CN112345506B - 一种检测汞离子的荧光生物传感器 - Google Patents

一种检测汞离子的荧光生物传感器 Download PDF

Info

Publication number
CN112345506B
CN112345506B CN202011228160.3A CN202011228160A CN112345506B CN 112345506 B CN112345506 B CN 112345506B CN 202011228160 A CN202011228160 A CN 202011228160A CN 112345506 B CN112345506 B CN 112345506B
Authority
CN
China
Prior art keywords
enzyme
probe
exo
incubating
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011228160.3A
Other languages
English (en)
Other versions
CN112345506A (zh
Inventor
张曼茹
刘素
黄加栋
王玉
江龙
孙文玉
王业茹
张清心
徐婉晴
朱志学
李静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202011228160.3A priority Critical patent/CN112345506B/zh
Publication of CN112345506A publication Critical patent/CN112345506A/zh
Application granted granted Critical
Publication of CN112345506B publication Critical patent/CN112345506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种检测Hg2+的荧光生物传感器,包括复合探针Q、环状模板CP、触发链T、燃料链F、Klenow片段和硫黄素T;将触发链T、复合探针Q、燃料链F、环状模板CP、Klenow片段分别与系列浓度汞离子溶液、待测液混合均匀后孵育,灭活酶后加入硫黄素T孵育后检测荧光强度。本发明基于碱基T与Hg2+之间特异性的结合能力,以及熵驱动的链置换扩增和滚环扩增反应实现目标循环放大和信号放大,实现对目标物灵敏检测的生物传感器。该传感器具有检测速度快,检测限低,灵敏度高等优点,可以弥补Hg2+现有检测方法的缺陷与不足,实现对其快速,准确的定量检测。

Description

一种检测汞离子的荧光生物传感器
技术领域
本发明属于生物传感器技术领域,涉及一种检测汞离子的荧光生物传感器。
背景技术
汞是潜在危险和有毒元素之一,由于其具有生物蓄积性,即使是极微量的汞也对人体健康和环境都具有剧毒作用。而近年来随着工业的发展,汞离子污染日趋严重,给人类和环境造成了巨大的危害。金属汞中毒常以汞蒸气的形式引起。由于汞蒸气具有高度的扩散性和较大的脂溶性,通过呼吸道进入肺泡,经血液循环运至全身。血液中的金属汞进入脑组织后,被氧化成汞离子,逐渐在脑组织中积累,达到一定的量,就会对脑组织造成损害,另外汞离子还能够转移到肾脏。人体中积累的Hg2 +可能对肾脏,大脑,肺部,免疫系统和中枢神经系统产生不良影响。我国生活饮用水水质标准中对汞的含量作出严格限制,最大允许浓度不得超过0.001 mg/L。美国环境保护署(EPA)定义了饮用水中无机汞的最大允许限量10 nM。
因此,开发快速、痕量、高灵敏度和选择性的检测Hg2+的分析方法是十分必要的。目前报道的汞离子的检测方法包括原子发射光谱法、原子吸收光谱法、分光光度法、氢化物发生-原子荧光光谱法等,这些方法往往存在仪器昂贵、分析周期长、样品预处理复杂、检测费用昂贵等问题,已经难以适应汞离子检测的方便、快捷、灵敏度等方面的要求。目前急需建立一种快速,准确,灵敏且高特异性的检测方法来检测汞离子的残留。
发明内容
为了实现更加灵敏的、特异性的检测汞离子,本发明提供了一种特异性和灵敏度高的金属介导的熵驱动的链置换扩增和滚环扩增策略检测Hg2+的荧光生物传感器。
为实现上述目的,本发明采用如下技术方案。
一种检测Hg2+的荧光生物传感器,原料包括挂锁探针TP、连接探针LP、S1、S2、L、触发链T、燃料链F、T4连接酶、Exo I酶、Exo III酶、Klenow片段 (3'→5' exo-)(KF)和硫黄素T(ThT);
所述S1、S2和L的序列如SEQ ID No: 1-3所示;所述挂锁探针TP的序列如SEQ IDNo: 5所示,5’碱基磷酸化;所述连接探针LP的序列如SEQ ID No: 6所示;所述触发链T的序列如SEQ ID No: 7所示;所述燃料链F的序列如SEQ ID No: 8所示。
一种利用上述生物传感器检测汞离子中的方法,包括以下步骤:
(1)将S1、S2和L在溶液中杂交成复合探针Q;
(2)挂锁探针TP和连接探针LP在T4连接酶、Exo I酶、Exo III酶作用下制备环状模板CP;
(3)将触发链T、复合探针Q、燃料链F、环状模板CP、Klenow片段 (3'→5' exo-)分别与系列浓度汞离子溶液、待测液混合均匀后孵育,灭活酶后加入硫黄素T孵育后检测荧光强度;
(4)根据系列浓度汞离子溶液荧光做标准曲线,计算待测液中汞离子浓度。
步骤(1)中,所述S1、S2和L摩尔比为1:1:1;所述杂交的条件为:95℃下孵育5min,缓慢冷却至室温。
步骤(2)中,包括以下步骤:将等摩尔量的挂锁探针TP、连接探针LP混合,加入缓冲液变性-复性后,加入T4 DNA连接酶,16℃下孵育过夜,灭活酶后再加入Exo I酶和Exo III酶于37℃下消化2 h,灭活酶后即得。
步骤(3)中,所述荧光检测的激发波长为425nm,发射波长为485nm。
一种含有上述生物传感器的试剂盒。
进一步的,所述试剂盒中还包括系列浓度的汞离子溶液。
本发明的检测原理如下:
S1: 5’-CTGTACGGAGAATCA-3’
S2: 5’-GCAGAGTTGAAGC-3’
L: 5’-TTCAACTCTGC TTCTCCGTACAGTCTTCC-3’
TP:
5’-P- AGTATACAAGATAACCCAACCCGCCCTACCCAAAACCCAACCCGCCCTACCCAAGCTTCAACTCTGC TGATTCTCCGTAC -3’
LP: 5’-ATC TTG TAT ACT GTA CGG AGAATC-3’
T: 5’-GGTTGTCTGTAC-3’
F: 5’-CTGTACGGAGAAGCAGAGTTGAA-3’
TP中下划线部分与LP碱基互补,加粗部分与S2完全碱基互补,斜体部分与S1完全互补碱基,而其剩余的碱基是G-四联体的模板序列。L中的加粗部分和斜体部分分别于S2的加粗部分和S1的斜体部分碱基互补,而其点状下划线部分与T在目标物Hg2+存在时杂交。L与F是通过波浪下划线部分的toehold形成杂交。在制备环状模板过程中Exo I酶作用是消化多余的未杂交的LP和未形成环的TP,而Exo III酶的作用是消化TP与LP杂交双链中的LP。
本发明的传感器,基于碱基T会特异性地与目标物Hg2+结合形成稳定的T-Hg2+-T结构,触发链T和Hg2+会通过toehold触发熵驱动的链置换扩增,把S1挤下来,加入燃料链F后会同时挤掉T和S2,T和目标物得以循环扩增,而释放的S1、S2在加入环状模板和KF后会发生滚环扩增反应,实现二次放大,之后会产生一连串的G-四联体结构,加入ThT后产生荧光信号,通过检测荧光信号的强弱计算汞离子浓度。
本发明具有以下优点:
本发明的传感器利用了碱基T与Hg2+之间特异性结合的特性进行检测;利用了熵驱动的链置换扩增和滚环扩增反应起到了信号放大的作用,提高了检测的灵敏度。该传感器的反应条件温和,反应速度快。其检测原理的主要过程均是在均相溶液中实现的,提高了反应速度,降低了操作的复杂程度,实现了目标物的快速,简单,灵敏的检测;而且制备方法简单,性能稳定,适用于食品、土壤及饮用水中Hg2+的检测;制备过程的工艺成本低,适用于产业化中价廉的要求。
本发明基于碱基T与Hg2+之间特异性的结合能力,以及熵驱动的链置换扩增和滚环扩增反应实现目标循环放大和信号放大,实现对目标物灵敏检测的生物传感器。该传感器具有检测速度快,检测限低,灵敏度高等优点,可以弥补Hg2+现有检测方法的缺陷与不足,实现对其快速,准确的定量检测。
附图说明
图1为本发明生物传感器的原理图;
图2为不同浓度触发链T的荧光强度;
图3为不同浓度KF的荧光强度;
图4为不同浓度复合探针Q的荧光强度;
图5为本发明传感器对汞离子检测的标准曲线。
具体实施方式
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制。
实施例1 复合探针Q的制备
(1)根据如SEQ ID No: 1-3所示的序列合成S1、S2和L;
(2)将灭菌水(36 µL)、10×PBS缓冲液(pH7.4)(6 µL)、S1(6 µL, 100 µM)、S2(6 µL, 100 µM)和L(6 µL, 100 µM)加入到预先准备好灭菌的EP管中,震荡20-30s,然后在95℃下孵育5min,缓慢冷却至室温杂交即得,储存于-20 ℃用于后续试验。
实施例2 环状模板CP的制备
(1)根据如SEQ ID No: 5和6所示的序列合成5’磷酸化的挂锁探针TP和连接探针LP;
(2)等体积、等摩尔浓度(6 µL, 100 µM)的TP、LP混合,加入10×T4 DNA连接酶缓冲液(6 µL)在95℃下孵育5min,冷却至室温后,加入T4 DNA连接酶(3 µL, 400 U/µL),16℃下孵育过夜,然后65℃加热10 min灭活酶;再加入Exo I酶(2 µL, 20 U/µL)和Exo III酶(1µL, 100 U/µL)在37℃下消化2 h,之后85℃加热20 min灭活酶即得序列如SEQ ID No: 4所示的环状模板CP,最后储存在0-4℃用于后续试验。
实施例3 触发链T浓度筛选
(1)将灭菌水(6 µL)、10×缓冲液2(3 µL)、Hg2+(3 µL,10 µM)、触发链T(3 µL,使终浓度分别为100nM、150nM、200nM、250nM、300nM、350nM)、复合探针Q(3 µL,终浓度为2 µM)、燃料链F(3 µL)、环状模板CP(3 µL,1 µM)、KF(3 µL,终浓度为0.5 U/µL)和ThT(3 µL,终浓度为10 µM)加入到离心管中,震荡20-30s,于37℃下水浴2h,得产物;
(2)将上述产物稀释至100 µL,以425nm为激发波长测定485nm处荧光强度;
结果见图2,从图中可以看出,随着触发链T浓度的增加,实验得到的荧光强度不断增强,在触发链T的浓度达到250 nM之后,荧光强度基本不变,说明最适的触发链T浓度是250 nM。
实施例3 KF浓度筛选
(1)将灭菌水(6 µL)、10×缓冲液2(3 µL)、Hg2+(3 µL,10 µM)、触发链T(3 µL,终浓度为250nM)、复合探针Q(3 µL,终浓度为2 µM)、燃料链F(3 µL)、环状模板CP(3 µL,1 µM)、KF(3 µL,终浓度分别为0.5U/µL、1U/µL、1.5U/µL、2U/µL、2.5U/µL、3U/µL)和ThT(3 µL,终浓度为10 µM)加入到离心管中,震荡20-30 s,于37℃下水浴2 h,得产物;
(2)将上述产物稀释至100 µL,以425 nm为激发波长测定485 nm处荧光强度;
结果见图3,从图中可以看出,随着KF浓度的增加,实验得到的荧光强度不断增强,在KF的浓度达到2 U/µL之后,荧光强度基本不变或略有降低,说明最适的KF浓度是2 U/µL。
实施例4 复合探针Q浓度筛选
(1)将灭菌水(6 µL)、10×缓冲液2(3 µL)、Hg2+(3 µL,10 µM)、触发链T(3 µL,终浓度为250nM)、复合探针Q(3 µL,终浓度分别为0.5 µM、1 µM、1.5 µM、2 µM、2.5 µM、3 µM)、燃料链F(3 µL)、环状模板CP(3 µL,1 µM)、KF(3 µL,终浓度为2 U/ µL)和ThT(3 µL,终浓度为10 µM)加入到离心管中,震荡20-30 s,于37℃下水浴2 h,得产物;
(2)将上述产物稀释至100 µL,以425 nm为激发波长测定485 nm处荧光强度;
结果见图4,从图中可以看出,随着复合探针Q浓度的增加,实验得到的荧光强度不断增强,在复合探针Q的浓度达到2 µM之后,荧光强度基本不变或略有降低,说明最适的复合探针Q浓度是2 µM。
实施例5 生物传感器对汞离子的检测
配制系列浓度汞离子标准溶液,使浓度为1-105 pM,进行如下操作:
(1)将灭菌水(6 µL)、10×缓冲液2(3 µL)、灭菌水或Hg2+(3 µL,浓度分别为0、1 pM、5 pM、10 pM、50 pM、100 pM、500 pM、1000 pM、5000 pM、10000 pM)、触发链T(3 µL,终浓度为250 nM)、复合探针Q(3 µL,终浓度为2 µM)、燃料链F(3 µL)、环状模板CP(3 µL,1 µM)、KF(3 µL,终浓度为2U/µL)和ThT(3 µL,终浓度为10 µM)加入到离心管中,震荡20-30s,于37℃下水浴2h,得产物;
(2)将上述产物稀释至100 µL,以425 nm为激发波长测定485 nm处荧光强度;
荧光强度峰值随着Hg2+浓度的增大而增大,以荧光强度为纵坐标,以汞离子浓度对数为横坐标,得如图5所示的标准曲线,获得回归方程为y = 155.01 LogC +140.41,相关系数为98.9%,由此计算优化后的生物传感器的检测限为1.9 pM。
序列表
<110> 济南大学
<120> 一种检测汞离子的荧光生物传感器
<130> 20201026
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> S1
<400> 1
ctgtacggag aatca 15
<210> 2
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> S2
<400> 2
gcagagttga agc 13
<210> 3
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> L
<400> 3
ttcaactctg cttctccgta cagtcttcc 29
<210> 4
<211> 80
<212> DNA
<213> Artificial Sequence
<220>
<223> 挂锁探针TP
<400> 4
agtatacaag ataacccaac ccgccctacc caaaacccaa cccgccctac ccaagcttca 60
actctgctga ttctccgtac 80
<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> 连接探针LP
<400> 5
atcttgtata ctgtacggag aatc 24
<210> 6
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> 触发链T
<400> 6
ggttgtctgt ac 12
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> 燃料链F
<400> 7
ctgtacggag aagcagagtt gaa 23

Claims (4)

1.一种检测Hg2+的荧光生物传感器,其特征在于,原料包括挂锁探针TP、连接探针LP、
S1、S2、L、触发链T、燃料链F、T4连接酶、Exo I酶、Exo III酶、Klenow片段 (3'→5'exo-)和硫黄素T;
所述S1、S2和L的序列如SEQ ID No: 1-3所示;所述挂锁探针TP的序列如SEQ ID No: 5所示,5'碱基磷酸化;所述连接探针LP的序列如SEQ ID No: 6所示;触发链T的序列如SEQID No: 7所示;所述燃料链F的序列如SEQ ID No: 8所示;
所述S1、S2和L在溶液中杂交成复合探针Q;S1、S2和L摩尔比为1:1:1;所述杂交的条件为:95℃下孵育5min,缓慢冷却至室温;
所述挂锁探针TP和连接探针LP在T4连接酶、Exo I酶、Exo III酶作用下制备环状模板CP:将等摩尔量的挂锁探针TP、连接探针LP混合,加入缓冲液变性-复性后,加入T4 DNA连接酶,16℃下孵育过夜,灭活酶后再加入Exo I酶和Exo III酶于37℃下消化2 h,灭活酶后即得。
2.一种利用权利要求1所述生物传感器检测汞离子中的方法,其特征在于,包括以下步骤:
(1)将S1、S2和L在溶液中杂交成复合探针Q;
(2)挂锁探针TP和连接探针LP在T4连接酶、Exo I酶、Exo III酶作用下制备环状模板CP;
(3)将触发链T、复合探针Q、燃料链F、环状模板CP、Klenow片段 (3'→5' exo-)分别与系列浓度汞离子溶液、待测液混合均匀后孵育,灭活酶后加入硫黄素T孵育后检测荧光强度;
(4)根据系列浓度汞离子溶液荧光做标准曲线,计算待测液中汞离子浓度;
步骤(1)中,所述S1、S2和L摩尔比为1:1:1;所述杂交的条件为:95℃下孵育5min,缓慢冷却至室温;
步骤(2)中,包括以下步骤:将等摩尔量的挂锁探针TP、连接探针LP混合,加入缓冲液变性-复性后,加入T4 DNA连接酶,16℃下孵育过夜,灭活酶后再加入Exo I酶和Exo III酶于37℃下消化2 h,灭活酶后即得;
步骤(3)中,所述荧光检测的激发波长为425nm,发射波长为485nm。
3.一种含有权利要求1所述生物传感器的试剂盒。
4.根据权利要求3所述的试剂盒,其特征在于,还包括系列浓度的汞离子溶液。
CN202011228160.3A 2020-11-06 2020-11-06 一种检测汞离子的荧光生物传感器 Active CN112345506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011228160.3A CN112345506B (zh) 2020-11-06 2020-11-06 一种检测汞离子的荧光生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011228160.3A CN112345506B (zh) 2020-11-06 2020-11-06 一种检测汞离子的荧光生物传感器

Publications (2)

Publication Number Publication Date
CN112345506A CN112345506A (zh) 2021-02-09
CN112345506B true CN112345506B (zh) 2022-08-26

Family

ID=74428899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011228160.3A Active CN112345506B (zh) 2020-11-06 2020-11-06 一种检测汞离子的荧光生物传感器

Country Status (1)

Country Link
CN (1) CN112345506B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002425B (zh) * 2021-11-03 2023-06-06 四川大学 荧光适配体传感器的构建方法及在新型冠状病毒检测中的应用
CN114235763B (zh) * 2021-12-03 2023-05-26 济南大学 一种检测汞离子(Hg2+)的生物传感器
CN114989806B (zh) * 2022-03-04 2023-08-11 浙江省农业科学院 一种快速检测孔雀石绿的复合探针及其检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586150A (zh) * 2008-05-23 2009-11-25 陕西北美基因股份有限公司 检测探针、通用寡核苷酸芯片及核酸检测方法及其用途
CN108359714A (zh) * 2018-01-25 2018-08-03 济南大学 一种检测汞离子的生物传感器
CN108645825A (zh) * 2018-04-28 2018-10-12 吉林大学 酶切循环核酸适配体传感器检测牛奶中土霉素的方法
CN111175268A (zh) * 2020-01-23 2020-05-19 闽江学院 一种检测汞离子的双重信号放大的荧光传感器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003267583A1 (en) * 2002-09-19 2004-04-08 The Chancellor, Master And Scholars Of The University Of Oxford Molecular arrays and single molecule detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586150A (zh) * 2008-05-23 2009-11-25 陕西北美基因股份有限公司 检测探针、通用寡核苷酸芯片及核酸检测方法及其用途
CN108359714A (zh) * 2018-01-25 2018-08-03 济南大学 一种检测汞离子的生物传感器
CN108645825A (zh) * 2018-04-28 2018-10-12 吉林大学 酶切循环核酸适配体传感器检测牛奶中土霉素的方法
CN111175268A (zh) * 2020-01-23 2020-05-19 闽江学院 一种检测汞离子的双重信号放大的荧光传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Colorimetric aptasensor for the detection of mercury based on signal intensification by rolling circle amplification;Shijia Wu 等;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;20190720;全文 *

Also Published As

Publication number Publication date
CN112345506A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112345506B (zh) 一种检测汞离子的荧光生物传感器
CN108359714B (zh) 一种检测汞离子的生物传感器
CN108398406B (zh) 一种检测尿嘧啶糖基化酶(udg)的生物传感器及其应用
Xu et al. Phosphate assay kit in one cell for electrochemical detection of intracellular phosphate ions at single cells
CN111175268A (zh) 一种检测汞离子的双重信号放大的荧光传感器及其制备方法
Pan et al. An enzyme-free DNA circuit for the amplified detection of Cd 2+ based on hairpin probe-mediated toehold binding and branch migration
CN106367497B (zh) 一种基于滚环扩增的串联g-四链体-血红素dna酶免标记信号放大方法
CN108120704B (zh) 一种啶虫脒的荧光检测方法
CN106093023A (zh) 一种检测汞离子的比色传感器及其制备方法
CN111879746B (zh) 一种荧光化学传感器及其制备方法和应用
CN108333155A (zh) 一种荧光检测汞离子的生物传感器
Zhu et al. Ultrasensitive detection of lead ions based on a DNA-labelled DNAzyme sensor
CN110951830B (zh) 一种用于铜(ii)离子检测的荧光探针及其应用
Li et al. Unique quenching of fluorescent copper nanoclusters based on target-induced oxidation effect: a simple, label-free, highly sensitive and specific bleomycin assay
Ciceri et al. Validation of an isotope dilution, ICP-MS method based on internal mass bias correction for the determination of trace concentrations of Hg in sediment cores
CN111487227A (zh) 一种用于检测人血清中Pb2+浓度的荧光增强型传感器
CN112304913B (zh) 一种检测Hg2+荧光生物传感器及检测Hg2+的方法与应用
CN105543345A (zh) 玉米赤霉烯酮的检测方法及检测试剂盒
CN113804898B (zh) 同时检测皮质醇、血清睾酮、肌酸激酶同工酶的荧光传感方法和试剂盒
CN106841350B (zh) 基于核酸适配体检测汞离子的电化学传感器及其制备方法
JP3516069B2 (ja) グルコース濃度の測定方法
JP3698281B2 (ja) グルコース濃度の測定方法
CN109187514B (zh) 一种基于纳米金表面的化学发光共振能量转移传感器快速检测百草枯的方法
CN114235763B (zh) 一种检测汞离子(Hg2+)的生物传感器
Wilson et al. Fluorometric reaction rate method for determination of silver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant