WO2017043233A1 - 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法 - Google Patents

非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法 Download PDF

Info

Publication number
WO2017043233A1
WO2017043233A1 PCT/JP2016/073134 JP2016073134W WO2017043233A1 WO 2017043233 A1 WO2017043233 A1 WO 2017043233A1 JP 2016073134 W JP2016073134 W JP 2016073134W WO 2017043233 A1 WO2017043233 A1 WO 2017043233A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
phase separation
induced phase
solvent
solution
Prior art date
Application number
PCT/JP2016/073134
Other languages
English (en)
French (fr)
Inventor
孝利 佐藤
健祐 渡辺
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to US15/755,278 priority Critical patent/US20180243700A1/en
Priority to EP16844097.2A priority patent/EP3348323A4/en
Priority to KR1020187006741A priority patent/KR20180048692A/ko
Priority to CA2996769A priority patent/CA2996769A1/en
Priority to CN201680051705.3A priority patent/CN107921379A/zh
Publication of WO2017043233A1 publication Critical patent/WO2017043233A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0208Other waste gases from fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane-forming solution for non-solvent induced phase separation and a method for producing a porous hollow fiber membrane using the same. More specifically, a membrane stock solution for non-solvent induced phase separation method used for producing a porous hollow fiber membrane used as a water vapor permeable membrane such as a humidifying membrane for fuel cells, and a method for producing a porous hollow fiber membrane using the same About.
  • Porous hollow fiber membranes have pores of gas separable size, exhibit excellent gas separation among various inorganic membranes, and can be used in environments where heat resistance and chemical resistance are required. It is. From this, in recent years, the application to a water vapor permeable membrane etc. which humidifies the diaphragm of a fuel cell stack using a porous hollow fiber membrane is spreading.
  • the water vapor permeable membrane for humidifying the membrane of the fuel cell stack is prepared from a spinning solution comprising a water soluble organic solvent solution of polyphenyl sulfone resin and hydrophilic polyvinyl pyrrolidone.
  • Hollow fiber membranes have been proposed. Such hollow fiber membranes do not significantly decrease in elongation even after immersion in warm water such as 95 ° C. for 280 hours, and are thus excellent in membrane strength and durability.
  • the performance of the water vapor permeable membrane conventionally proposed tends to decrease in performance as the water vapor permeable membrane as the use progresses.
  • Such a tendency is considered to be caused, for example, by the decrease in hydrophilicity of polyvinyl pyrrolidone used as one component of the membrane-forming solution under high temperature environment. Therefore, further improvement is required to maintain performance even after continuous use in a high temperature environment.
  • An object of the present invention is to provide a non-solvent-induced for use in the production of a highly functional porous hollow fiber membrane that does not show a significant decrease in water vapor transmission performance even after use in a high temperature environment such as 100 to 120 ° C. It is an object of the present invention to provide a membrane-forming solution for phase separation method and a water vapor permeable membrane using the same.
  • the object of the present invention is to use 15 to 40% by weight of polysulfone resin, 5 to 60% by weight of polyvinyl pyrrolidone and 0.1 to 10% by weight of polyoxyethylene sorbitan fatty acid esters in water-soluble organic solvent.
  • Film stock solution for non-solvent induced phase separation dissolved in solution And it is achieved by producing a porous hollow fiber membrane by spinning the aqueous solution as a core solution by non-solvent induced phase separation method using this membrane-forming solution.
  • the porous hollow fiber membrane produced by using the membrane-forming solution according to the present invention can maintain high hydrophilicity inside the pores of the membrane even under high-temperature environment, so it can be used in high-temperature environment such as 120 ° C. Even when the water vapor permeable membrane is used, the effect of reducing the performance is small.
  • polysulfone-based resin examples include polysulfone resin, polyphenylsulfone resin, polyethersulfone resin, polyarylethersulfone resin, bisphenol A-type polysulfone resin and the like, preferably polyphenylsulfone resin.
  • Polyphenyl sulfone resin refers to one having a phenyl sulfone group and an ether bond in the main chain, and a repeating unit shown below That is, it has a biphenylene group and does not have an isopropylidene group, and in fact, a commercially available product, for example, the product of AMOCO product RADEL R series can be used as it is.
  • polyether sulfone resin commercially available products such as those of Solvay Advanced Polymer Co., Ltd., product Radel series, products of BASF Corp. Ultra Zone series, Sumitomo Chemical Co., Ltd. product Sumica Excel PES series can be used.
  • polysulfone-based resins are used at a concentration of about 15 to 40% by weight, preferably about 15 to 30% by weight, in the stock solution.
  • concentration of the polysulfone-based resin is higher than this, the viscosity of the membrane forming solution extremely increases to lower the workability of spinning, or the density of the membrane is too high to lower the water vapor transmission performance.
  • the strength of the membrane will be reduced, and the membrane can not withstand practical use, or the pore diameter of the membrane will be too large to allow gases other than water vapor to permeate, and the performance as a water vapor permeable membrane appears It may not be possible.
  • a film-forming solution containing a polysulfone-based resin as a film-forming component is prepared by adding thereto hydrophilic polyvinyl pyrrolidone, polyoxyethylene sorbitan fatty acid esters and a water-soluble organic solvent.
  • polyvinyl pyrrolidone to be added as a hydrophilic polymer substance those having a molecular weight of about 1000 (K-15) to 1 200 000 (K-90), preferably about 10000 (K-30) to 12 000 000 (K-90) And a concentration of about 5 to 60% by weight, preferably about 15 to 40% by weight, in the stock solution.
  • concentration of the hydrophilic polymer substance is higher than this, the viscosity of the film-forming solution extremely increases and the workability is lowered.
  • polyvinyl pyrrolidone in such a proportion has some influence on the structural control of the surface pore diameter of the porous membrane, etc., but it reduces the air permeation rate of the porous membrane more than that, that is, the gas barrier property The effect of improving the water vapor transmission rate is achieved.
  • polyoxyethylene sorbitan fatty acid esters examples include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate and the like, preferably having high hydrophilicity.
  • Polyoxyethylene sorbitan monolaurate is used.
  • the polyoxyethylene sorbitan fatty acid esters are used at a concentration of about 0.1 to 10% by weight, preferably about 0.5 to 5% by weight, in the stock solution.
  • the proportion of polyoxyethylene sorbitan fatty acid esters is lower than this, the performance as a water vapor permeable membrane will be greatly reduced in the use under the high temperature environment of the water vapor permeable membrane, while if higher than this However, the phase state of the membrane forming solution becomes unstable, the dimensions and performance of the membrane become unstable, and the workability of spinning decreases.
  • Patent Document 2 describes a polyphenylsulfone porous membrane by a thermally induced phase separation method of polyphenylsulfone and a solvent, in which case an embodiment using an inorganic particle and polyoxyethylene sorbitan fatty acid ester as a coagulant is also used. Although described, flocculants are said to be used to control the aggregation state of the inorganic particles and to stabilize the molten state of the entire system.
  • Patent Document 3 describes a separation membrane excellent in water permeability, separation characteristics, and low fouling property by an efficient membrane washing method in which the amount of washing liquid used is suppressed, in which case as a pore opening agent
  • a pore opening agent an embodiment in which polyoxyethylene sorbitan fatty acid ester is used is also described, it is stated that this open-pore surfactant is characterized in that it remains in the porous layer and does not decrease in water permeability or inhibition even when dried. It is done. A similar description can also be found in US Pat.
  • Patent Documents 2 to 4 neither teach nor suggest the effect of the present invention that the water vapor transmission performance is not significantly reduced even after use in a high temperature environment of 100 to 120 ° C. .
  • aprotic polar solvents such as methanol, ethanol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like, preferably dimethylacetamide, N-methyl-2-pyrrolidone are used.
  • a homogeneous polymer solution consisting of a polymer and a solvent, which does not contain inorganic particles, causes phase separation due to the change in concentration due to the infiltration of the nonsolvent or the evaporation of the solvent to the external atmosphere
  • a separation membrane can be produced by developing non-solvent-induced phase separation in particular, and a dry-wet spinning method or a wet spinning method is specifically used.
  • the dry-wet spinning using such a membrane-forming solution is carried out using an aqueous solution, generally water as a core solution, and the porous hollow fiber membrane coagulated in water or an aqueous coagulating solution is washed with water and then dried.
  • the washing with water is carried out with normal temperature or warm water, pressurized water with an autoclave (for example, 121 ° C.) or the like.
  • Example 20 parts by weight of polyphenylsulfone resin (Sorvai Specialty Polymers product RADEL R-5000), 15 parts by weight of polyvinylpyrrolidone (genuine chemical product K-30), polyoxyethylene sorbitan monolaurate (Kanto Chemical product tween 20) 1
  • a uniform film-forming stock solution was prepared at room temperature consisting of parts by weight and 64 parts by weight of dimethylacetamide.
  • the prepared membrane stock solution was extruded into a water coagulation bath using water as a core liquid using a double ring structure spinning nozzle, and dry and wet spinning was performed. Thereafter, the membrane was washed in pressurized water at 121 ° C. for 1 hour and then dried in an oven at 60 ° C. to obtain a porous polyphenylsulfone resin hollow fiber membrane having an outer diameter of 1,000 ⁇ m and an inner diameter of 700 ⁇ m.
  • the water vapor permeation rate, the pure water permeation rate, and the air permeation rate were measured for the obtained porous polyphenylsulfone resin hollow fiber membrane.
  • Water vapor transmission rate Three hollow fiber membranes with an effective length of 17 cm are used to make open-ended hollow fiber membrane modules, humidified air with RH 90% from the outside of the membrane, and dry air inside the membrane. The flow rate was measured, and the water vapor transmission rate per time was measured, and the unit membrane area, the unit time, the water vapor partial pressure difference between the outside and the inside of the membrane, and the air permeation amount per 1MPa were calculated.
  • Air permeation rate A hollow fiber membrane with an effective length of 15 cm was made into a loop shape, using a module in which both ends of the loop were fixed to a glass tube , Air at a temperature of 25 ° C and a pressure of 50 kPa from the inside to the outside of the membrane Applied to measure the air permeability per time, unit membrane area, unit time was calculated numerical value in terms of air permeation quantity per 1MPa
  • Comparative Example 1 In the examples, polyoxyethylene sorbitan monolaurate was not used, and the amount of dimethylacetamide was changed to 65 parts by weight and used.
  • Comparative example 2 In the examples, polyvinyl pyrrolidone was not used, and the amount of polyoxyethylene sorbitan monolaurate was changed to 15 parts by weight, and the amount of dimethylacetamide was changed to 65 parts by weight.
  • the porous hollow fiber membrane according to the present invention does not show a significant drop in water vapor permeability even after use in a high temperature environment of 100 to 120 ° C., it can be used as a water vapor permeable membrane or the like used in fuel cells It can be used effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

製膜原液中、15~40重量%のポリスルホン系樹脂、5~60重量%のポリビニルピロリドンおよび0.1~10重量%のポリオキシエチレンソルビタン脂肪酸エステル類を、水溶性有機溶媒溶液に溶解させた非溶剤誘起相分離法用製膜原液。この製膜原液を用い、水性液を芯液として非溶剤誘起相分離法により紡糸し、多孔質中空糸膜を製造する。得られた高機能な多孔質中空糸膜は、例えば100~120℃といった高温環境下での使用後においても、水蒸気透過性能に大きな低下がみられることがないので、燃料電池の水蒸気透過膜として好適に用いられる。

Description

非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法
 本発明は、非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法に関する。さらに詳しくは、燃料電池用加湿膜等の水蒸気透過膜として用いられる多孔質中空糸膜の製造に用いられる非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法に関する。
 多孔質中空糸膜は、ガス分離可能なサイズの孔を有しており、種々の無機膜の中でもすぐれた気体分離性を示し、耐熱性、耐薬品性が要求される環境下においても使用可能である。このことから、近年では、多孔質中空糸膜を用いて燃料電池スタックの隔膜の加湿を行うといった水蒸気透過膜等への用途が広がってきている。
 燃料電池スタックの隔膜の加湿を行う水蒸気透過膜としては、例えば特許文献1に開示されているように、ポリフェニルスルホン樹脂および親水性ポリビニルピロリドンの水溶性有機溶媒溶液よりなる紡糸原液から作製される中空糸膜が提案されている。かかる中空糸膜は、95℃といった温水に280時間浸漬した後においても、伸度が大幅に低下することがなく、そのため膜強度および耐久性の点ですぐれている。
 ここで、燃料電池は一般的に高温である方が効率がよくなる傾向にあることから、100~120℃といった高温の環境下における性能の維持が求められている。したがって、燃料電池システムに組み込まれている水蒸気透過膜にはかかる温度条件下でその性能を発現することが求められている。
 しかるに、従来より提案されてきた水蒸気透過膜は、120℃の高温水蒸気にさらされる環境下においては、使用が進むにつれて水蒸気透過膜としての性能が低下する傾向にある。かかる傾向は、例えば製膜原液の一成分として用いられているポリビニルピロリドンが高温環境下でその親水性が低下してしまうことが原因であると考えられる。したがって、高温環境下での継続使用後においても性能を維持し得るように、さらなる改良が求められている。
特許4,100,215号公報 特開2005-193194号公報 特開2012-143749号公報 特開2005-270707号公報
 本発明の目的は、例えば100~120℃といった高温環境下での使用後においても、水蒸気透過性能に大きな低下がみられることがない高機能な多孔質中空糸膜の製造に用いられる非溶剤誘起相分離法用製膜原液およびこれを用いた水蒸気透過膜を提供することにある。
 かかる本発明の目的は、製膜原液中、15~40重量%のポリスルホン系樹脂、5~60重量%のポリビニルピロリドンおよび0.1~10重量%のポリオキシエチレンソルビタン脂肪酸エステル類を、水溶性有機溶媒溶液に溶解させた非溶剤誘起相分離法用製膜原液、
およびこの製膜原液を用い、水性液を芯液として非溶剤誘起相分離法により紡糸し、多孔質中空糸膜を製造することによって達成される。
 本発明に係る製膜原液を用いて製造された多孔質中空糸膜は、高温環境下においても膜の細孔内部の親水性を高く保持できることから、120℃といった高温環境下での使用にあっても、水蒸気透過膜としての性能の低下が小さいといったすぐれた効果を奏する。
 ポリスルホン系樹脂としては、例えばポリスルホン樹脂、ポリフェニルスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリールエーテルスルホン樹脂、ビスフェノールA型ポリスルホン樹脂などが挙げられ、好ましくはポリフェニルスルホン樹脂が用いられる。
 ポリフェニルスルホン樹脂は、主鎖内にフェニルスルホン基およびエーテル結合を有するものをいい、以下に示されるくり返し単位
Figure JPOXMLDOC01-appb-I000001
即ちビフェニレン基を有し、イソプロピリデン基を有しないものであり、実際には市販品、例えばアモコ社製品RADEL Rシリーズのもの等をそのまま使用することができる。
 ポリエーテルスルホン樹脂としては、市販品、例えばソルベイアドバンストポリマー社製品レーデルシリーズ、BASF社製品ウルトラゾーンシリーズ、住友化学工業製品スミカエクセルPESシリーズのもの等を用いることができる。
 これらのポリスルホン系樹脂は、製膜原液中約15~40重量%、好ましくは約15~30重量%を占めるような濃度で用いられる。ポリスルホン系樹脂の濃度がこれより高い場合には、製膜原液の粘度が極端に上昇して紡糸の作業性が低下したり、膜の密度が高すぎて水蒸気透過性能が低下したりするようになり、一方これより低い場合には膜の強度が小さくなり、実用に耐え得なくなったり、膜の孔径が大きくなりすぎて水蒸気以外の気体が透過するようになり、水蒸気透過膜としての性能が発現できなくなる可能性がある。
 ポリスルホン系樹脂を製膜成分とする製膜原液は、そこに親水性ポリビニルピロリドン、ポリオキシエチレンソルビタン脂肪酸エステル類および水溶性有機溶媒が添加されて調製される。
 親水性高分子物質として添加されるポリビニルピロリドンとしては、分子量が約1000(K-15)~1200000(K-90)、好ましくは約10000(K-30)~1200000(K-90)のものが、製膜原液中約5~60重量%、好ましくは約15~40重量%を占めるような濃度で用いられる。親水性高分子物質の濃度がこれより高い場合には、製膜原液の粘度が極端に上昇して作業性が低下するようになる。
 ポリビニルピロリドンのこのような割合での添加は、多孔質膜の表面孔径等の構造制御にも多少の影響はみられるが、それ以上に多孔質膜の空気透過速度を低下させ、すなわちガスバリア性を向上させ、水蒸気透過速度を向上させるという効果を達成させる。
 ポリオキシエチレンソルビタン脂肪酸エステル類としては、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等が、好ましくは親水性の高いポリオキシエチレンソルビタンモノラウラートが用いられる。ポリオキシエチレンソルビタン脂肪酸エステル類は、製膜原液中約0.1~10重量%、好ましくは約0.5~5重量%を占めるような濃度で用いられる。ポリオキシエチレンソルビタン脂肪酸エステル類の割合がこれより低い場合には、水蒸気透過膜の高温環境下での使用において、水蒸気透過膜としての性能が大きく低下するようになり、一方これより高い場合には、製膜原液の相状態が不安定になり、膜の寸法や性能が安定しなかったり、紡糸の作業性が低下したりするようになる。
 特許文献2には、ポリフェニルスルホンと溶剤との熱誘起相分離法によるポリフェニルスルホン多孔質膜が記載されており、その際無機粒子および凝集剤としてのポリオキシエチレンソルビタン脂肪酸エステルを用いる態様も記載されているが、凝集剤は無機粒子の凝集状態を制御するためや、系全体の溶融状態の安定化のために用いられると述べられている。
 特許文献3には、使用する洗浄液の量を抑制した効率的な膜の洗浄方法によって、透水性、分離特性、低ファウリング性にすぐれた分離膜が記載されており、その際開孔剤としてポリオキシエチレンソルビタン脂肪酸エステルが用いられる態様も記載されているが、この開孔剤界面活性剤は、多孔質層に残存し乾燥させても透水性、阻止性が低下しないという特徴を有すると述べられている。同様の記載は、特許文献4にもみられる。
 これらの特許文献2~4は、100~120℃といった高温環境下での使用後においても、水蒸気透過性能に大きな低下がみられることがないといった、本発明の効果を決して教示も示唆もしていない。
 水溶性有機溶媒としては、メタノール、エタノール、テトラヒドロフランあるいはジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒、好ましくはジメチルアセトアミド、N-メチル-2-ピロリドンが用いられる。
 非溶剤誘起相分離法では、無機粒子を含有しない、ポリマーと溶媒とからなる均一なポリマー溶液は、非溶媒の進入や溶媒の外部雰囲気への蒸発による濃度変化によって相分離を起し、凝固浴中で非溶剤誘起相分離を発現させることで、分離膜を製造することができ、具体的には乾湿式紡糸法または湿式紡糸法が用いられる。
 このような製膜原液を用いての乾湿式紡糸は、水性液、一般には水を芯液として行われ、水または水性凝固溶中で凝固させた多孔質中空糸膜は水洗後乾燥させる。水洗は、常温あるいは温水、オートクレーブによる加圧水(例えば121℃)などにより行われる。
 次に、実施例について本発明を説明する。
 実施例
 ポリフェニルスルホン樹脂(ソルベイスペシャルティポリマーズ社製品RADEL R-5000)20重量部、ポリビニルピロリドン(純正化学製品K-30)15重量部、ポリオキシエチレンソルビタンモノラウラート(関東化学製品ツイーン20)1重量部およびジメチルアセトアミド64重量部からなる、室温で均一な製膜原液を調製した。
 調製された製膜原液を、二重環状構造の紡糸ノズルを用い、水を芯液として水凝固浴中に押し出し乾湿式紡糸を行った。その後、121℃の加圧水中で1時間洗浄してから60℃のオーブン中で乾燥し、外径1,000μm、内径700μmの多孔質ポリフェニルスルホン樹脂中空糸膜を得た。
 得られた多孔質ポリフェニルスルホン樹脂中空糸膜について、水蒸気透過速度、純水透過速度、空気透過速度の測定が行われた。
 水蒸気透過速度:有効長17cmの中空糸膜を3本を用いて、両端開放型中空糸膜モジュールを作製し、膜の外側からRH 90%の加湿空気を、また膜の内側に乾燥空気をそれぞれ流して、時間当りの水蒸気透過量を測定し、単位膜面積、単位時間、膜の外側と膜内側の水蒸気分圧差、1MPa当りの空気透過量に換算した数値を算出した
 純水透過速度:有効長15cmの両端開放型中空糸膜モジュールを用い、温度25℃、圧力1 MPaの条件下、純水を原水として中空糸膜の内側から外側にろ過(内圧ろ過)して時間当りの透水量を測定し、単位膜面積、単位時間、1 MPa当りの透水量に換算した数値で算出した
 空気透過速度:有効長15cmの中空糸膜をループ状として、ループ両端をガラス管に固定したモジュールを用い、温度25℃、圧力50kPaの空気を膜の内側から外側に向けて印加し、時間当りの空気透過量を測定し、単位膜面積、単位時間、1MPa当りの空気透過量に換算した数値を算出した
 比較例1
 実施例において、ポリオキシエチレンソルビタンモノラウレートが用いられず、またジメチルアセトアミド量が65重量部に変更されて用いられた。
 比較例2
 実施例において、ポリビニルピロリドンが用いられず、またポリオキシエチレンソルビタンモノラウレート量が15重量部に、ジメチルアセトアミド量が65重量部にそれぞれ変更されて用いられた。
 以上の実施例および各比較例で得られた結果は次の表に示される。
 
 
                  表
     測定項目       実施例   比較例1   比較例2 
水蒸気透過速度(g/cm2/分/MPa)
 製膜後(90℃)         0.282    0.280    0.290
 120℃、50時間保持後      0.273    0.241    0.260
 性能低下率       (%)    3     14     10
純水透過速度(ml/cm2/時間/MPa)   0.0     0.0     0.0
空気透過速度 (ml/cm2/分/MPa)   0.0     0.0     0.0
 本発明に係る多孔質中空糸膜は、100~120℃といった高温環境下での使用後においても、水蒸気透過性能に大きな低下がみられることがないので、燃料電池に用いられる水蒸気透過膜等として有効に使用することができる。

Claims (9)

  1.  製膜原液中、15~40重量%のポリスルホン系樹脂、5~60重量%のポリビニルピロリドンおよび0.1~10重量%のポリオキシエチレンソルビタン脂肪酸エステル類を、水溶性有機溶媒溶液に溶解させた非溶剤誘起相分離法用製膜原液。
  2.  ポリスルホン系樹脂がポリフェニルスルホン樹脂である請求項1記載の非溶剤誘起相分離法用製膜原液。
  3.  ポリオキシエチレンソルビタン脂肪酸エステル類がポリオキシエチレンソルビタンモノラウレートである請求項1記載の非溶剤誘起相分離法用製膜原液。
  4.  ポリオキシエチレンソルビタン脂肪酸エステル類が0.5~5重量%用いられた請求項1または3記載の非溶剤誘起相分離法用製膜原液。
  5.  無機粒子を含有しない請求項1、2または3記載の非溶剤誘起相分離法用製膜原液。
  6.  請求項1、2または3記載の非溶剤誘起相分離法用製膜原液を、二重環状ノズルを用い、水性液を芯液として非溶剤誘起相分離法により紡糸することを特徴とする多孔質中空糸膜の製造方法。
  7.  請求項6記載の製造方法により製造された水蒸気透過膜。
  8.  燃料電池用加湿膜として用いられる請求項7記載の水蒸気透過膜。
  9.  100~120℃の高温環境下で使用される請求項8記載の水蒸気透過膜。
PCT/JP2016/073134 2015-09-07 2016-08-05 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法 WO2017043233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/755,278 US20180243700A1 (en) 2015-09-07 2016-08-05 Membrane-forming dope for non-solvent induced phase separation methods, and a method for producing a porous hollow fiber membrane using the same
EP16844097.2A EP3348323A4 (en) 2015-09-07 2016-08-05 Film-forming stock solution for use in a non-solvent-induced phase separation and method for producing a porosity hollow fiber membrane therewith
KR1020187006741A KR20180048692A (ko) 2015-09-07 2016-08-05 비용제 유도 상분리법용 제막 원액 및 이것을 사용한 다공질 중공사막의 제조 방법
CA2996769A CA2996769A1 (en) 2015-09-07 2016-08-05 Membrane-forming dope for non-solvent induced phase separation methods, and a method for producing a porous hollow fiber membrane using the same
CN201680051705.3A CN107921379A (zh) 2015-09-07 2016-08-05 非溶剂致相分离法用制膜原液、和使用其的多孔质中空纤维膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015175353A JP2017051880A (ja) 2015-09-07 2015-09-07 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法
JP2015-175353 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043233A1 true WO2017043233A1 (ja) 2017-03-16

Family

ID=58239654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073134 WO2017043233A1 (ja) 2015-09-07 2016-08-05 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法

Country Status (7)

Country Link
US (1) US20180243700A1 (ja)
EP (1) EP3348323A4 (ja)
JP (1) JP2017051880A (ja)
KR (1) KR20180048692A (ja)
CN (1) CN107921379A (ja)
CA (1) CA2996769A1 (ja)
WO (1) WO2017043233A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989126A (zh) * 2017-12-29 2019-07-09 财团法人工业技术研究院 导电弹性纤维及其制造方法
WO2020096446A1 (en) 2018-11-07 2020-05-14 Universiteit Twente Method for creating a porous film through aqueous phase separation
CN111278543A (zh) * 2017-10-27 2020-06-12 Nok株式会社 加湿膜用聚苯砜中空纤维膜的制造方法
CN112351832A (zh) * 2018-06-26 2021-02-09 Nok株式会社 加湿用多孔质中空纤维膜的制造方法
US11465103B2 (en) 2017-05-08 2022-10-11 Universiteit Twente Aqueous phase separation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369577B2 (ja) * 2018-10-03 2023-10-26 Nok株式会社 ポリスルホン多孔質中空糸膜の製造法
WO2020246414A1 (ja) * 2019-06-06 2020-12-10 ユニチカ株式会社 中空糸膜、該中空糸膜モジュール、加湿ユニット、エアドライヤー、該中空糸膜の製膜原液及び該中空糸膜の製造方法
EP4321241A1 (en) 2021-04-06 2024-02-14 NOK Corporation Method for manufacturing hollow-fiber membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064602A (ja) * 1983-09-16 1985-04-13 Nitto Electric Ind Co Ltd 乾燥半透膜及びその製造方法
JPS61107909A (ja) * 1984-11-01 1986-05-26 Sumitomo Bakelite Co Ltd 中空繊維状分離膜の製造方法
JPH04241112A (ja) * 1990-12-28 1992-08-28 Nok Corp 乾湿式法紡糸原液
JPH05148383A (ja) * 1991-10-03 1993-06-15 Mitsubishi Rayon Co Ltd ポリスルホン系多孔質膜及びその製造方法
JP2006255502A (ja) * 2005-03-15 2006-09-28 Nok Corp 多孔質ポリフェニルスルホン樹脂中空糸膜の製造法
WO2008111510A1 (ja) * 2007-03-08 2008-09-18 Asahi Kasei Medical Co., Ltd. 微多孔膜のインテグリティテスト方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019749A (ko) * 2002-08-29 2004-03-06 주식회사 효성 투수성이 우수한 중공사막의 제조방법
CN101804305B (zh) * 2010-04-30 2013-05-15 北京碧水源膜科技有限公司 可导电增强管状多孔体复合膜及其制备方法与它们在污水除磷中的应用
CN104209024B (zh) * 2014-09-18 2017-02-15 四川大学 一种聚芳硫醚砜/磺化聚合物复合分离膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064602A (ja) * 1983-09-16 1985-04-13 Nitto Electric Ind Co Ltd 乾燥半透膜及びその製造方法
JPS61107909A (ja) * 1984-11-01 1986-05-26 Sumitomo Bakelite Co Ltd 中空繊維状分離膜の製造方法
JPH04241112A (ja) * 1990-12-28 1992-08-28 Nok Corp 乾湿式法紡糸原液
JPH05148383A (ja) * 1991-10-03 1993-06-15 Mitsubishi Rayon Co Ltd ポリスルホン系多孔質膜及びその製造方法
JP2006255502A (ja) * 2005-03-15 2006-09-28 Nok Corp 多孔質ポリフェニルスルホン樹脂中空糸膜の製造法
WO2008111510A1 (ja) * 2007-03-08 2008-09-18 Asahi Kasei Medical Co., Ltd. 微多孔膜のインテグリティテスト方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465103B2 (en) 2017-05-08 2022-10-11 Universiteit Twente Aqueous phase separation method
CN111278543A (zh) * 2017-10-27 2020-06-12 Nok株式会社 加湿膜用聚苯砜中空纤维膜的制造方法
KR20200070335A (ko) * 2017-10-27 2020-06-17 에누오케 가부시키가이샤 가습막용 폴리페닐술폰 중공사 막의 제조법
EP3702021A4 (en) * 2017-10-27 2021-12-01 Nok Corporation METHOD OF MANUFACTURING POLYPHENYLSULPHONE HOLLOW FIBER MEMBRANE FOR USE IN A HUMIDIFIER FILM
KR102377158B1 (ko) 2017-10-27 2022-03-23 에누오케 가부시키가이샤 가습막용 폴리페닐술폰 중공사 막의 제조법
CN111278543B (zh) * 2017-10-27 2022-07-08 Nok株式会社 加湿膜用聚苯砜中空纤维膜的制造方法
CN109989126A (zh) * 2017-12-29 2019-07-09 财团法人工业技术研究院 导电弹性纤维及其制造方法
CN112351832A (zh) * 2018-06-26 2021-02-09 Nok株式会社 加湿用多孔质中空纤维膜的制造方法
WO2020096446A1 (en) 2018-11-07 2020-05-14 Universiteit Twente Method for creating a porous film through aqueous phase separation

Also Published As

Publication number Publication date
CN107921379A (zh) 2018-04-17
KR20180048692A (ko) 2018-05-10
JP2017051880A (ja) 2017-03-16
EP3348323A1 (en) 2018-07-18
EP3348323A4 (en) 2019-05-01
CA2996769A1 (en) 2017-03-16
US20180243700A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2017043233A1 (ja) 非溶剤誘起相分離法用製膜原液およびこれを用いた多孔質中空糸膜の製造方法
JP7014714B2 (ja) 多孔質膜、及び多孔質膜の製造方法
KR20160026070A (ko) 기체분리막의 제조 방법
CN109621751B (zh) 两亲性耐溶剂脂肪族聚酰胺超滤膜及其制备方法和用途
EP3702021A1 (en) Manufacturing method for polyphenyl sulfone hollow-fiber membrane for use in humidification film
JP2006255502A (ja) 多孔質ポリフェニルスルホン樹脂中空糸膜の製造法
KR101179161B1 (ko) 신규한 pvdf 중공사막 제조용 고분자 수지, 막오염 저항성이 우수한 pvdf 중공사막, 및 이의 제조방법
KR20160052182A (ko) 다공성 중공사막 및 그 제조방법
KR101733848B1 (ko) 친수성 및 기계적 강도가 향상된 여과막 제조용 고분자 수지 조성물 제조방법
KR101296110B1 (ko) 폴리술폰계 다공성 비대칭 멤브레인의 제조방법 및 그로부터 제조된 멤브레인
JP2020044523A (ja) 水蒸気分離膜、及び水蒸気分離膜の製造方法
KR102139208B1 (ko) 내오염성 중공사막의 제조방법 및 상기 방법으로 제조된 내오염성 중공사막
CN113457465A (zh) 一种聚偏氟乙烯中空纤维超滤膜及制备方法
KR20120077011A (ko) Ectfe 수처리 분리막 및 그의 제조방법
KR101797429B1 (ko) 다공성 중공사막 및 그 제조방법
JP2007289944A (ja) 加湿用膜およびその製造方法
EP3897933A1 (en) Porous membranes for high pressure filtration
KR20150064371A (ko) 기체 분리막 및 그 제조방법
KR101763991B1 (ko) 강도 및 수투과도가 향상된 중공사막 방사용 조성물 및 이를 이용한 중공사막의 제조방법
KR101397842B1 (ko) 폴리비닐덴플루오라이드 비대칭 다공성 중공사막 및 이의 제조방법
JP2014124563A (ja) 多孔質ポリエーテルスルホン中空糸膜用製膜原液
JP2012143749A (ja) 分離膜の製造方法
JP2009101346A (ja) 加湿用膜およびその製造方法
KR101811540B1 (ko) 분리막 형성용 조성물, 이를 이용한 분리막 제조방법, 분리막 및 수처리장치
KR101559635B1 (ko) 초고유량 한외여과 중공사막 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755278

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2996769

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187006741

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844097

Country of ref document: EP