CN112358519B - 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用 - Google Patents

一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用 Download PDF

Info

Publication number
CN112358519B
CN112358519B CN202011264997.3A CN202011264997A CN112358519B CN 112358519 B CN112358519 B CN 112358519B CN 202011264997 A CN202011264997 A CN 202011264997A CN 112358519 B CN112358519 B CN 112358519B
Authority
CN
China
Prior art keywords
iridium
glucose
photosensitizer
light absorption
modified high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011264997.3A
Other languages
English (en)
Other versions
CN112358519A (zh
Inventor
黄怀义
祝梓琳
杨翰伦
李雪晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011264997.3A priority Critical patent/CN112358519B/zh
Publication of CN112358519A publication Critical patent/CN112358519A/zh
Application granted granted Critical
Publication of CN112358519B publication Critical patent/CN112358519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/056Triazole or tetrazole radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/184Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine mixed aromatic/aliphatic ring systems, e.g. indoline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及医药技术领域,具体涉及一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用,本发明的金属铱配合物具有极高的可见光吸收性能以及肿瘤靶向性能,在无光照情况下,对人宫颈癌细胞株毒性较低,但是在光照条件下对人宫颈癌细胞株具有很强的生长抑制能力。

Description

一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用
技术领域
本发明涉及医药技术领域,具体涉及一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用。
技术背景
癌症已经对世界人民的生命构成了极为严重的威胁,就美国华盛顿大学卫生评估研究所的研究人员所发的报告看,2017年全球新增癌症病例2450万,死亡病例960万,且呈上升趋势。我国是癌症的重灾区,每年约有223万国民死于癌症,且呈逐步上升趋势。宫颈癌是常见的恶性肿瘤之一,严重危害女性健康和生存。
放射治疗是宫颈癌的一种有效治疗方法,但是由放疗引起的骨髓抑制、胃肠道反应、脱发等副作用让很多患者的生活质量大打折扣。光动力治疗被认为是临床具有良好靶向性的肿瘤治疗方法,其作用基础是利用光激发聚集在肿瘤内部的光敏剂,产生活性氧杀死区域肿瘤细胞,而对周围健康细胞不产生影响。根据活性氧种类与产生方式的不同,可划分为Ⅰ型和Ⅱ型两种机制。I型机制中,激发态光敏剂与生物分子直接发生电子转移作用,产生自由基物种,这些自由基可进一步与氧气反应生成含氧自由基(如氢过氧自由基、超氧阴离子自由基等)和过氧化物(如过氧化氢和过氧化脂质)等;Ⅱ型机制中,激发态光敏剂与氧气发生能量传递作用,产生单线态氧(1O2)。
金属配合物由于具有突出的光学性质和强的细胞摄取能力,在细胞器染料、荧光成像和光动力治疗等研究领域获得了极大的关注。与有机化合物相比,金属配合物分子结构具有更好的可塑性,容易在配体上引入其它分子活性基团,可以针对不同的底物结合环境进行相应的结构修饰;而且金属配合物相对比较稳定,容易在体内环境产生药效。SherriMcFarland等人研究的钌配合物(TLD1433),于2016年作为第一例金属配合物用于肿瘤的光动力治疗正在进行临床I期试验。Chao团队研究发现金属铱配合物具有更加优异的肿瘤光动力治疗(Angew.Chem.2015,127,14255)。因此,研究金属配合物用于肿瘤光动力治疗具有极大的临床应用前景。
烟酰胺腺嘌呤二核苷酸(NADH)是活细胞中一种重要的辅酶,在生物介质中能被氧化,并伴随着很高的更新换代频率。在癌细胞中选择性的引起NADH的氧化消耗可能可影响癌细胞内的氧化还原平衡。本专利涉及一种葡萄糖修饰强光吸收铱光敏剂的制备方法,该配合物对NADH有光催化氧化作用,应用于宫颈癌(HeLa细胞)的光动力治疗具有很高的疗效,对于研究高效低毒的铱配合物光敏剂有重要的意义,为临床开发的金属抗肿瘤光敏药物奠定实验和理论基础。
发明内容
本发明的目的在于克服现有技术中的技术问题,提供了一种葡萄糖修饰强光吸收铱光敏剂。
本发明的另一个目的在于,提供上述葡萄糖修饰强光吸收铱光敏剂的制备方法。
本发明的另一个目的在于,提供上述葡萄糖修饰强光吸收铱光敏剂在抗癌药物以及催化NADH上的应用。
本发明的目的通过以下技术方案予以实现:
一种葡萄糖修饰强光吸收铱光敏剂,其结构如式(1):
Figure GDA0003519292470000021
简记为[Ir(Co6)2ptgOH]Cl。
所述葡萄糖修饰强光吸收铱光敏剂的制备方法,包括以下步骤:
S1.2-乙炔基吡啶与溴代四乙酰基葡萄糖反应得到ptgOH;
S2.将氯化铱(Ⅲ)和香豆素6反应得到铱(Ⅲ)μ-氯-桥连二聚体配合物;
S3.将步骤S2得到的铱(Ⅲ)μ-氯-桥连二聚体配合物与步骤S1得到的ptgOH反应获得[Ir(Co6)2ptgOH]Cl。
ptgOH、香豆素6(Co6)以及铱(Ⅲ)μ-氯-桥连二聚体配合物的结构依次分别为:
Figure GDA0003519292470000031
优选地,步骤S1的具体过程:将2-乙炔基吡啶与叠氮化钠、硫酸铜、溴代四乙酰基葡萄糖和抗坏血酸钠在DMF/水混合溶液中室温搅拌发生“Click”反应,然后在生成的反应溶液中加入乙二胺四乙酸二钠溶液析出白色固体,进一步甲醇钠在甲醇中反应,再经酸性树脂中和后得到葡萄糖修饰的配体ptgOH;其反应方程式如下所示:
Figure GDA0003519292470000032
步骤S2中,氯化铱(Ⅲ)和香豆素6在乙二醇乙醚/水中加热回流得橘色固体铱(Ⅲ)μ-氯-桥连二聚体配合物;其反应方程式如下所示:
Figure GDA0003519292470000033
步骤S3,中,步骤S2得到的铱(Ⅲ)μ-氯-桥连二聚体配合物与步骤S1的ptgOH配体在二氯甲烷/甲醇中加热回流获得[Ir(Co6)2ptgOH]Cl产物;其反应方程式如下所示:
Figure GDA0003519292470000041
优选地,所述反应溶剂为:体积比为(2~4):1的乙二醇乙醚/水。
优选地,所述步骤S3中,反应溶剂为:体积比为(2~4):1的二氯甲烷/甲醇。
优选地,所述步骤S1中,反应温度为20~30℃,搅拌反应15~25h。
优选地,所述步骤S2中,反应温度为110~115℃,反应时间为26~28h。
优选地,所述步骤S3中,反应温度为45~55℃,反应时间为8~10h。
更优选地,步骤S3所述回流反应为50℃反应8h。
所述葡萄糖修饰强光吸收铱光敏剂作为催化NADH反应的光催化剂。
所述葡萄糖修饰强光吸收铱光敏剂作为制备抗癌药物中的应用。
所述葡萄糖修饰强光吸收铱光敏剂作为制备抗宫颈癌药物中的应用。
本发明提供的一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用,本发明的金属铱配合物具有极高的可见光吸收性能以及肿瘤靶向性能,在无光照情况下,对人宫颈癌细胞株毒性较低,但是在光照条件下对人宫颈癌细胞株具有很强的生长抑制能力。
附图说明
图1本发明葡萄糖修饰强光吸收铱光敏剂的结构式;
图2本发明葡萄糖修饰强光吸收铱光敏剂暗条件和有光条件下的核磁氢谱图;
图3本发明葡萄糖修饰强光吸收铱光敏剂催化NADH的吸收光谱图;
图4本发明葡萄糖修饰强光吸收铱光敏剂对人宫颈癌细胞株的暗毒性与光毒性区别图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例和对比例将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
除特殊说明,本实施例中所用的设备均为常规实验设备,所用的材料、试剂若无特殊说明均为市售得到,无特殊说明的实验方法也为常规实验方法。
实施例1
一种葡萄糖修饰强光吸收铱光敏剂,其结构如式(1):
Figure GDA0003519292470000051
简记为[Ir(Co6)2ptgOH]Cl。
上述葡萄糖修饰强光吸收铱光敏剂的制备方法:
(1)(1)配体的合成方法:
2-乙炔基吡啶(0.103g,1.0mmol)与叠氮化钠(0.100g,1.5mmol)、五水合硫酸铜(0.125g,0.5mmol)、溴代四乙酰基葡萄糖(0.410g,1mmol)和抗坏血酸钠(0.198g,1.0mmol)在二甲基乙酰胺/水(15ml,4:1,v/v)中搅拌20小时。反应结束后,往悬浮液中加入氨水/EDTA(100ml),配体用二氯甲烷(100ml)萃取。用水(100ml)、饱和氯化钠溶液(100ml)分别洗涤有机相,无水MgSO4干燥,减压除去溶剂,粗产品用乙醇重结晶得到白色固体,进一步与甲醇钠在甲醇中反应,再经酸性树脂中和后得到葡萄糖修饰的配体。产率26.8%。上述化学反应方程式如下所示:
Figure GDA0003519292470000052
质谱:477.3,[M+H]+,499.3,[M+Na]+
核磁氢谱:1H NMR(400MHz,CDC13)δ8.60(d,1H),8.40(s,1H),8.14(d,J=7.9,1H),7.82-7.73(t,1H),7.27-7.19(m,1H),5.92(d,1H),5.54-5.40(m,2H),5.26(t,1H),4.31(dd,1H),4.15(dd,1H),4.02(dd,1H)。
(2)铱配合物的合成方法:
将氯化铱(Ⅲ)(0.151g,0.428mmol)和香豆素6(0.304g,0.867mmol)的混合物在乙二醇乙醚/水(12mL;3:1v/v)中加热至110℃,在氮气环境下反应27小时后将反应降至室温,加水析出前体,抽滤,用乙醇过滤洗涤,在真空中干燥后得到橘色固体铱(Ⅲ)μ-氯-桥连二聚体配合物(0.284g),产率72%。上述化学反应方程式如下所示:
Figure GDA0003519292470000061
桥连前体(0.195g,0.105mmol)和ptgOAc配体(0.100g,0.210mmol)在二氯甲烷/甲醇(12ml,3:1,v/v)在氮气环境加热到50℃,反应8小时。将反应得到的溶液旋干,将获得的粗产物经中性氧化铝柱(溶剂:甲酸/二氯甲烷=1/10,v/v)纯化,旋干溶剂得到黄色粉末状产品(0.102g,0.073mmol),产率70%。上述化学反应方程式如下所示:
Figure GDA0003519292470000062
质谱:1199.2[M-Cl]+
核磁氢谱:1H NMR(500MHz,Methanol-d4)δ8.82(t,J=4.8Hz,1H),8.66–8.53(m,1H),8.18(t,J=7.8Hz,1H),8.07(d,J=7.9Hz,1H),7.99(t,J=7.9Hz,1H),7.93(dd,J=7.8,3.4Hz,1H),7.79–7.75(m,1H),7.30–7.24(m,2H),7.21–7.13(m,1H),7.00–6.96(m,1H),6.43(t,J=2.5Hz,1H),6.41(dd,J=5.2,2.6Hz,1H),6.26(dt,J=11.7,8.6Hz,2H),6.22–6.13(m,2H),6.04(dd,J=9.6,2.5Hz,1H),6.02–5.98(m,1H),5.90(dd,J=40.7,9.3Hz,1H),4.60(s,1H),3.99–3.85(m,2H),3.81–3.41(m,7H),1.05(q,J=6.7Hz,12H)。
实验例1
铱配合物暗稳定性与光稳定性
利用核磁氢谱来分析铱配合物的暗稳定性与光稳定性性能。将铱配合物用MeOD配成溶液(对照样)加入到核磁管中记录其核磁氢谱;之后在室温下将其黑暗中放置72小时后,或在465nm光辐射(60mW/cm2)5分钟后,分别记录溶液的核磁氢谱与对照样的氢谱图进行对比,以分析其暗、光稳定性性能。如图2所示,铱配合物在黑暗与光照条件处理下,其谱图未发生明显变化,暗稳定性与光稳定性性能良好。
实验例2
铱配合物光催化氧化NADH的能力
由于在光催化下,金属配合物能将还原型辅酶Ⅰ(NADH)氧化成其氧化态(NAD+),所以将含铱配合物和NADH(A339nm=1.0)的发光石英试管放在465nm光源下,每辐射5分钟检测一次溶液的吸光度。如图3所示,铱配合物对NADH有光催化氧化能力,且氧化程度随时间的增加而增加。
实验例3
铱配合物光照后产生过氧化氢的能力
使用双氧水试纸检测在465nm波长蓝光灯下光照30min(功率:10mW/cm2)和在黑暗中30min的铱配合物溶液(浓度:0.5μM/L)。双氧水试纸检测显示光照后有过氧化氢产生,未光照无过氧化氢产生。如图3所示,铱配合物产生活性氧的机制是Ⅰ型机制,通过光照后被激发产生过氧化氢,杀死区域肿瘤细胞。
实验例4
铱配合物应用于人宫颈癌的光动力治疗
利用MTT比色法来分析铱配合物对人宫颈癌(HeLa细胞)的抗增殖效应。MTT,中文名叫噻唑蓝,是一种四唑盐,在活细胞中,线粒体内的琥珀酸脱氢酶可将MTT还原,生成一种蓝紫色产物-甲臜(可溶于DMSO),且该产物在570nm处有吸收峰,故可用A570nm来分析细胞增殖情况。
MTT实验步骤如下:
(1)先复苏1管HeLa肿瘤细胞,用新鲜培养液(RPMI-1640培养基+10%胎牛血清+1%盘尼西林和链霉素)培养,传代2次后使用。
(2)待细胞到达对数生长期时,以5000个/孔的细胞密度接种至2块96孔板中(每孔用100μL培养液培养细胞,一板为光照组,另一板为黑暗对照组),送入恒温箱(310K,5%CO2/95%)中培养。
(3)待其贴壁后,吸出原有培养基,每孔加入100μL含有200、100、10、1、0.1、0.01、0.001、0.0001μM/L共8个浓度的铱配合物的新鲜培养液,轻轻晃匀,在恒温箱中避光孵育。
(4)孵育16h后,将光照组的细胞培养板置于465nm波长蓝光灯下光照30min(功率:11.7J/cm2),然后放回培养箱继续避光孵育32h(黑暗对照组的细胞一直置于温箱中避光培养)。
(5)孵育32h后,在每孔中加入10μL MTT(5mg/mL),于37℃温箱中继续孵育4h后,吸去上清液,每孔加150μL二甲基亚砜(DMSO),用酶联免疫检测仪检测A570nm,计算细胞增殖抑制率。
如图4所示,MTT法检测不同浓度的铱配合物在黑暗与光照处理条件下对人宫颈癌(HeLa细胞)的杀伤作用效果不同,在无光照情况下,对人宫颈癌株没有毒性,但是在光照条件下对人宫颈癌细胞株具有很强的生长抑制能力。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种葡萄糖修饰强光吸收铱光敏剂,其特征在于,其结构如式(1):
Figure FDA0003519292460000011
2.权利要求1所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,包括以下步骤:
S1.2-乙炔基吡啶与溴代四乙酰基葡萄糖反应得到ptgOH;
S2.将氯化铱(Ⅲ)和香豆素6反应得到铱(Ⅲ)μ-氯-桥连二聚体配合物;
S3.将步骤S2得到的铱(Ⅲ)μ-氯-桥连二聚体配合物与步骤S1得到的ptgOH反应获得[Ir(Co6)2ptgOH]Cl;
所述步骤S1中ptgOH的结构为:
Figure FDA0003519292460000012
所述步骤S3中[Ir(Co6)2ptgOH]Cl的结构为:
Figure FDA0003519292460000013
3.根据权利要求2所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,所述步骤S2中,氯化铱(Ⅲ)和香豆素6反应的溶剂为:体积比为(2~4):1的乙二醇乙醚/水。
4.根据权利要求2所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,所述步骤S3中,反应溶剂为:体积比为(2~4):1的二氯甲烷/甲醇。
5.根据权利要求2所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,所述步骤S1中,反应温度为20~30℃,搅拌反应15~25h。
6.根据权利要求2所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,所述步骤S2中,反应温度为110~115℃,反应时间为26~28h。
7.根据权利要求2所述葡萄糖修饰强光吸收铱光敏剂的制备方法,其特征在于,所述步骤S3中,反应温度为45~55℃,反应时间为8~10h。
8.权利要求1所述葡萄糖修饰强光吸收铱光敏剂在制备抗宫颈癌药物中的应用。
CN202011264997.3A 2020-11-13 2020-11-13 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用 Active CN112358519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011264997.3A CN112358519B (zh) 2020-11-13 2020-11-13 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011264997.3A CN112358519B (zh) 2020-11-13 2020-11-13 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112358519A CN112358519A (zh) 2021-02-12
CN112358519B true CN112358519B (zh) 2022-06-21

Family

ID=74516221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011264997.3A Active CN112358519B (zh) 2020-11-13 2020-11-13 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112358519B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603740B (zh) * 2021-08-06 2023-05-05 中山大学 一种采用橙色光激发铱配合物及其制备方法和应用
WO2023041947A1 (en) * 2021-09-17 2023-03-23 Debreceni Egyetem Half-sandwich transition metal complexes and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250149A (zh) * 2010-05-20 2011-11-23 复旦大学 一类弱配位键的离子型铱配合物及其制备方法和应用
CN110372754B (zh) * 2019-04-22 2020-05-22 中山大学 一种新型金属铱配合物及其制备方法和应用
CN110423260B (zh) * 2019-07-12 2022-08-02 中山大学 一种葡萄糖修饰的环金属化铱光敏剂及其制备方法和应用
CN111377975B (zh) * 2020-02-28 2023-01-31 中山大学 一种新的靶向线粒体的铱配合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112358519A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN110615815B (zh) 一种新型广谱肿瘤光治疗活性的金属配合物光敏剂及其制备方法和应用
CN112358519B (zh) 一种葡萄糖修饰强光吸收铱光敏剂及其制备方法和应用
CN110372754B (zh) 一种新型金属铱配合物及其制备方法和应用
CN101117340A (zh) 钌-蒽醌缀合物及其制备方法与作为光动力治疗光敏剂的应用
CN113201023B (zh) 近红外荧光钌配合物及其在肿瘤光催化药物中的应用
CN110423260B (zh) 一种葡萄糖修饰的环金属化铱光敏剂及其制备方法和应用
CN113512070B (zh) 一种具有近红外荧光的钌配合物及其制备方法和应用
CN111620894B (zh) 一种基于噻二唑并[3,4-g]喹喔啉结构的光敏剂及其制备方法和应用
CN113461740B (zh) 一种铱配合物及其制备方法和应用
CN111393482B (zh) 一种铂-铱异核金属配合物及其制备方法和应用
CN112480176A (zh) 一种新型靶向溶酶体钌光催化剂及其制备方法和应用
CN113603740B (zh) 一种采用橙色光激发铱配合物及其制备方法和应用
CN113603726B (zh) 一种双核铱配合物及其制备方法和应用
CN113583057B (zh) 一种高效金属铱配合物及其制备方法和应用
Gourdon‐Grünewaldt et al. Towards Copper (I) Clusters for Photo‐Induced Oxidation of Biological Thiols in Living Cells
CN115925617B (zh) 一种氘代钌配合物及其制备方法和在光催化抗肿瘤中的应用
CN114507260B (zh) 一种全共轭双核锇配合物及其制备方法和应用
CN117534711A (zh) 近红外光动力敏化剂铂配合物的合成与在制药领域的应用
CN116178305B (zh) 一类基于光诱导的卡宾前体化合物及其应用
CN109021030B (zh) 一类新型磷光钌配合物及其制备方法和应用
CN112294956B (zh) 一种金属铱光敏剂及其制备方法和应用
CN114957105B (zh) 一种双羰基配体及其制备方法和应用
CN116082348A (zh) 一种多氟多氨基修饰的锌酞菁光敏剂的合成方法及其应用
CN115925617A (zh) 一种氘代钌配合物及其制备方法和在光催化抗肿瘤中的应用
CN117946029A (zh) 一种红光发射的有机分子及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant