CN112351832A - 加湿用多孔质中空纤维膜的制造方法 - Google Patents

加湿用多孔质中空纤维膜的制造方法 Download PDF

Info

Publication number
CN112351832A
CN112351832A CN201980042188.7A CN201980042188A CN112351832A CN 112351832 A CN112351832 A CN 112351832A CN 201980042188 A CN201980042188 A CN 201980042188A CN 112351832 A CN112351832 A CN 112351832A
Authority
CN
China
Prior art keywords
hollow fiber
fiber membrane
porous hollow
humidification
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980042188.7A
Other languages
English (en)
Other versions
CN112351832B (zh
Inventor
高木贵行
江本刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Publication of CN112351832A publication Critical patent/CN112351832A/zh
Application granted granted Critical
Publication of CN112351832B publication Critical patent/CN112351832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/22Membrane contactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明提供一种加湿用多孔质中空纤维膜的制造方法,在以水为芯液将由聚苯砜树脂和亲水性聚乙烯吡咯烷酮的水溶性有机溶剂溶液构成的纺丝原液进行干湿式纺丝后,在120~220℃下进行交联处理1~20小时,接着浸渍于浓度5~500ppm的酸性溶液中,从而制造加湿用多孔质中空纤维膜。所得到的多孔质中空纤维膜能够在不损害其润湿性的情况下使得亲水性提高,能够提高多孔质中空纤维膜单体的加湿性能,因此,作为燃料电池用加湿膜是有效的。

Description

加湿用多孔质中空纤维膜的制造方法
技术领域
本发明涉及一种加湿用多孔质中空纤维膜的制造方法。更详细地,涉及一种用于燃料电池用的加湿膜组件的多孔质中空纤维膜的制造方法。
背景技术
使用多孔质中空纤维膜来进行除湿·加湿的方法被广泛实行,多孔质中空纤维膜方式具有不仅免维护、而且驱动时无需电源等许多优点。
作为选择性地透过水蒸气的膜,目前市售有许多种,但原材料和透过原理各不相同。在使用聚酰亚胺树脂作为原材料、通过溶解扩散法来进行除湿·加湿的多孔质膜中,虽然耐热性和强度优异,但存在水蒸气透过系数较低之类的缺点。另外,原材料使用氟系离子交换膜、以离子水合法为原理的膜虽然水蒸气透过系数高,但存在耐热性不足、膜本身非常昂贵之类的缺点。
另一方面,以聚醚酰亚胺树脂为原材料、通过毛细管冷凝法进行除湿·加湿的多孔质膜可兼顾水蒸气透过性和耐热性,在许多产业领域中被采用,但由于膜的绝对强度弱、特别是柔软性不足,因此,在对大量气体进行除湿·加湿时,存在多孔质中空纤维膜被切断之类的问题。
近年来,该多孔质中空纤维膜通常被用于燃料电池堆的隔膜加湿,但在燃料电池的情况下,车载使用时需要4000NL/分钟左右的大量的空气加湿,且定置使用时加湿驱动源使用热水的情况居多,无论哪种情况都特别需要对多孔质中空纤维膜赋予耐久性和耐热性。
实际上,在固体高分子型燃料电池的情况下,实际运行是在约60~80℃的温度、水蒸气饱和状态的气氛条件下。虽然聚醚酰亚胺树脂是耐热性优异、不易水解的树脂,但被指出在湿润加热条件下伸长率、柔软性比以往明显降低,从而导致多孔质中空纤维膜的切断。
进而,已知聚砜树脂原材料通常用作水过滤用超滤膜、精密过滤膜等,在湿润加湿条件下的强度稳定性优异,但存在难以获得适当的细孔径以应用毛细管冷凝法的倾向,有时还会观察到水在气体侧渗出等不良状况。
本申请人已经提出了以N-甲基-2-吡咯烷酮水溶液为芯液、使用由聚苯砜树脂和亲水性聚乙烯吡咯烷酮的水溶性有机溶剂溶液构成的纺丝原液进行干湿式纺丝而得到多孔质聚苯砜树脂中空纤维膜的方法(专利文献1),但其中描述的所得到的多孔质中空纤维膜适用于油水分离用超滤膜等,并非用于透过水蒸气的目的。
作为不仅气体透过性优异、而且不会向气体侧漏水、强度稳定性也优异的能够有效用作燃料电池用加湿膜等的水蒸气透过膜的制造方法,本申请人还提出了以水为芯液、将由聚苯砜树脂和亲水性聚乙烯吡咯烷酮〔PVP〕的水溶性有机溶剂溶液构成的纺丝原液进行干湿式纺丝的方法(专利文献2)。
在此,在燃料电池用加湿膜组件中,为了节省空间、降低成本,要求提高多孔质中空纤维膜单体的性能。为了提高性能,已知通过酸处理来提高润湿性的方法,但对于加湿用多孔质中空纤维膜而言,即使通过酸处理中空纤维膜母材的润湿性提高,也存在PVP等亲水化物质溶出、其结果多孔质中空纤维膜单体的加湿性能降低之类的课题。
现有技术文献
专利文献
专利文献1:日本特开2001-219043号公报
专利文献2:日本特开2004-290751号公报
发明内容
发明要解决的技术问题
本发明的目的是提供一种多孔质中空纤维膜的制造方法,能够在不损害多孔质中空纤维膜的润湿性的情况下使得亲水性提高,从而提高多孔质中空纤维膜单体的加湿性能。
用于解决技术问题的方案
上述本发明的目的可通过如下方法来实现:在以水为芯液将由聚苯砜树脂和亲水性聚乙烯吡咯烷酮的水溶性有机溶剂溶液构成的纺丝聚苯砜树脂原液进行干湿式纺丝后,在120~220℃下进行交联处理1~20小时,接着浸渍于浓度5~500ppm的酸性溶液中,从而制造加湿用多孔质中空纤维膜。
发明的效果
本发明的加湿用多孔质中空纤维膜可实现如下优异效果:通过在利用热处理进行聚乙烯吡咯烷酮的交联处理后进行酸处理,能够抑制亲水化物质因酸处理而溶出。因而,能够发挥良好的均衡性能:抑制因亲水化物质从多孔质中空纤维膜中溶出而导致的亲水性降低,同时通过酸处理使得中空纤维膜的润湿性提高。
附图说明
图1是对关于实施例和各比较例中所得到的中空纤维膜所测定的水蒸气透过系数和接触角进行比较的图表。
具体实施方式
聚苯砜树脂是具有以下所示的重复单元即亚联苯基、且不具有异亚丙基的物质,实际上可以直接使用市售品,例如Amoco公司产品RADEL R系列产品等。
Figure BDA0002852651680000031
关于将聚苯砜作为制膜成分的纺丝原液,在其中添加亲水性聚乙烯吡咯烷酮和水溶性有机溶剂,形成纺丝原液。作为水溶性有机溶剂,可使用二甲基甲酰胺、二甲基乙酰胺、N-甲基-2-吡咯烷酮等非质子性极性溶剂。以在纺丝原液中占约10~40重量%、优选约15~30重量%那样的浓度来使用聚苯砜树脂。如果在这样的浓度范围以外,则无法得到具有所需孔径和膜强度的多孔质中空纤维膜。
作为亲水性高分子物质而添加的聚乙烯吡咯烷酮的分子量为约1000(K-15)~1200000(K-90)、优选为约10000(K-30)~1200000(K-90),以相对于每100重量份聚苯砜树脂为约50~150重量份、优选约50~100重量份的比例来使用。以这样的比例添加聚乙烯吡咯烷酮对多孔质膜的表面孔径等结构控制有一些影响,但可实现进一步降低多孔质膜的空气透过速度、即提高气体阻隔性、提高水蒸气透过速度的效果。
使用这样的纺丝原液的干湿式纺丝以水为芯液来进行,对于在水或水性凝固浴中凝固的多孔质中空纤维膜,进行水洗,且在121℃的高压釜中进行处理约30~90分钟并进行热水洗涤处理后,进行交联处理。聚乙烯吡咯烷酮的交联处理在约120~220℃、优选约150~190℃、进一步优选约175~190℃下进行约1~20小时、优选约5~12小时左右。
如果不进行交联处理,则即使进行酸处理也无法抑制亲水化物质的溶出,如后述比较例3所示可观察到水蒸气透过系数降低,难以确保润湿性。
经交联处理的多孔质中空纤维膜进一步被浸渍于浓度约5~500ppm、优选约50~300ppm的酸性溶液中,进行酸处理。
在酸处理时,可使用:硫酸;盐酸、氢溴酸、氢碘酸等氢卤酸;次氯酸等卤氧酸;氟磺酸、甲磺酸等磺酸类;硝酸;磷酸;硼酸;六氟偶锑酸氢;四氟硼酸;六氟磷酸;乙酸等羧酸类;抗坏血酸等。
在酸处理后,经由干燥处理来制造多孔质中空纤维膜。酸处理在约60~110℃、优选约70~100℃下进行约24~150小时,酸处理后在约40~60℃下进行干燥处理约12~48小时。
通过进行酸处理,如对比实施例和比较例2的结果所示,多孔质中空纤维膜的润湿性明显提高。然而,如果用于酸处理的酸的浓度高于上述范围,则会出现多孔质中空纤维膜的物性降低,不理想。
实施例
下面,针对实施例来说明本发明。
实施例
使20重量份的聚苯砜树脂(Solvay Specialty Polymers公司产品RADEL R-5000)和15重量份的聚乙烯吡咯烷酮(BASF公司产品Kollidon30)溶解于65重量份的二甲基甲酰胺中,制备制膜原液。接下来,在双环状纺丝喷嘴的内侧喷嘴喷出水作为芯液,使用齿轮泵从双环状纺丝喷嘴的外侧喷出制膜原液。使喷出的制膜原液在水凝固液中凝固后,使用卷绕机卷绕在中空纤维膜骨架上。在卷绕中空纤维膜后,将中空纤维膜在121℃下进行高压釜处理60分钟。
将进行了高压釜处理的中空纤维膜放入恒温槽中,在175℃、9小时的条件下进行热处理而使聚乙烯吡咯烷酮交联后,将交联处理后的多孔质中空纤维膜浸渍于浓度300ppm的硫酸水溶液中,在80℃下进行酸处理150小时。浸渍结束后,将多孔质中空纤维膜放入恒温槽中,在55℃下进行干燥24小时。
使用所得到的多孔质中空纤维膜,进行水蒸气透过试验和针对中空纤维膜的水的接触角的测定,结果水蒸气透过系数为0.168g/分钟/cm2/MPa,接触角为71.39°。
比较例1
在实施例中,交联处理及酸处理均未进行,结果得到的多孔质中空纤维膜的水蒸气透过系数为0.102g/分钟/cm2/MPa,接触角为81.10°。
比较例2
在实施例中,未进行酸处理,结果得到的多孔质中空纤维膜的水蒸气透过系数为0.120g/分钟/cm2/MPa,接触角为79.30°。
比较例3
在实施例中,未进行交联处理,结果得到的多孔质中空纤维膜的水蒸气透过系数为0.066g/分钟/cm2/MPa,接触角为82.42°。
产业上的可利用性
通过本发明的制造方法得到的多孔质中空纤维膜能够在不损害多孔质中空纤维膜的润湿性的情况下提高亲水性,因此,多孔质中空纤维膜单体的加湿性能高,因而可有效用作燃料电池用的加湿膜组件中使用的多孔质中空纤维膜。
权利要求书(按照条约第19条的修改)
1.一种加湿用多孔质中空纤维膜的制造方法,其特征在于,
在以水为芯液将由聚苯砜树脂和亲水性聚乙烯吡咯烷酮的水溶性有机溶剂溶液构成的纺丝原液进行干湿式纺丝后,在120~220℃下进行交联处理1~20小时,接着浸渍于包含浓度5~500ppm的酸的酸性溶液中。
2.根据权利要求1所述的加湿用多孔质中空纤维膜的制造方法,其中,相对于100重量份的聚苯砜树脂,使用50~150重量份的亲水性聚乙烯吡咯烷酮。
3.根据权利要求1所述的加湿用多孔质中空纤维膜的制造方法,其中,在所述交联处理之前进行高压釜处理。
4.根据权利要求1、2或3所述的加湿用多孔质中空纤维膜的制造方法,其中,所述加湿用多孔质中空纤维膜被用作燃料电池用加湿膜。

Claims (4)

1.一种加湿用多孔质中空纤维膜的制造方法,其特征在于,
在以水为芯液将由聚苯砜树脂和亲水性聚乙烯吡咯烷酮的水溶性有机溶剂溶液构成的纺丝原液进行干湿式纺丝后,在120~220℃下进行交联处理1~20小时,接着浸渍于浓度5~500ppm的酸性溶液中。
2.根据权利要求1所述的加湿用多孔质中空纤维膜的制造方法,其中,相对于100重量份的聚苯砜树脂,使用50~150重量份的亲水性聚乙烯吡咯烷酮。
3.根据权利要求1所述的加湿用多孔质中空纤维膜的制造方法,其中,在所述交联处理之前进行高压釜处理。
4.根据权利要求1、2或3所述的加湿用多孔质中空纤维膜的制造方法,其中,所述加湿用多孔质中空纤维膜被用作燃料电池用加湿膜。
CN201980042188.7A 2018-06-26 2019-06-20 加湿用多孔质中空纤维膜的制造方法 Active CN112351832B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018120695 2018-06-26
JP2018-120695 2018-06-26
PCT/JP2019/024474 WO2020004212A1 (ja) 2018-06-26 2019-06-20 加湿用多孔質中空糸膜の製造法

Publications (2)

Publication Number Publication Date
CN112351832A true CN112351832A (zh) 2021-02-09
CN112351832B CN112351832B (zh) 2022-05-24

Family

ID=68985081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980042188.7A Active CN112351832B (zh) 2018-06-26 2019-06-20 加湿用多孔质中空纤维膜的制造方法

Country Status (5)

Country Link
US (1) US20210268449A1 (zh)
EP (1) EP3815773A4 (zh)
JP (1) JP6997314B2 (zh)
CN (1) CN112351832B (zh)
WO (1) WO2020004212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115400606A (zh) * 2021-05-26 2022-11-29 河北金士顿科技有限责任公司 一种燃料电池增湿器用中空纤维膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377158B1 (ko) * 2017-10-27 2022-03-23 에누오케 가부시키가이샤 가습막용 폴리페닐술폰 중공사 막의 제조법
US20240157307A1 (en) * 2021-04-06 2024-05-16 Nok Corporation Method for manufacturing hollow fiber membrane
CN114377555A (zh) * 2022-01-19 2022-04-22 天津鼎芯膜科技有限公司 一种中空纤维加湿膜及其制备方法和应用
CN116926718B (zh) * 2023-08-07 2024-02-27 有研资源环境技术研究院(北京)有限公司 一种共价有机框架中空纤维膜、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557895A (en) * 1976-11-05 1979-12-12 Nl Industries Inc Polyurethane composition and articles thereof
JP2004290751A (ja) * 2003-03-26 2004-10-21 Nok Corp 水蒸気透過膜の製造法
JP2007162176A (ja) * 2005-12-15 2007-06-28 Nissan Motor Co Ltd 中空糸及び燃料電池用加湿器
JP2011067812A (ja) * 2009-08-24 2011-04-07 Toray Ind Inc 水蒸気透過膜、中空糸膜および加湿装置
CN104629074A (zh) * 2015-02-04 2015-05-20 四川大学 亲水性表面交联超高分子量聚乙烯成型材料及其制备方法
CN105722582A (zh) * 2014-02-06 2016-06-29 甘布罗伦迪亚股份公司 用于血液净化的血液透析器
WO2017043233A1 (ja) * 2015-09-07 2017-03-16 Nok株式会社 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219043A (ja) 2000-02-10 2001-08-14 Nok Corp ポリフェニルスルホン中空糸膜の製造法
JP2002166144A (ja) 2000-11-30 2002-06-11 Fuji Photo Film Co Ltd フィルターカートリッジ及びろ過方法
WO2006135966A1 (en) 2005-06-20 2006-12-28 Siemens Water Technologies Corp. Cross linking treatment of polymer membranes
US7959808B2 (en) 2008-10-31 2011-06-14 General Electric Company Polysulfone membranes methods and apparatuses
JP5906665B2 (ja) 2011-10-28 2016-04-20 Nok株式会社 多孔質膜の製造方法
KR102377158B1 (ko) 2017-10-27 2022-03-23 에누오케 가부시키가이샤 가습막용 폴리페닐술폰 중공사 막의 제조법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557895A (en) * 1976-11-05 1979-12-12 Nl Industries Inc Polyurethane composition and articles thereof
JP2004290751A (ja) * 2003-03-26 2004-10-21 Nok Corp 水蒸気透過膜の製造法
JP2007162176A (ja) * 2005-12-15 2007-06-28 Nissan Motor Co Ltd 中空糸及び燃料電池用加湿器
JP2011067812A (ja) * 2009-08-24 2011-04-07 Toray Ind Inc 水蒸気透過膜、中空糸膜および加湿装置
CN105722582A (zh) * 2014-02-06 2016-06-29 甘布罗伦迪亚股份公司 用于血液净化的血液透析器
CN104629074A (zh) * 2015-02-04 2015-05-20 四川大学 亲水性表面交联超高分子量聚乙烯成型材料及其制备方法
WO2017043233A1 (ja) * 2015-09-07 2017-03-16 Nok株式会社 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法
CN107921379A (zh) * 2015-09-07 2018-04-17 Nok株式会社 非溶剂致相分离法用制膜原液、和使用其的多孔质中空纤维膜的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115400606A (zh) * 2021-05-26 2022-11-29 河北金士顿科技有限责任公司 一种燃料电池增湿器用中空纤维膜及其制备方法
CN115400606B (zh) * 2021-05-26 2024-02-13 河北金士顿科技有限责任公司 一种燃料电池增湿器用中空纤维膜及其制备方法

Also Published As

Publication number Publication date
JP6997314B2 (ja) 2022-02-04
CN112351832B (zh) 2022-05-24
EP3815773A4 (en) 2022-03-16
US20210268449A1 (en) 2021-09-02
WO2020004212A1 (ja) 2020-01-02
EP3815773A1 (en) 2021-05-05
JPWO2020004212A1 (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
CN112351832B (zh) 加湿用多孔质中空纤维膜的制造方法
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JP5927712B2 (ja) 高性能膜
JP2011502775A5 (zh)
CN110917912B (zh) 内压式复合中空纤维纳滤膜丝及其制备方法
CA2996769A1 (en) Membrane-forming dope for non-solvent induced phase separation methods, and a method for producing a porous hollow fiber membrane using the same
CN111278543B (zh) 加湿膜用聚苯砜中空纤维膜的制造方法
JP4100215B2 (ja) 水蒸気透過膜の製造法
CN115041024A (zh) 非对称再生纤维素除病毒平板过滤膜的制备方法及产品
JP4057217B2 (ja) 耐溶剤性微孔質ポリベンゾイミダゾール薄膜の製造方法
CN113289499A (zh) 内压式中空纤维超滤膜及其制备方法和应用
CN113304629A (zh) 一种基于聚醚砜中空纤维超滤膜的复合纳滤膜的制备方法
AU2006261581B2 (en) Cross linking treatment of polymer membranes
KR102593611B1 (ko) 셀룰로오스계 고분자 정밀여과 분리막의 제조방법
JP4840222B2 (ja) 加湿用膜およびその製造方法
KR102357400B1 (ko) 중공사형 나노 복합막 및 이의 제조방법
CN114749035B (zh) 低压大通量中空纤维纳滤膜、其制备方法及其应用
JP2009101346A (ja) 加湿用膜およびその製造方法
KR101572732B1 (ko) 건식보관이 가능한 수처리용 고분자 중공사 분리막의 후처리 방법 및 이를 통해 제조된 수처리용 고분자 중공사 분리막
JP2003071259A (ja) ポリスルホン系中空糸膜の処理方法
CN115970525A (zh) 一种超薄芳香族酰氯纳滤膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant