤维复合材料的样品中均能观察到TiO2和g-C3N4的特征峰,表明TiO2和g-C3N4有效地复合。对于银掺杂g-C3N4/TiO2/棉纤维的样品,在38.1°,44.3°,64.4°,77.5°和81.5°处的五个衍射峰分别对应于Ag纳米颗粒的(111),(200),(220),(311)和(222)晶面。图3(a)和(b)是实施本发明例3所得的复合材料的紫外线–可见光漫反射光谱图。可以看出,TiO2改性棉纤维和银掺杂g-C3N4/TiO2改性棉纤维对紫外线有较强吸收,主要是因为含有TiO2成分。而银掺杂g-C3N4/TiO2改性棉纤维对紫外线和可见光吸收能力均有所增强。以(αhν)2/n相对于能量hv作图,曲线的切线延长线与纵坐标0值的交点为禁带宽度Eg值。根据Kubelka-Munk函数可以得到TiO2改性棉纤维、g-C3N4/TiO2改性棉纤维和银掺杂g-C3N4/TiO2改性棉纤维的禁带宽度分别为3.41eV、3.43eV和2.98eV。可以看出,银掺杂g-C3N4/TiO2改性棉纤维禁带宽度明显减少,对可见光的利用率增强,光生电子更加容易从价带激发到导带,光催化能力增强。图4是实施例3所得银掺杂g-C3N4/TiO2改性棉纤维复合材料的拉曼图。可以看出,复合材料在1352.66cm-1和1587.77cm-1处都出现了特征峰。图5是实施对比例1所得g-C3N4/TiO2改性棉纤维复合材料的XPS谱图,棉纤维含有Cls峰和Ols峰,其结合能分别为286.74eV和533.1eV。TiO2改性棉纤维的Cls峰和Ols峰分别变为284.63eV和530.48eV,除了Ols峰和Cls峰以外,还出现了Ti2p峰,棉纤维表面负载TiO2的结合能与四方相Ti2p 4+的结合能吻合,其Ti主要是以Ti4+的形式存在。g-C3N4/TiO2改性棉纤维的Cls峰和Ols峰分别为286.65eV和530.03eV,Ti2p结合能变为458.79eV,还出现了N1s的峰,其结合能为399.06eV,说明成功的将TiO2/g-C3N4负载在棉纤维表面。

Claims (3)

1.棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法,其特征在于,具体操作步骤如下:
步骤1,使用碱溶液清洗棉纤维;
步骤2,利用氢氧化钾和二甲基亚砜对步骤1清洗后棉纤维进行溶胀处理;
步骤2中棉纤维溶胀处理的具体过程为:
将步骤1清洗干净的棉纤维于90℃浸泡在二甲基亚砜溶液中,然后用去离子水洗涤2~3次,再将棉纤维浸泡在质量分数为50%的KOH溶液中,然后将纤维连同溶液一起转移到50ml的聚四氟乙烯内胆中,并置于不锈钢反应釜中加盖密封;
将不锈钢反应釜加热升温至110~130℃,并以8~10r/min速率恒温处理3~5h;待反应结束反应釜自然冷却后,取出纤维用去离子水浸泡3次,每次30~50 min,最后去离子水浸泡1~3次,冷冻干燥;
步骤2中,棉纤维与碱性溶液的浴比为1:50~80;所述KOH溶液的摩尔浓度为12M;
步骤3,使用三聚氰胺,尿素或双氰胺制备g-C3N4颗粒;
步骤3中,纳米g-C3N4颗粒的具体制备过程为:
将三聚氰胺、尿素或双氰胺放入带盖的氧化铝坩埚中,然后转移到箱式炉中,在氮氛环境下以1~3℃/min的加热速率升温至540~560℃并恒温处理2~4 h,待反应结束坩埚冷却至室温后收集淡黄色产物并研磨成粉末即为纳米g-C3N4颗粒;
步骤4,利用步骤3制备的g-C3N4颗粒经低温振动砸击制备出大尺寸g-C3N4纳米片,使用聚吡咯烷酮的异丙醇溶液将所述大尺寸g-C3N4纳米片分散成单层g-C3N4纳米片;
步骤4中,掺杂银的g-C3N4纳米片的具体制备过程为:
步骤4.1:将所述g-C3N4颗粒放入冷冻研磨机中,再将0.025g~0.5 g的季铵盐加入其中,预冷冻20~40 min后进行低温振动击砸,在-65℃下,每振动砸击1 min,间隔5 min,共砸击30 min;砸击结束即得到大尺寸g-C3N4纳米片;将得到的大尺寸g-C3N4纳米片在聚吡咯烷酮的异丙醇溶液中超声振荡,剥离出单层g-C3N4纳米片;
步骤4.2:配制浓度为1~5 mmol/L的AgNO3溶液,将所述单层g-C3N4纳米片加入到配制的AgNO3溶液中,超声振荡10~30 min,再浸泡10~30 min,对产物进行多次离心清洗,50~80℃真空干燥,得到掺杂银的g-C3N4纳米片;
所述AgNO3溶液与单层g-C3N4纳米片的比例为10~50 mL:0.025~0.05 g;
步骤5,将所述单层g-C3N4纳米片加入配置好的AgNO3溶液中混合、离心,并与TiO2前驱体溶液钛酸异丙酯无水乙醇溶液进行冷冻研磨,得到银掺杂g-C3N4/TiO2溶液;
步骤5中,银掺杂g-C3N4/TiO2溶液的具体制备过程为:
将钛酸异丙酯、分散剂聚乙二醇400和无水乙醇置于研磨罐中混合得到TiO2前驱体钛酸异丙酯无水乙醇溶液,再将掺杂银的g-C3N4纳米片加入到TiO2前驱体钛酸异丙酯无水乙醇溶液进行冷冻研磨,得到银掺杂g-C3N4/TiO2溶液;
所述钛酸异丙酯、分散剂聚乙二醇400、无水乙醇和单层g-C3N4纳米片的混合比例为0.3~0.6 mL:0.5~2.0 mL:15~18 mL:0.025~0.05 g;
步骤6,将步骤2所得的溶胀棉纤维通过一步水热法负载步骤5所得的银掺杂g-C3N4/TiO2,制备得到棉纤维负载银掺杂g-C3N4/TiO2光催化复合材料。
2.根据权利要求1所述的棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法,其特征在于,
步骤1中棉纤维碱处理的具体过程为:
将棉纤维剪成长度约2.0~8.0 mm,浸入碱性溶液中,100℃水浴处理30~50 min,然后用去离子水浸泡3次,每次30 min,80~110℃真空干燥4~8 h;
步骤1中,棉纤维与碱性混合液的浴比为1:50~80;
步骤1中,碱性溶液是摩尔浓度0.5 M的NaOH溶液。
3.根据权利要求1所述的棉纤维负载银掺杂石墨相氮化碳-二氧化钛的制备方法,其特征在于,
步骤6具体如下:
将步骤2溶胀处理后的棉纤维与所述银掺杂g-C3N4/TiO2溶液一起加入到聚四氟乙烯内胆中,用去离子水填充至反应釜体积的70~90%,加盖密封后装入均相反应器,以8~10 r/min转速110~130℃恒温反应3~5 h,反应釜自然冷却至室温后取出棉纤维,依次用40℃无水乙醇和80℃去离子水超声洗涤8~10 min,重复3次,冷冻干燥,即得棉纤维负载银掺杂g-C3N4/TiO2的光催化复合材料。
CN202011117290.XA 2020-10-19 2020-10-19 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法 Active CN112191262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011117290.XA CN112191262B (zh) 2020-10-19 2020-10-19 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011117290.XA CN112191262B (zh) 2020-10-19 2020-10-19 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN112191262A CN112191262A (zh) 2021-01-08
CN112191262B true CN112191262B (zh) 2023-03-24

Family

ID=74010353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011117290.XA Active CN112191262B (zh) 2020-10-19 2020-10-19 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN112191262B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931864B (zh) * 2021-05-08 2023-11-24 淮阴师范学院 一种二维材料复合分离膜、制备方法和用途
CN113773560A (zh) * 2021-09-08 2021-12-10 广州绿徽新材料研究院有限公司 一种可完全自然降解的高强度餐具粒子材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912620A (zh) * 2012-10-18 2013-02-06 西安工程大学 一种高光催化活性纳米二氧化钛涤纶纤维改性的方法
CN104383952A (zh) * 2014-11-18 2015-03-04 福建农林大学 一种Ag/g-C3N4/TiO2/AC催化剂及其制备方法和应用
CN104525233A (zh) * 2014-12-04 2015-04-22 天津大学 g-氮化碳-二氧化钛-银纳米片复合物及其仿生合成方法和应用
CN105506957A (zh) * 2016-01-27 2016-04-20 西安工程大学 一种二氧化钛改性羊毛纤维的制备方法
CN105728052A (zh) * 2016-01-27 2016-07-06 西安工程大学 一种利用废旧羊毛制备高光催化活性纳米二氧化钛的方法
CN108212190A (zh) * 2017-12-29 2018-06-29 长沙理工大学 一种Ag基三维海胆状E-g-C3N4/TiO2复合材料及其制备方法
CN110013870A (zh) * 2019-04-13 2019-07-16 安徽工程大学 一种银&锶/二氧化钛-石墨烯氮化碳复合光催化材料的制备及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319832B (zh) * 2018-08-30 2021-04-30 中国石油天然气股份有限公司 一种线状多孔二氧化钛材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912620A (zh) * 2012-10-18 2013-02-06 西安工程大学 一种高光催化活性纳米二氧化钛涤纶纤维改性的方法
CN104383952A (zh) * 2014-11-18 2015-03-04 福建农林大学 一种Ag/g-C3N4/TiO2/AC催化剂及其制备方法和应用
CN104525233A (zh) * 2014-12-04 2015-04-22 天津大学 g-氮化碳-二氧化钛-银纳米片复合物及其仿生合成方法和应用
CN105506957A (zh) * 2016-01-27 2016-04-20 西安工程大学 一种二氧化钛改性羊毛纤维的制备方法
CN105728052A (zh) * 2016-01-27 2016-07-06 西安工程大学 一种利用废旧羊毛制备高光催化活性纳米二氧化钛的方法
CN108212190A (zh) * 2017-12-29 2018-06-29 长沙理工大学 一种Ag基三维海胆状E-g-C3N4/TiO2复合材料及其制备方法
CN110013870A (zh) * 2019-04-13 2019-07-16 安徽工程大学 一种银&锶/二氧化钛-石墨烯氮化碳复合光催化材料的制备及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Convenient and Recyclable TiO2/g‑C3N4 Photocatalytic Coating: Layer-by-Layer Self-assembly Construction on Cotton Fabrics Leading to Improved Catalytic Activity under Visible Light;Yanyan Wang et al.;《Industrial & Engineering Chemistry Research》;20190121;第58卷;摘要、第2.2-2.3节 *

Also Published As

Publication number Publication date
CN112191262A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Tian et al. Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation
Yao et al. Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method
Jiang et al. Synthesis of flowerlike g‐C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation
Xu et al. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN107890878B (zh) 一种碳球-氮化碳纳米材料及其制备和应用
CN112191262B (zh) 棉纤维负载银掺杂氮化碳-二氧化钛复合材料的制备方法
CN107243340B (zh) 一种二氧化铈纳米棒掺杂二氧化钛纳米颗粒光催化剂的制备方法
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN111085236B (zh) 碳布负载硼掺杂石墨相氮化碳柔性可回收光催化膜的制备方法
CN111729682A (zh) 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
CN107930670B (zh) 一种自支撑型均相化的多相催化材料及其制备方法和应用
Liu et al. Synthesis of direct Z-scheme MnWO4/g-C3N4 photocatalyst with enhanced visible light photocatalytic activity
CN111330615A (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
Wang et al. Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO4 and PANI
CN113750985A (zh) 一种用于降解亚甲基蓝的催化剂及其制备方法和应用
CN114950522A (zh) 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用
Plubphon et al. Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance
Navgire et al. Effect of poly (ethylene glycol) surfactant on carbon-doped MoO 3 nanocomposite materials and its photocatalytic activity
CN115779889B (zh) 一种木质素炭/钼酸铋复合光催化剂及其制备方法和应用
CN105435763A (zh) 一种复合光催化剂SiO2/CNI及其制备方法和应用
Zhang et al. Two‐Step Self‐Assembly CdS/g‐C3N4 Heterostructure Composites with Higher Photocatalytic Performance Under Visible Light Irradiation
CN114904560A (zh) 一种可光催化降解染料的铋负载碳缺陷氮化碳的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant