CN112973757A - 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法 - Google Patents

一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN112973757A
CN112973757A CN202110251843.9A CN202110251843A CN112973757A CN 112973757 A CN112973757 A CN 112973757A CN 202110251843 A CN202110251843 A CN 202110251843A CN 112973757 A CN112973757 A CN 112973757A
Authority
CN
China
Prior art keywords
rgo
bivo
quantum dot
composite photocatalyst
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110251843.9A
Other languages
English (en)
Other versions
CN112973757B (zh
Inventor
鲍智勇
周宇
杜云龙
李子星
吕珺
邢孟孟
韩骐震
姚飞越
汪嘉恒
孙振杰
张茂峰
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110251843.9A priority Critical patent/CN112973757B/zh
Publication of CN112973757A publication Critical patent/CN112973757A/zh
Application granted granted Critical
Publication of CN112973757B publication Critical patent/CN112973757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂及其制备方法,该三元复合光催化剂是由BiVO4量子点、还原氧化石墨烯RGO及石墨相氮化碳g‑C3N4复合而成。本发明的光催化剂能实现光生载流子的有效分离,从而提升光催化性能,实现有机物、细菌等污染物的高效降解。

Description

一种钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂及 其制备方法
技术领域
本发明涉及一种钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂,属于材料技术领域。
背景技术
甲醛(HCHO)等挥发性有机物(VOCs)是严重危害人类健康的一类常见污染物。在日益增长的物质需求下,过去几十年间工业制造迅猛发展,有毒物质和工业废料的排放造成了严重的空气污染。与此同时,人民对住房的需求不断增加,如何解决室内VOCs污染问题也成为大众聚焦点。
为消除空气污染物,人们在植物吸收、多孔活性炭吸附等物理吸附、生物降解、电催化降解方法上付出了巨大努力。然而物理吸附法只是污染物的转移并未使其降解,生物降解法存在温度限制、效率较低等问题,电催化降解法价格昂贵且可能产生其他污染物。因此人们将视线转移到了降解效率高、普适性广的光催化氧化法。现有单一光催化材料往往光生载流子易复合,不同时具有合适的导带和价带位置,导致需要的氧化反应和还原反应不能同时发生。复合材料可以解决这一问题。石墨相氮化碳(g-C3N4)具有独特的电子结构且化学稳定性好,但是电子空穴易于复合,限制了光催化效率。钒酸铋(BiVO4)禁带宽度小可见光响应范围大,为优良的光催化剂。还原氧化石墨烯(RGO)比表面积大、活性位点多、导电性好,是提高光电催化材料的理想载体。探索BiVO4、RGO与g-C3N4的复合结构具有重要意义。
发明内容
本发明的目的在于提供一种BiVO4量子点/RGO/g-C3N4三元复合光催化剂及其制备方法,该光催化材料能够解决光生电子-空穴易复合、可见光响应少的问题,材料同时具有强氧化性和强化原性且可见光响应范围大,提高材料的光催化性能。
为了实现上述目的,本发明采用如下技术方案:
一种钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂,其特点在于:所述三元复合光催化剂是由BiVO4量子点、还原氧化石墨烯RGO及石墨相氮化碳g-C3N4复合而成。
作为优选,所述RGO质量占BiVO4量子点质量的10-30%;所述g-C3N4质量占BiVO4量子点和RGO总质量的10%-50%。
本发明所述钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂的制备方法为:以Bi(NO3)3·5H2O为铋源、NH4VO3为钒源、油酸钠为表面活性剂、氧化石墨烯GO为基体,采用水热法合成BiVO4量子点修饰二维片状RGO的BiVO4量子点/RGO复合材料;以三聚氰胺为前驱体热处理制备块状g-C3N4,再经剥离得到层状纳米g-C3N4;以乙醇为溶剂,通过浸渍搅拌使BiVO4量子点/RGO复合材料和层状纳米g-C3N4自组装复合,即获得目标产物BiVO4量子点/RGO/g-C3N4三元复合光催化剂。具体包括如下步骤:
步骤1、BiVO4量子点/RGO复合材料的制备
将GO超声分散在水中,获得GO分散液;将油酸钠和NH4VO3分别加水搅拌至溶解,获得油酸钠溶液和NH4VO3溶液;将Bi(NO3)3·5H2O与油酸钠溶液、NH4VO3溶液、GO分散液混合并搅拌均匀,获得混合液;
将所述混合液转移到反应釜中进行水热反应,反应结束后冷却至室温,离心收集所得沉淀物,然后用正己烷和乙醇洗涤,再经干燥,即获得BiVO4量子点/RGO复合材料;
步骤2、层状纳米g-C3N4的制备
称取三聚氰胺,在马弗炉中加热,发生热聚合反应,生成块状g-C3N4,研磨成粉末后放在马弗炉进行热腐蚀剥离;所得样品中加入乙醇进行超声分散,得到层状g-C3N4分散液,离心、干燥,即获得层状纳米g-C3N4
步骤3、BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备
将步骤2制备的层状纳米g-C3N4分散在乙醇中,然后加入步骤1制备的BiVO4量子点/RGO复合材料,搅拌分散;然后离心干燥研磨、退火,即获得目标产物BiVO4量子点/RGO/g-C3N4三元复合光催化剂。
作为优选,步骤1中,原料Bi(NO3)3·5H2O、NH4VO3和油酸钠的摩尔比为1:1:2。
作为优选,步骤1中,所述水热反应的温度为100℃、时间为10h。
作为优选,步骤2中,所述热聚合反应是在400-600℃保温反应10-12h,所述热腐蚀剥离是在540-550℃保温反应2-3h,所述离心的速度为8000-10000r/min、离心时间为5-6min,所述超声分散的条件为:超声机工作频率60kHz、功率100W、不加热超声1-2h。
作为优选,步骤3中,层状纳米g-C3N4与乙醇的用量比为1~10mg:40mL。
作为优选,步骤3中,所述搅拌分散的搅拌速率为600-900r/min、搅拌时间为8-10h。
作为优选,步骤3中,所述退火的温度为400℃、时间为2h。
本发明合成的是g-C3N4基光催化剂,将g-C3N4与预制备的BiVO4量子点/RGO材料复合形成三元异质结结构。在本发明的BiVO4量子点/RGO/g-C3N4光催化剂体系中,RGO纳米片是一种理想的电子导体,可作为导体连接BiVO4和g-C3N4,同时利用BiVO4和g-C3N4的合适价带和导带位置,发生合适的氧化反应和还原反应,用于处于有机物、细菌病毒等物质。
本发明BiVO4量子点/RGO/g-C3N4三元复合光催化剂的光催化氧化机理如下:在可见光照射下,g-C3N4和BiVO4均能被光激发产生电子空穴对。BiVO4的CB中的光生电子通过导体RGO迅速转移到g-C3N4的VB中与空穴结合,导致g-C3N4的CB中积累电子、BiVO4的VB中积累空穴。g-C3N4的CB大约为-1.01eV,比O2/·O2-的电位更负;BiVO4的VB大约为2.6eV,比OH-/·OH电位更正。可以通过反应得到·O2-和·OH,这些基团均具有强氧化性,可将空气中的有害有机物以及细菌病毒等物质氧化为CO2和H2O,不产生其他的有害污染物。这种方法高效、无污染、操作简便,具有十分广泛的应用前景。
与已有技术相比,本发明的有益效果体现在:
本发明制备的BiVO4量子点/RGO/g-C3N4三元复合光催化剂,相较于传统的单一光催化剂,光催化性能有所提高。首先,该体系中RGO的存在极大地促进了光生载流子的迁移和分离,电子具有更强的还原能力、空穴具有更强的氧化能力,增强了体系的光催化活性,从而提升光催化性能。其次,RGO具有一种π-π共轭结构,而g-C3N4同样具有相似的结构,因此,当RGO纳米片与g-C3N4结合时,通过静电吸附π-π堆积,纳米片可以形成更加紧密的异质结构。除此之外,所制备的BiVO4量子点直径尺寸在5nm左右,具有小尺寸效应,光催化活性位点更多;所制备的g-C3N4经过热剥离、超声剥离处理为单层结构且具有原子级别缺陷,可增强g-C3N4与RGO间π-π键共轭能力、增大表面积、提高吸光性能。各组分的优异性能相互促进发挥作用,提升了系统的光催化性能。
附图说明
图1为本发明BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备流程图;
图2为实施例所制光催化剂的XRD图谱;
图3为实施例所制光催化的RAMAN图谱;
图4为实施例所制光催化剂的TEM和HRTEM图谱;
图5为实施例所制光催化剂的XPS图谱;
图6为实施例所制光催化剂的FTIR图谱;
图7为实施例所制光催化剂的UV-Vis DRS图谱;
图8为实施例所制光催化剂的PL图谱;
图9为实施例所制光催化剂的EIS图谱。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所做的举例和说明,所属本技术领域的技术人员对所描述的具体实施案例做各种各样的修改或补充或采用类似的方式代替,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
本实施例按如下步骤制备BiVO4量子点/RGO/g-C3N4三元复合光催化剂:
步骤1、BiVO4量子点/RGO复合材料的制备
将0.002g GO超声分散在5mL水中,获得GO分散液;将0.1218g油酸钠加20mL去离子水搅拌至溶解,获得油酸钠溶液;将0.0234g NH4VO3加20mL去离子水搅拌至溶解,获得NH4VO3溶液;将0.097g Bi(NO3)3·5H2O研磨为粉末后,与油酸钠溶液、NH4VO3溶液混合并搅拌30min,然后加入GO分散液继续搅拌均匀,获得混合液。
将上述的混合液加入到50mL聚四氟乙醇内胆中,放入反应釜内,在烘箱里100℃水热反应10h。反应结束后冷却至室温,离心收集所得沉淀物,然后用正己烷和乙醇分别洗涤两次,80℃干燥10h,研磨,即获得BiVO4量子点/RGO复合材料。
步骤2、层状纳米g-C3N4的制备
量取2g三聚氰胺,将其置于坩埚中,加盖,平放于马弗炉中,在530℃下保温10h(升温速率为2℃/min,初始温度为30℃),得到黄色块状g-C3N4样品。将块状样品在玛瑙研钵中研磨成黄色粉末,然后再放置于马弗炉中在540℃下保温2h(升温速率为2℃/min,初始温度为30℃),经过热腐蚀剥离后得到包含更多缺陷的g-C3N4。热处理结束后取出样品,在乙醇中进行搅拌并且超声(搅拌条件为:搅拌速率600r/min,搅拌时间为60min;超声条件为:不加热超声60min,超声机工作频率60kHz,功率100W),得到层状g-C3N4分散液,然后于6000r/min下离心10min,最后把样品放置在干燥箱中60℃干燥10h,获得层状纳米g-C3N4
步骤3、BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备
将5mg g-C3N4纳米薄片超声分散在40mL乙醇中,然后加入10mg BiVO4量子点/RGO复合材料,搅拌分散(搅拌速率600r/min,搅拌时间为9h)。离心(6000r/min、离心10min)、在干燥箱中80℃干燥、研磨后,400℃退火2h(升温速率为2℃/min,初始温度为30℃),即获得目标产物,标记为BiVO4量子点/RGO/50%g-C3N4
实施例2
本实施例按如下步骤制备BiVO4量子点/RGO/g-C3N4三元复合光催化剂:
步骤1、BiVO4量子点/RGO复合材料的制备
将0.002g GO超声分散在5mL水中,获得GO分散液;将0.1218g油酸钠加20mL去离子水搅拌至溶解,获得油酸钠溶液;将0.0234g NH4VO3加20mL去离子水搅拌至溶解,获得NH4VO3溶液;将0.097g Bi(NO3)3·5H2O研磨为粉末后,与油酸钠溶液、NH4VO3溶液混合并搅拌30min,然后加入GO分散液继续搅拌均匀,获得混合液。
将上述的混合液加入到50mL聚四氟乙醇内胆中,放入反应釜内,在烘箱里100℃水热反应10h。反应结束后冷却至室温,离心收集所得沉淀物,然后用正己烷和乙醇分别洗涤两次,80℃干燥10h,研磨,即获得BiVO4量子点/RGO复合材料。
步骤2、层状纳米g-C3N4的制备
量取2g三聚氰胺,将其置于坩埚中,加盖,平放于马弗炉中,在530℃下保温10h(升温速率为2℃/min,初始温度为30℃),得到黄色块状g-C3N4样品。将块状样品在玛瑙研钵中研磨成黄色粉末,然后再放置于马弗炉中在540℃下保温2h(升温速率为2℃/min,初始温度为30℃),经过热腐蚀剥离后得到包含更多缺陷的g-C3N4。热处理结束后取出样品,在乙醇中进行搅拌并且超声(搅拌条件为:搅拌速率600r/min,搅拌时间为60min;超声条件为:不加热超声60min,超声机工作频率60kHz,功率100W),得到层状g-C3N4分散液,然后于6000r/min下离心10min,最后把样品放置在干燥箱中60℃干燥10h,获得层状纳米g-C3N4
步骤3、BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备
将1mg g-C3N4纳米薄片超声分散在40mL乙醇中,然后加入10mg BiVO4量子点/RGO复合材料,搅拌分散(搅拌速率600r/min,搅拌时间为9h)。离心(6000r/min、离心10min)、在干燥箱中80℃干燥、研磨后,400℃退火2h(升温速率为2℃/min,初始温度为30℃),即获得目标产物,标记为BiVO4量子点/RGO/10%g-C3N4
实施例3
本实施例按如下步骤制备BiVO4量子点/RGO/g-C3N4三元复合光催化剂:
步骤1、BiVO4量子点/RGO复合材料的制备
将0.002g GO超声分散在5mL水中,获得GO分散液;将0.1218g油酸钠加20mL去离子水搅拌至溶解,获得油酸钠溶液;将0.0234g NH4VO3加20mL去离子水搅拌至溶解,获得NH4VO3溶液;将0.097g Bi(NO3)3·5H2O研磨为粉末后,与油酸钠溶液、NH4VO3溶液混合并搅拌30min,然后加入GO分散液继续搅拌均匀,获得混合液。
将上述的混合液加入到50mL聚四氟乙醇内胆中,放入反应釜内,在烘箱里100℃水热反应10h。反应结束后冷却至室温,离心收集所得沉淀物,然后用正己烷和乙醇分别洗涤两次,80℃干燥10h,研磨,即获得BiVO4量子点/RGO复合材料。
步骤2、层状纳米g-C3N4的制备
量取2g三聚氰胺,将其置于坩埚中,加盖,平放于马弗炉中,在530℃下保温10h(升温速率为2℃/min,初始温度为30℃),得到黄色块状g-C3N4样品。将块状样品在玛瑙研钵中研磨成黄色粉末,然后再放置于马弗炉中在540℃下保温2h(升温速率为2℃/min,初始温度为30℃),经过热腐蚀剥离后得到包含更多缺陷的g-C3N4。热处理结束后取出样品,在乙醇中进行搅拌并且超声(搅拌条件为:搅拌速率600r/min,搅拌时间为60min;超声条件为:不加热超声60min,超声机工作频率60kHz,功率100W),得到层状g-C3N4分散液,然后于6000r/min下离心10min,最后把样品放置在干燥箱中60℃干燥10h,获得层状纳米g-C3N4
步骤3、BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备
将1.5mg g-C3N4纳米薄片超声分散在40mL乙醇中,然后加入10mg BiVO4量子点/RGO复合材料,搅拌分散(搅拌速率600r/min,搅拌时间为9h)。离心(6000r/min、离心10min)、在干燥箱中80℃干燥、研磨后,400℃退火2h(升温速率为2℃/min,初始温度为30℃),即获得目标产物,标记为BiVO4量子点/RGO/15%g-C3N4
对上述实施例所得样品的分析:
1、XRD分析
图2为单一材料和复合材料的XRD衍射图谱。如图BiVO4的衍射图谱与XRD标准图谱PDF No.14-0688相对应,可以证明其为单斜相BiVO4。含有BiVO4材料的XRD图谱中,均有特征峰28.8°和30.5°(分别对应于(121)和(040)晶面),表明材料成功合成。BiVO4量子点图谱中的特征峰与块状BiVO4相比低而宽,说明BiVO4量子点的颗粒尺寸较小。BiVO4量子点与RGO复合后BiVO4量子点/RGO的特征峰变得更低,这是由于RGO的峰较低。三元复合材料BiVO4量子点/RGO/g-C3N4在27.73°处有微弱的g-C3N4特征峰。同时对应BiVO4的特征峰都有所变宽,这是由于g-C3N4是聚合半导体,衍射峰相对晶体较弱。
2、RAMAN分析
图3为BiVO4量子点及其不同复合材料的拉曼散射光谱图,通过Raman来探测样品的局部结构,同时拉曼散射光谱表征技术对C材料的检测更加灵敏,可以通过D峰和G峰判断C材料的存在,通过D峰和G峰的强度比判断样品中碳材料的缺陷。图2最上方的谱线为BiVO4量子点的拉曼图谱,214cm-1波段是BiVO4的外部模式,提供的结构信息较少。在328cm-1和363cm-1处的拉曼谱带分别对应VO3-不对称变形和对称变形。同时,在约823cm-1处最强烈的拉曼波段为对称的V-O拉伸,而在约711cm-1处弱肩被分配为反对称的V-O拉伸,表明合成单斜白钨矿BiVO4。复合样品V-O键所对应峰、以及D峰和G峰的存在验证了RGO与BiVO4的成功复合。D峰与G峰的强度比越大,说明缺陷越多,化学活性强有利于光催化反应。同时说明GO成功转化为RGO。
3、TEM和HRTEM分析
图4(a)(b)(c)(d)(e)(f)为复合样品的TEM和HRTEM图谱,从图4(a)(b)中可以看到,BiVO4量子点直径尺寸大约为5nm,且均匀分布在RGO上;图4(e)和(f)为BiVO4/RGO的TEM图像,可以看到BiVO4量子点附着在层状RGO上;图4(c)中可以看到BiVO4量子点/RGO附着在g-C3N4上,形成了复合重叠结构;图4(b)、(d)、(e)中标注出来三种材料的晶格条纹,分别为0.301nm和0.171nm的BiVO4、0.33nm的g-C3N4、0.645nm的RGO,说明三种材料成功复合形成了三元光催化体系,与其他表征结果相互印证。
4、XPS分析
对样品成分进行分析时,用X射线光电子能谱测定了表面化学成分。图5(a)表明制备的复合样品由C、Bi、V、N、O元素组成,具体信息见图5(b)、(c)、(d)、(e)、(f)中五种元素对应的高分辨X射线光电子能谱。(b)中159.3eV和164.6eV处的BE峰属于Bi 4f 7/2和Bi 4f5/2;(c)中284.8eV、286.2eV和288.4eV的结合能(BE)峰分别属于RGO的C=C、C-O和C=O;(e)在516.9eV和524.5eV处的BE峰分别为V2p 3/2和V2p 1/2,都来自于BiVO4;(f)中530.0eV和533.6eV处的BE峰分别归属于RGO中的C=O和C-OH。
5、FTIR分析
利用FT-IR进行官能团的鉴别及有机物的定性分析。根据所出现峰的位置和强度,确定样品的化学基团及组成部分。图6中分别展示了g-C3N4、BiVO4量子点、GO单体、BiVO4量子点/RGO以及三元复合光催化剂的FT-IR光谱。3000~2700cm-1为羧基中O-H伸缩振动峰,峰较为宽钝。2000~1500cm-1为双键的伸缩振动吸收区,这个波段也是比较重要的区域,其中C=N的伸缩振动出现在1675~1500cm-1。1400~1300cm-1的波段区域显示有C-N单键的伸缩振动。在GO的FTIR光谱中可以观察到各种含氧基团,其中位于1750cm-1处的是COOH基团中C=O的伸缩振动,1630cm-1处的是COOH基团的O-H的变形振动和环氧基团的C-O伸缩振动。与三元复合光催化剂的FTIR光谱相比,可以清楚地看出,复合材料中几乎所有GO的特征峰都消失了,表明复合材料中的GO已经被还原,三元复合光催化剂复合成功。随着氮化碳质量分数增加,三元复合光催化剂FT-IR光谱中,氮化碳的一些振动峰明显增强。
6、UV-vis分析
紫外-可见漫反射吸收光谱UV-Vis DRS可用于分析样品的光吸收特性。图7为BiVO4量子点的UV-Vis DRS谱图(图7(a)),及基于Kubelka-Munk公式得到的BiVO4的禁带宽度图(图7(b))。可以观察到g-C3N4和BiVO4量子点的吸收边带分别约450nm和490nm。由图7(a)知,g-C3N4在200~425nm范围内均有较强的吸收峰,大于450nm时吸光强度会减小。BiVO4量子点在200-475nm范围内均有较强的吸收峰,在大于490nm时,对可见光的吸收会迅速减少。可以看到,BiVO4量子点/RGO和复合g-C3N4量不同的三元复合材料BiVO4量子点/RGO/X%g-C3N4在波长200~800nm均有不同程度的吸收,相比于纯的BiVO4量子点和g-C3N4,可见光响应能力具有明显提升。可以推测RGO作为光生载流子的载体,有效改善光电电子的迁移。复合材料的光学性能也显著优于单一材料。
复合样品中BiVO4量子点/RGO的量越多,吸光性越强。BiVO4量子点/RGO相比于BiVO4量子点整体吸光度有所增强,且吸收边带发生了少量蓝移,可能是由于BiVO4量子点/RGO样品中量子点尺寸有所减小。同时可以观察到,随着g-C3N4含量的增加,BiVO4量子点RGO/X%g-C3N4的吸光边带逐渐向较大波长移动,BiVO4量子点RGO/15%g-C3N4样品的吸收边移动到520nm左右。
半导体光催化剂光吸收特性是由其禁带能决定的,可用Tauc plot法得到半导体的禁带宽度:
(αhν)1/n=A(hν-Eg) (1)
其中:α为吸光指数;v为光频率;h为普朗克常数;A为常数;Eg为半导体禁带宽度。n与半导体的种类有关:直接带隙半导体时n=1/2,间接带隙半导体时n=2。
由于g-C3N4和BiVO4为间接带隙半导体,那么取n=2,根据经验Kubelka-Munk公式αhV=A(hV-Eg)1/2 (2),
依式绘制光吸收系数(αhv)2与能量(hv)变化曲线,再作切线,因此,αhV=0所对应的切线值即为样品的直接禁带宽度值。
半导体的导带(ECB)和价带(EVB)的带边位置可以用下面的Mulliken电负性理论来确定
ECB=χ-Ee-0.5 Eg (3)
EVB=ECB+Eg (4)
式中:χ指半导体材料的绝对电负性。Ee是氢尺度上自由电子的能量(约4.5eVvs.NHE)。Eg是被测半导体的能带。g-C3N4的χ值为4.73eV,BiVO4的χ值为6.15eV。
可以得到BiVO4量子点和g-C3N4的Eg分别为2.73eV和2.48eV,EVB分别约为2.635eV和1.47eV,ECB分别约为+0.285eV和-1.01eV。
半导体纳米材料的光学性能与粒子大小密切相关,能带间隙也会发生变化。根据先前报道,块状BiVO4带隙为2.4eV,可以吸收~525nm以下的光。当其粒径减小到小于5nm时,吸收边发生明显的蓝移。与块状BiVO4相比,BQD具有更宽的带隙,约2.73eV。由于量子尺寸效应,BiVO4量子点的ECB水平明显高于块状BiVO4
7、PL分析
不同样品的光致发光光谱以及局部放大图如图8所示。单一g-C3N4的发射强度最高,说明电子空穴对易于复合。GO几乎无光致发光强度。值得注意的是,BiVO4量子点/RGO的光致发光强度低于BiVO4量子点,说明复合RGO与BiVO4量子点间形成强相互作用,使得BiVO4量子点/RGO之间载流子转移速度加快。复合样品中随着g-C3N4复合量的减少,光致发光强度下降。复合样品中BiVO4量子点/RGO/15%g-C3N4的光致发光强度最低,说明载流子分离效率最高,从而可以认为此样品具有更加优异光催化性能。
8、EIS分析
图9(a)为奈奎斯特图及利用软件Zview拟合所得的电路图。可以看出与单独的BiVO4量子点和g-C3N4相比,复合样品的电容弧半径明显减小。减小电容弧半径可以降低电荷电阻。说明光生电荷在复合材料BiVO4量子点/RGO/15%g-C3N4上可以更有效地进行传输。Bode-phase伯德相位图是研究半导体光生电子寿命的有力工具。由方程:τe=1/2πfmax可知,通过确定中频峰(fmax)的频率,可得到光生电子(τe)的寿命。如图9(b)所示,g-C3N4、BiVO4量子点、BiVO4量子点/RGO和BiVO4量子点/RGO/15%g-C3N4样品的fmax分别为17.78Hz、1.75Hz、1.47Hz、1.21Hz。显然复合样品相比于单一样品光生电子寿命加长,具有更好光催化性能。可以看出BiVO4量子点/RGO/5%g-C3N4样品光生电子寿命最长。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂,其特征在于:所述三元复合光催化剂是由BiVO4量子点、还原氧化石墨烯RGO及石墨相氮化碳g-C3N4复合而成。
2.根据权利要求1所述的三元复合光催化剂,其特征在于:所述RGO质量占BiVO4量子点质量的10-30%,所述g-C3N4质量占BiVO4量子点和RGO总质量的10%-50%。
3.一种权利要求1所述钒酸铋量子点/RGO/石墨相氮化碳三元复合光催化剂的制备方法,其特征在于:
以Bi(NO3)3·5H2O为铋源、NH4VO3为钒源、油酸钠为表面活性剂、氧化石墨烯GO为基体,采用水热法合成BiVO4量子点修饰二维片状RGO的BiVO4量子点/RGO复合材料;
以三聚氰胺为前驱体热处理制备块状g-C3N4,再经剥离得到层状纳米g-C3N4
以乙醇为溶剂,通过浸渍搅拌使BiVO4量子点/RGO复合材料和层状纳米g-C3N4自组装复合,即获得目标产物BiVO4量子点/RGO/g-C3N4三元复合光催化剂。
4.根据权利要求3所述的制备方法,其特征在于,包括如下步骤:
步骤1、BiVO4量子点/RGO复合材料的制备
将GO超声分散在水中,获得GO分散液;将油酸钠和NH4VO3分别加水搅拌至溶解,获得油酸钠溶液和NH4VO3溶液;将Bi(NO3)3·5H2O与油酸钠溶液、NH4VO3溶液、GO分散液混合并搅拌均匀,获得混合液;
将所述混合液转移到反应釜中进行水热反应,反应结束后冷却至室温,离心收集所得沉淀物,然后用正己烷和乙醇洗涤,再经干燥,即获得BiVO4量子点/RGO复合材料;
步骤2、层状纳米g-C3N4的制备
称取三聚氰胺,在马弗炉中加热,发生热聚合反应,生成块状g-C3N4,研磨成粉末后放在马弗炉进行热腐蚀剥离;所得样品中加入乙醇进行超声分散,得到层状g-C3N4分散液,离心、干燥,即获得层状纳米g-C3N4
步骤3、BiVO4量子点/RGO/g-C3N4三元复合光催化剂的制备
将步骤2制备的层状纳米g-C3N4分散在乙醇中,然后加入步骤1制备的BiVO4量子点/RGO复合材料,搅拌分散;然后离心干燥研磨、退火,即获得目标产物BiVO4量子点/RGO/g-C3N4三元复合光催化剂。
5.根据权利要求4所述的制备方法,其特征在于:步骤1中,原料Bi(NO3)3·5H2O、NH4VO3和油酸钠的摩尔比为1:1:2。
6.根据权利要求4所述的制备方法,其特征在于:步骤1中,所述水热反应的温度为100℃、时间为10h。
7.根据权利要求4所述的制备方法,其特征在于:步骤2中,所述热聚合反应是在400-600℃保温反应10-12h,所述热腐蚀剥离是在540-550℃保温反应2-3h,所述离心的速度为8000-10000r/min、离心时间为5-6min,所述超声分散的条件为:超声机工作频率60kHz、功率100W、不加热超声1-2h。
8.根据权利要求4所述的制备方法,其特征在于:步骤3中,层状纳米g-C3N4与乙醇的用量比为1~10mg:40mL。
9.根据权利要求4所述的制备方法,其特征在于:步骤3中,所述搅拌分散的搅拌速率为600-900r/min、搅拌时间为8-10h。
10.根据权利要求4所述的制备方法,其特征在于:步骤3中,所述退火的温度为400℃、时间为2h。
CN202110251843.9A 2021-03-08 2021-03-08 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法 Active CN112973757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110251843.9A CN112973757B (zh) 2021-03-08 2021-03-08 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110251843.9A CN112973757B (zh) 2021-03-08 2021-03-08 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112973757A true CN112973757A (zh) 2021-06-18
CN112973757B CN112973757B (zh) 2022-11-08

Family

ID=76336047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110251843.9A Active CN112973757B (zh) 2021-03-08 2021-03-08 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112973757B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112495411A (zh) * 2020-09-09 2021-03-16 同济大学 一种氮化碳纳米片负载钒酸铟量子点光催化剂及其制备和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881140A (zh) * 2017-03-22 2017-06-23 陕西科技大学 一种氮化碳/石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
CN106944120A (zh) * 2017-03-22 2017-07-14 陕西科技大学 一种氮化碳/氧化石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
CN107233906A (zh) * 2017-06-08 2017-10-10 江苏大学 一种还原氧化石墨烯/钒酸铋/氮化碳复合材料的制备方法及用途
CN108359462A (zh) * 2018-04-18 2018-08-03 兰州大学 一种钒酸铋量子点及其制备方法、还原氧化石墨烯气凝胶材料及其制备方法以及光催化剂
US20190112211A1 (en) * 2017-10-16 2019-04-18 Institute Of Process Engineering, Chinese Academy Of Sciences Method for Photocatalytic Ozonation Reaction, Catalyst for photocatalytic ozonation and Reactor Containing the Same
CN110327965A (zh) * 2019-08-14 2019-10-15 齐鲁工业大学 一种二维钒酸铋/石墨烯/氮化碳复合材料及其制备方法和应用
CN111036252A (zh) * 2019-12-05 2020-04-21 太原理工大学 一种钨酸铋量子点/磁性纳米洋葱碳磁性复合材料光催化剂及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用
CN111729682A (zh) * 2020-07-03 2020-10-02 合肥工业大学 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
JP2020179346A (ja) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Zスキーム型光触媒系

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881140A (zh) * 2017-03-22 2017-06-23 陕西科技大学 一种氮化碳/石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
CN106944120A (zh) * 2017-03-22 2017-07-14 陕西科技大学 一种氮化碳/氧化石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
CN107233906A (zh) * 2017-06-08 2017-10-10 江苏大学 一种还原氧化石墨烯/钒酸铋/氮化碳复合材料的制备方法及用途
US20190112211A1 (en) * 2017-10-16 2019-04-18 Institute Of Process Engineering, Chinese Academy Of Sciences Method for Photocatalytic Ozonation Reaction, Catalyst for photocatalytic ozonation and Reactor Containing the Same
CN108359462A (zh) * 2018-04-18 2018-08-03 兰州大学 一种钒酸铋量子点及其制备方法、还原氧化石墨烯气凝胶材料及其制备方法以及光催化剂
JP2020179346A (ja) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Zスキーム型光触媒系
CN110327965A (zh) * 2019-08-14 2019-10-15 齐鲁工业大学 一种二维钒酸铋/石墨烯/氮化碳复合材料及其制备方法和应用
CN111036252A (zh) * 2019-12-05 2020-04-21 太原理工大学 一种钨酸铋量子点/磁性纳米洋葱碳磁性复合材料光催化剂及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用
CN111729682A (zh) * 2020-07-03 2020-10-02 合肥工业大学 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韦永阁等: "RGO-BiVO_4复合材料的制备及其模拟太阳光光催化性能的研究", 《人工晶体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112495411A (zh) * 2020-09-09 2021-03-16 同济大学 一种氮化碳纳米片负载钒酸铟量子点光催化剂及其制备和应用
CN112495411B (zh) * 2020-09-09 2022-08-05 同济大学 一种氮化碳纳米片负载钒酸铟量子点光催化剂及其制备和应用

Also Published As

Publication number Publication date
CN112973757B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
Chen et al. Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification
Jing et al. Direct Z-scheme red carbon nitride/rod-like lanthanum vanadate composites with enhanced photodegradation of antibiotic contaminants
Wang et al. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance
Ke et al. UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Gong et al. The synthesis of graphene-TiO 2/gC 3 N 4 super-thin heterojunctions with enhanced visible-light photocatalytic activities
CN109985657B (zh) BiVO4/2D g-C3N4Z型异质结光催化剂的制备方法
Liu et al. Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@ shell structure
Bajaj et al. Visible light-driven novel nanocomposite (BiVO 4/CuCr 2 O 4) for efficient degradation of organic dye
Jiang et al. Construction of amorphous Ta2O5/g-C3N4 nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight
Liu et al. Dramatic activity of a Bi 2 WO 6@ gC 3 N 4 photocatalyst with a core@ shell structure
Li et al. Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production
Wang et al. Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability
Zhao et al. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study
CN108479752B (zh) 一种二维碳层负载的BiVO4/TiO2异质可见光催化剂的制备方法
Li et al. Ultrasonic-microwave assisted synthesis of GO/g-C3N4 composites for efficient photocatalytic H2 evolution
CN113042084B (zh) 一种氧化锰复合氮化碳纳米管复合光催化剂的制备方法及其应用
CN108325555B (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
Zhang et al. Synthesis of ZnO doped high valence S element and study of photogenerated charges properties
Wang et al. 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances
CN109225273B (zh) 一种硫化铜/硫化钨复合光催化剂及其制备方法
Yao et al. LaCoO3 co-catalyst modified Ag2CrO4 for improved visible-light-driven photocatalytic degradation of tetracycline
CN110801856A (zh) 一种石墨相氮化碳-铵钨青铜复合光催化剂的合成及其应用
Feng et al. Design and fabrication of polyaniline/Bi 2 MoO 6 nanocomposites for enhanced visible-light-driven photocatalysis
Wang et al. Green synthesis g-C3N4 quantum dots loading h-BN for efficient and stable photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 242000 No.301, Xunhua Road, Xuanzhou District, Xuancheng City, Anhui Province (Xuancheng campus, Hefei University of Technology)

Applicant after: Hefei University of Technology

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Applicant before: Hefei University of Technology

GR01 Patent grant
GR01 Patent grant