CN112107693A - 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途 - Google Patents

脂质体颗粒、制备所述脂质体颗粒的方法以及其用途 Download PDF

Info

Publication number
CN112107693A
CN112107693A CN202010993754.7A CN202010993754A CN112107693A CN 112107693 A CN112107693 A CN 112107693A CN 202010993754 A CN202010993754 A CN 202010993754A CN 112107693 A CN112107693 A CN 112107693A
Authority
CN
China
Prior art keywords
lipid
oligonucleotides
liposomal
liposomal particle
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010993754.7A
Other languages
English (en)
Other versions
CN112107693B (zh
Inventor
查德·A·米尔金
松兵·T·恩吉耶
雷沙姆·辛格·邦加
纳塔利·切尔尼亚克
谢尔盖·格里亚兹诺夫
亚历山大·拉多维奇-莫雷诺
克里斯托弗·梅德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exquire Co ltd
Northwestern University
Original Assignee
Exquire Co ltd
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exquire Co ltd, Northwestern University filed Critical Exquire Co ltd
Priority to CN202010993754.7A priority Critical patent/CN112107693B/zh
Publication of CN112107693A publication Critical patent/CN112107693A/zh
Application granted granted Critical
Publication of CN112107693B publication Critical patent/CN112107693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Abstract

被称为小单层囊泡(SUV)的脂质体可在20‑50nm大小范围内合成,但遭遇如不稳定性和导致颗粒间融合的聚集的挑战。这限制其作为治疗递送剂的用途。经由连接阴离子实体如DNA/RNA来增加SUV的表面负电荷使这些囊泡的胶体稳定性提高。另外,不同于其线性对应物,核酸的致密球形布置和径向取向表现出独特的化学和生物特性。这些脂质体是无毒的,并且虽然是阴离子的,但能够以非免疫原性方式有效地进入细胞而无需辅助阳离子转染剂的帮助。这些例外特性允许其用作不同疗法中的基因调控的递送剂并且提供金属核心球形核酸的替代平台。

Description

脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
分案说明
本申请为申请日为2014年12月3日,申请号为201480072672.1,题目为“脂质体颗粒、制备所述脂质体颗粒的方法以及其用途”的专利申请的分案申请。
相关申请的交叉引用
根据美国法典第35篇第119条(e)款,本申请要求2013年12月3日提交的美国临时申请第61/911,334号和2014年4月21日提交的美国临时申请第61/982,269号的优先权,其公开内容以引用的方式整体并入本文。
政府利益声明
本发明是根据由美国国防部高级研究计划局(Defense Advanced ResearchProject Agency)授予的HR0011-13-2-0018和由美国国立卫生研究院(NationalInstitutes of Health)授予的CA151880在政府支持下进行的。政府对本发明具有某些权利。
序列表
本申请含有呈计算机可读形式的序列表(文件名:2013-201_SeqListing.txt;创建:2014年12月3日;1,893字节)作为公开内容的单独部分,所述序列表以引用的方式整体并入本文。
发明领域
本公开涉及脂质体颗粒、制备所述脂质体颗粒的方法以及其用途。脂质体颗粒适用于基因调控和药物递送。
技术背景
已探索化学来产生脂质体和小单层囊泡(SUV)。例如,Vogel等人,"DNAControlled Assembly of Lipid Membranes",美国专利公布号2010/0144848公开用两个亲脂性锚修饰的DNA可形成脂质体或SUV。这种后修饰技术不利于高表面密度修饰。
Hook等人,"Oligonucleotides Related to Lipid Membrane Attachment",美国 专利公布号2013/0252852描述所产生的脂质体或SUV具有寡核苷酸,所述寡核苷酸具有核酸的第一链和第二链以及位于其末端中的两个或更多个疏水性锚定部分,其中所述疏水性锚定部分在双层中发现。因为两个胆固醇分子用于将分子锚定至脂质双层中,所以这种后修饰技术不利于高表面密度修饰。
Lu等人,"Amphiphilic Substances and Functionalized Lipid VesiclesIncluding the Same",美国专利公布号2010/0166842描述包含彼此杂交的至少两个核苷酸区段的脂质体SUV。这种基于囊泡的非后修饰技术在稳定囊泡方面不那么有效,因为它在纸质双层的两侧上均并入稳定化部分。
非专利文献也揭示了用于产生脂质体和SUV的化学,但这些化学各自也具有其问题。例如,"Liposome-Anchored Vascular Endothelial Growth Factor Aptamers"Bioconjugate Chem.,1998,9,573-582描述了适体DNA功能化的脂质体的合成以及其针对选择性癌细胞靶向的应用。通过这种方法产生的大小为平均80纳米的脂质体在双脂质层的两侧上均具有适体DNA分子,并且未展示基因调控。
"Reversible Cell-Specific Drug Delivery with Aptamer-FunctionalizedLiposomes"Angew.Chem.Int.Ed.2009,48,6494–6498描述适体DNA功能化的脂质体的合成以及其针对选择性癌细胞靶向和药物递送的应用。通过这种方法产生的平均140纳米与200纳米之间的脂质体利用胆固醇单元来将DNA锚定至双脂质层中,在双脂质层的两侧上均包含适体DNA分子,并且未表现出基因调控。
"Selective delivery of an anticancer drug with aptamer-functionalizedliposomes to breast cancer cells in vitro and in vivo"J.Mater.Chem.B,2013,1,5288公开了适体DNA功能化的脂质体的合成以及其针对选择性癌细胞靶向和药物递送的应用。此工作是在以上"Reversible Cell-Specific Drug Delivery with Aptamer-Functionalized Liposomes"中公开的研究的延伸。如同之前,这些颗粒利用胆固醇单元来将DNA锚定至脂质双层中,在双脂质层的两侧上均包含适体DNA分子,并且未表现出基因调控。
"Phospholipid Membranes Decorated by Cholesterol-BasedOligonucleotides as Soft Hybrid Nanostructures"J.Phys.Chem.B,2008,112,10942–10952表征了胆固醇DNA功能化的脂质体。在该报道中,大小为33至35nm的脂质体是从1-棕榈酰基-2-油酰基磷脂酰胆碱(POPC)脂质制备的且用胆固醇修饰的DNA分子后功能化。所述报道未展示基因调控,并且这些颗粒利用胆固醇单元来将DNA锚定至脂质双层中。
"Bivalent Cholesterol-Based Coupling of Oligonucleotides to LipidMembrane Assemblies"J.Am.Chem.Soc.2004,126,10224-10225描述了用于锚定至脂质双层中的含有两个胆固醇单元的部分双链体的DNA链的开发。使用两个胆固醇单元来将DNA链锚定至脂质双层中导致与脂质体缔合的寡核苷酸的表面密度降低。
在"Quantification of Oligonucleotide Modifications of SmallUnilamellar Lipid Vesicles"Anal.Chem.2006,78,7493-7498中,研究者描述了用于定量功能化的脂质体纳米颗粒上的DNA链的技术的发展。所描述的颗粒包含含有用于锚定至脂质双层中的两个胆固醇单元的部分双链体的DNA链。使用两个胆固醇单元来将DNA链锚定至脂质双层中导致与脂质体缔合的寡核苷酸的表面密度降低。
"Single-Molecule Detection and Mismatch Discrimination of UnlabeledDNA Targets"Nano Lett.2008,8,183-188公开了用含有两个胆固醇单元的部分双链体的DNA链功能化的100纳米大小的脂质体。此工作是在上述"Bivalent Cholesterol-BasedCoupling of Oligonucleotides to Lipid Membrane Assemblies"和"Quantificationof Oligonucleotide Modifications of Small Unilamellar Lipid Vesicles"中公开的研究的延伸。如同之前,这些颗粒包含含有用于锚定至脂质双层中的两个胆固醇单元的部分双链体的DNA链。使用两个胆固醇单元来将DNA链锚定至脂质双层中导致与脂质体缔合的寡核苷酸的表面密度降低。
"DNA-Induced Programmable Fusion of Phospholipid Vesicles"J.Am.Chem.Soc.2007,129,9584-9585是关于胆固醇DNA功能化的脂质体纳米颗粒的融合的分析论文。在此论文中利用的囊泡是至少100纳米大小。
"Determinants for Membrane Fusion Induced by Cholesterol-Modified DNAZippers"J.Phys.Chem.B,2008,112,8264–8274是关于胆固醇DNA功能化的脂质体纳米颗粒的融合的分析论文,并且是来自上述"DNA-Induced Programmable Fusion ofPhospholipid Vesicles"的工作的继续。此论文将序列特异性融合与利用含有两个胆固醇单元的部分双链体的DNA链组合用于将寡核苷酸锚定至脂质双层中(例如,在以上"Quantification of Oligonucleotide Modifications of Small Unilamellar LipidVesicles"中发现的部分双链体的DNA链)。
"Liposome-Based Chemical barcodes for Single Molecule DNA DetectionUsing Imaging Mass Spectrometry"Nano Lett.,2010,10,732-737是关于取决于DNA序列检测特异性DNA靶标的分析论文。这是来自报道将序列特异性融合与不同的DNA锚定组合的"DNA-Induced Programmable Fusion of Phospholipid Vesicles"的同一组的工作的延伸(使用双胆固醇基锚,参见:Anal.Chem.2006,78,7493-7498)。
"Programmable Assembly of DNA-Functionalized Liposomes by DNA"是公开胆固醇DNA功能化的脂质体的组装的分析论文。在所述报道中,合成具有114和251nm流体动力学直径的脂质体并且用胆固醇修饰的DNA分子合成后功能化。在所述报道中的颗粒利用寡核苷酸分子胆固醇锚定至脂质双层中。
发明概述
脂质体是由一个或数个具有亲水性核心的疏水性脂质双层组成的在变化大小范围内的球形自封闭结构。这些基于脂质的载体的直径在0.15-1微米范围内,所述直径显著高于20-100纳米的有效治疗范围。被称为小单层囊泡(SUV)的脂质体可在20-50纳米大小范围内合成,但遭遇如不稳定性和导致颗粒间融合的聚集的挑战。这种颗粒间融合限制SUV在治疗剂中的使用。
为了对抗这种不稳定性,SUV可以通过两种独特技术用聚合物、肽、DNA以及其他目标分子进行功能化。在第一种方法中,在脂质体合成过程中将目标修饰的分子添加至脂质、脂质膜或水合缓冲液的混合物。这种方法产生在脂质体膜的内层和外层两者上含有目标功能分子的脂质体。一般而言,通过这种方法产生的结构在小于80纳米(nm)的大小下是不稳定的。在替代方法中,SUV可通过将目标底物锚定至预先形成的囊泡的脂质双层中来制备(“后修饰技术”)。这种替代方法产生在脂质体膜的外层上含有目标功能分子的脂质体纳米颗粒。重要地,这种替代后修饰方法允许产生任何大小、甚至小于50纳米的脂质体。
因此,一方面,本公开提供一种包含亲脂性端和非亲脂性端的构造。在一些实施方案中,所述亲脂性端包含生育酚。在另外实施方案中,生育酚选自由α-生育酚、β-生育酚、γ-生育酚以及δ-生育酚组成的组。
在其他实施方案中,所述非亲脂性端是带电荷的聚合物。在一些实施方案中,带电荷的聚合物是寡核苷酸。在相关实施方案中,寡核苷酸包含RNA或DNA,并且在各种实施方案中,RNA是执行调控功能的抑制性RNA(RNAi)。在又其他实施方案中,RNAi选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的RNA以及核酶组成的组。在另外实施方案中,RNA是piwi-相互作用RNA(piRNA),或RNA是执行调控功能的微RNA。在一些实施方案中,DNA是反义DNA。
另一方面,本公开提供一种制备本公开的构造的方法,所述方法包括提供寡核苷酸,提供亚磷酰胺修饰的生育酚,并且使所述寡核苷酸暴露于所述亚磷酰胺修饰的生育酚以制备本公开的构造。
另一方面,本公开提供一种脂质体颗粒,所述脂质体颗粒具有大致上球形的几何形状,所述脂质体颗粒包含脂质双层,所述脂质双层包含多个脂质基团;以及寡核苷酸。
在各种实施方案中,本公开考虑所述多个脂质基团包含选自由脂质的磷脂酰胆碱、磷脂酰甘油以及磷脂酰乙醇胺家族组成的组的脂质。
在各种实施方案中,所述脂质选自由以下各项组成的组:1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二肉豆蔻酰基-sn-磷脂酰胆碱(DMPC)、1-棕榈酰基-2-油酰基-sn-磷脂酰胆碱(POPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DSPG)、1,2-二油酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DOPG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二-(9Z-十八烯酰基)-sn-甘油基-3-磷酸乙醇胺(DOPE)、以及1,2-双十六烷酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。
在其他实施方案中,寡核苷酸是含有亲脂性栓系基团的寡核苷酸-脂质缀合物,其中所述亲脂性栓系基团被吸附至脂质双层中。在各种实施方案中,所述亲脂性栓系基团包含生育酚或胆固醇。
本公开还考虑在各种实施方案中,生育酚选自由生育酚衍生物α-生育酚、β-生育酚、γ-生育酚以及δ-生育酚组成的组。在其他实施方案中,本公开还考虑所述亲脂性栓系基团(即,脂质锚)包含例如但不限于棕榈酰基、二棕榈酰基、硬脂基或二硬脂基。
在其他实施方案中,寡核苷酸包含RNA或DNA。在另外实施方案中,RNA是非编码RNA,并且在其他实施方案中,非编码RNA是抑制性RNA(RNAi)。本公开还考虑在一些实施方案中,RNAi选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的单链RNA(ssRNA)以及核酶组成的组。在其他实施方案中,RNA是微RNA。在一些实施方案中,DNA是反义DNA。
在各种实施方案中,所述脂质体颗粒的直径小于或等于约50纳米。关于表面密度,本公开提供组合物和方法,其中脂质体颗粒包含约10至约100个寡核苷酸,或约10至约80个寡核苷酸。在一些实施方案中,所述颗粒包含70个寡核苷酸。
在一些实施方案中,寡核苷酸是修饰的寡核苷酸。
在本公开的另一方面,提供一种制备脂质体颗粒的方法,所述方法包括将磷脂添加至溶剂以形成第一混合物,所述第一混合物包含多个脂质体;破坏所述多个脂质体以产生第二混合物,所述第二混合物包含脂质体和小单层囊泡(SUV);从所述第二混合物分离所述SUV,所述SUV具有约20纳米与50纳米之间的颗粒大小;并且将寡核苷酸添加至所述分离的SUV以制备脂质体颗粒。
在一些实施方案中,所述第一混合物中的多个脂质体的颗粒大小在约100纳米与150纳米之间。在其他实施方案中,所述第二混合物中的脂质体和SUV的颗粒大小在约20纳米与约150纳米之间。在其他实施方案中,所述脂质体颗粒具有小于或等于约50纳米的颗粒大小。
在一些实施方案中,寡核苷酸是含有亲脂性栓系基团的寡核苷酸-脂质缀合物,其中所述亲脂性栓系基团被吸附至脂质双层中。在相关实施方案中,所述亲脂性栓系基团包含生育酚或胆固醇。在其他实施方案中,生育酚选自由生育酚衍生物α-生育酚、β-生育酚、γ-生育酚以及δ-生育酚组成的组。
在其他实施方案中,寡核苷酸包含RNA或DNA。在一些实施方案中,RNA是非编码RNA。在其他实施方案中,非编码RNA是抑制性RNA(RNAi)。本公开还考虑在另外实施方案中,RNAi选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的单链RNA(ssRNA)以及核酶组成的组。
在一些实施方案中,RNA是微RNA。在各种实施方案中,DNA是反义DNA。
在一些实施方案中,寡核苷酸是修饰的寡核苷酸。
在本公开的另一方面,提供一种抑制基因的表达的方法,所述方法包括以下步骤:将编码所述基因产物的多核苷酸与同所述多核苷酸的全部或一部分互补的一个或多个寡核苷酸杂交,所述寡核苷酸被连接至本公开的脂质体颗粒,其中所述多核苷酸与所述寡核苷酸之间的杂交在所述多核苷酸的具有足以抑制所述基因产物的表达的互补性程度的长度内发生。
在一些实施方案中,在体内抑制所述基因产物的表达。在其他实施方案中,在体外抑制所述基因产物的表达。
在另外实施方案中,所述脂质体颗粒具有约小于或等于50纳米的直径。在一些实施方案中,寡核苷酸包含RNA或DNA。在一些实施方案中,RNA是非编码RNA。在相关实施方案中,非编码RNA是抑制性RNA(RNAi)。本公开还考虑在各种实施方案中,RNAi选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的单链RNA(ssRNA)以及核酶组成的组。在一些实施方案中,RNA是微RNA。在其他实施方案中,DNA是反义DNA。
在本公开的另一方面,提供一种用于上调toll-样受体(TLR)的活性的方法,所述方法包括使具有toll-样受体的细胞与本公开的脂质体颗粒相接触。在一些实施方案中,寡核苷酸是TLR激动剂。在其他实施方案中,toll-样受体选自由以下各项组成的组:toll-样受体1、toll-样受体2、toll-样受体3、toll-样受体4、toll-样受体5、toll-样受体6、toll-样受体7、toll-样受体8、toll-样受体9、toll-样受体10、toll-样受体11、toll-样受体12、以及toll-样受体13。
在另一方面,本公开提供一种用于下调toll-样受体(TLR)的活性的方法,所述方法包括使具有toll-样受体的细胞与本公开的脂质体颗粒相接触。在一些实施方案中,寡核苷酸是TLR拮抗剂。在其他实施方案中,toll-样受体选自由以下各项组成的组:toll-样受体1、toll-样受体2、toll-样受体3、toll-样受体4、toll-样受体5、toll-样受体6、toll-样受体7、toll-样受体8、toll-样受体9、toll-样受体10、toll-样受体11、toll-样受体12、以及toll-样受体13。
本公开还考虑,在各种实施方案中,如本文公开的方法在体外进行。在其他实施方案中,本公开考虑如本文公开的方法在体内进行。
附图简述
图1描绘在脂质囊泡的表面上用DNA或RNA功能化的小单层囊泡(SUV)的合成。使用探头超声波仪将较大大小的脂质体超声处理成SUV,并且通过超速离心与重质杂质分离。
图2展示来自小单层囊泡(SUV)的脂质体颗粒的表征。在功能化之前和之后获得动态光散射(DLS)颗粒大小数据和透射电子显微术(TEM)照片。
图3A-3C展示用具有用于将寡核苷酸锚定至脂质体的不同亲脂性端的寡核苷酸稳定的脂质体颗粒的稳定性。用生育酚修饰的寡核苷酸稳定化的脂质体展示相较于裸露脂质体、用胆固醇修饰的寡核苷酸稳定化的脂质体以及用硬脂基修饰的寡核苷酸稳定化的脂质体更好的稳定性。a)已用具有不同亲脂性端的寡核苷酸功能化的FITC封装的SUV的凝胶电泳图像;b)和c)已用Cy5-标记的DNA功能化的FITC-封装的SUV的凝胶电泳图像。
图4A-4B展示已用寡核苷酸稳定化的脂质体颗粒具有良好温度稳定性,并且示出用于稳定化SUV的生育酚修饰的DNA浓度的范围。a)相较于已在4℃下储存的LSNA,在37℃下储存24小时之后脂质体SNA(LSNA)的稳定性。b)示出用于稳定化SUV的α-生育酚修饰的DNA浓度的范围的凝胶电泳。
图5包括展示本文公开的脂质体颗粒能够进入细胞的共焦图像。将HeLa细胞在无血清培养基中用100nM浓度的DNA(dT30-Cy5或dT30)进行处理且在16小时之后进行分析。
图6示出展示相较于未修饰的脂质体,用生育酚修饰的寡核苷酸稳定化的脂质体未表现出对细胞的实质性细胞毒性作用。
图7描绘从DOPC SUV和生育酚修饰的DNA组装脂质体球形核酸(SNA)。
图8A-8D描绘SUV和LSNA的稳定性研究。(A)在于缓冲液中加热之后SUV的动态光散射轮廓。(B)在于缓冲液中加热之后LSNA的动态光散射轮廓。(C)在牛血清白蛋白(胎牛血清的一种主要组分)存在下脂质体分解的示意性表示。(D)在10%胎牛血清存在下SUV(上部迹线)和LSNA(下部迹线)的降解,如通过封装的若丹明染料的释放所监测,所述释放引起溶液的荧光增加。
图9A-9B示出(A)被监测为260nm下的吸光度的脂质体-SNA聚集体的熔融转变。(B)在接头DNA链存在下在聚集之前(下部迹线)和在聚集之后(上部迹线)脂质体SNA的吸收光谱。
图10A-10D示出(A)与100nM Cy5标记的脂质体SNA孵育24小时的SKOV3细胞的共焦纤维照片。将细胞核用赫斯特33342染色。(B)通过MTT测定进行的SKOV3细胞中脂质体SNA和Dharma FECT-DNA复合物的细胞毒性测量。(C)在孵育1小时(各组中的左条形)和36小时(各组中的右条形)之后通过流式细胞术定量的SKOV3细胞中5-Cy5-标记的DNA链和5'-Cy5-标记的脂质体-SNA的细胞摄取。(D)使用抗HER2脂质体-SNA构建体在1μM DNA浓度下进行的SKOV3细胞中的HER2基因敲低。
图11描绘在分离和纯化之后SUV的TEM显微照片。
图12A-12B描绘A)用于计算给定溶液中的脂质体的总数目的等式。可以使用ICP测定脂质的浓度。对于本文描述的大多数研究,工作脂质浓度1.3mM得到1.361×1017个脂质体/L和71个DNA链/颗粒的DNA负载(4pmol cm-2)。B)取决于所估计的寡核苷酸负载,脂质体SNA的颗粒流动性。
图13A-13C示出在1%琼脂糖凝胶电泳图像上已用5'-Cy5-标记的DNA链功能化得FITC封装的LSNA的移动。B)示出凝胶上由于带负电荷的DNA电晕的存在所致的脂质体核心的移动的FITC通道。C)Cy5通道指示由于自由链与在脂质体构建体上功能化得那些链之间的大小差异所致的流动性的差异。两个通道共定位在同一条带上。
图14描绘Ramos-BlueTM NF-κB/AP-1报道系统。
图15示出当暴露于含CpG寡核苷酸时Ramos-Blue细胞的活化。
图16是脂质体SNA的合成的图形描述。
图17示出为用不同数目的寡核苷酸功能化的表面的脂质体SNA的凝胶电泳图像。30nm SUV的浓度是0.22μM(通过元素分析和接近2.2×103个磷脂/30nm SUV通过磷脂含量的分析所测定)。
图18示出其中脂质体颗粒用于敲低HIF1-α的表达的实验的结果。
图19示出其中脂质体颗粒用于敲低BAX的表达的实验的结果。
详述
球形核酸(SNA)纳米颗粒缀合物是通常从固定在这类颗粒表面上的高度定向的核酸配体的无机纳米颗粒模板和壳合成的[Mirkin等人,Nature 382:607(1996)]。已经以各种不同的形式制备了SNA[Cutler等人,J.Am.Chem.Soc.134:1376(2012);Will等人,InNanomaterials for Biomedicine;American Chemical Society:第1119卷,第1-20页(2012)]。核心组合物,包括金、二氧化硅[Young等人,Nano Lett.12:3867(2012)]、氧化铁[Cutler等人,Nano Lett.10:1477(2010);Zhang等人,Nat.Mater.12:741(2013)]以及Ag[Lee等人,Nano Lett.7:2112(2007)]与由DNA、RNA、LNA[Seferos等人,ChemBioChem 8:1230(2007)]以及PNA[Lytton-Jean等人,Advanced Materials 21:706(2009)]组成的壳组合物已全部制备且进行了探索。已合成由交联寡核苷酸组成的中空SNA结构[Cutler等人,J.Am.Chem.Soc.133:9254(2011)],连同胶束-嵌段共聚物结构[Li等人,Nano Lett.4:1055(2004);Alemdaroglu等人,Advanced Materials 20:899(2008);Liu等人,Chemistry–AEuropean Journal 16:3791(2010);Chien等人,Chem.Commun.47:167(2011)]。虽然已知的SNA中现在存在极大结构和组分多样性,但它们都共有一些特性和特征。它们的多价构造允许它们协同地结合寡核苷酸并且形成表现出非常窄的熔融转变的双链体结构。这些特性已在高灵敏性和高选择性基因组检测系统的开发中进行了探索[Rosi等人,Chem.Rev.105:1547(2005)]。虽然线性核酸在无聚合物、肽或病毒转染剂的情况下不能良好进入细胞,但三维SNA结构由A类清除受体识别[Patel等人,Bioconjugate Chem.21:2250(2010);Choi等人,Proc.Natl.Acad.Sci.U.S.A.110:7625(2013)]并且被迅速带入超过60种不同的细胞类型而无需辅助转染剂[McAllister等人,J.Am.Chem.Soc.124:15198(2002);Whitehead等人,Nat Rev Drug Discov 8:129(2009);Zhang等人,Biomaterials 31:1805(2010)]。这种特性使得这类结构是用于细胞内检测[Zheng等人,Nano Lett.9:3258(2009);Prigodich等人,ACS Nano 3:2147(2009)]和经由反义或siRNA途径基因调控[Rosi等人,Science 312:1027(2006);Agbasi-Porter等人,Bioconjugate Chem.17:1178(2006);Giljohann等人,J.Am.Chem.Soc.131:2072(2009);Jensen等人,Science Translational Medicine 5:209ra152(2013)]两者的策略中的重要要素。
然而,治疗性使用的障碍较高,尤其是当这类结构是由具有已知的清除问题或未知的生物分布特征的材料制成时。理想地,将期望由可容易获得的起始材料制成的SNA结构可按比例合成,并且由已经是FDA批准的药物的一部分的组分组成[Cutler等人,J.Am.Chem.Soc.134:1376(2012);Farokhzad等人,Drug Delivery Rev.58:1456(2006)]。在本文中,提供一种用于制备这类结构策略,所述结构由用具有疏水性尾的带电荷的聚合物的致密壳稳定化的小脂质体核心组成,所述脂质体核心可夹在限定脂质体结构的磷脂之间。考虑用于使用的这样一种带电荷的聚合物是核酸。如同常规SNA,这些脂质体结构快速地进入多种细胞系并且在一些实施方案中用于经由反义途径有效地敲低基因表达。常规SNA已显示进入源自许多器官和组织的细胞,包括乳腺(SKBR3、MDA-MB-231、AU-565)、脑(U87、LN229、U118)、膀胱(HT-1376、5637、T24)、结肠(LS513)、宫颈(HeLa、SiHa)、皮肤(C166、KB、MCF 10A)、肾(MDCK)、脑(大鼠海马神经元、星形细胞、胶质细胞)、膀胱、血液(PBMC、T-细胞)、胰腺(人β-胰岛)、皮肤(人)、血液(Sup T1、Jurkat)、白血病(K562)、肝(HepG2)、肾(293T)、卵巢(CHO)、成纤维细胞(NIH3T3)、巨噬细胞(RAW264.7)。球形核酸构造有助于通过结合至清除受体A(一种细胞膜受体)而使这些构建体进入细胞。表达这种受体的细胞系的一些非限制性实例是HeLa、SKOV-3、U87、Neuro2A、RAW细胞、HepG2、Hep3B、MDA-MB-468、MCF-7、C8S、C166 Bend3、A549、Rab9、HeyA8、Jurkat细胞。
采用SUV的主要缺点是它们在溶液中的固有不稳定性,这是由于融合成较大脂质体结构的高倾向性所致。本文公开用带负电荷的DNA的致密层功能化这些结构通过例如减少由于带负电荷的颗粒表面的排斥所致的颗粒-颗粒相互作用来提高它们的稳定性。在本文描述的研究的过程中,据发现生育酚功能化的DNA相较于其他已知的疏水性DNA类似物在颗粒上提供更高密度的DNA链,从而显著提高颗粒的稳定性。除了总体胶体稳定性,高密度的DNA将经由清除受体B途径增加这种纳米颗粒的摄取并且将允许遗传物质诱导递送至细胞中。最后,DNA的致密层预期提高体内的颗粒稳定性、其循环速率且因此改进这种纳米药物的生物分布。
本公开教导通过增加SUV的表面负电荷,经由连接阴离子实体(包括但不限于DNA和RNA),这些囊泡的胶体稳定性得以提高。另外,不同于其线性对应物,核酸的致密球形布置和径向取向表现出独特的化学和生物特性。这些球形核酸(SNA)是无毒的,并且虽然是阴离子的,但能够以非免疫原性方式有效地进入细胞而无需辅助阳离子转染剂的帮助。这些例外特性允许其用作不同疗法中的基因调控的递送剂。脂质体模板介导的SNA合成提供金属核心SNA的替代平台,所述金属核心SNA因金属核心的生物积聚和不能封装治疗实体而限制SNA治疗多样性。
现在将在下文更全面地描述生育酚修饰的寡核苷酸和制备所述寡核苷酸的方法、脂质体颗粒以及制备所述脂质体颗粒的方法、以及脂质体颗粒的用途。确实,本公开可以许多不同的形式实施且不应被解释为限于本文提出的实施方案。这些实施方案以足够的书面细节提供以描述本发明并且使本领域的技术人员能够制备和使用本发明,连同用于实践本发明的最佳模式的公开内容,如由权利要求及其等效物所限定。
同样,本发明所属领域的技术人员将会想到本文描述的方法的许多修改和其他实施方案,其具有前述描述和相关附图中所提出的教义的益处。因此,应理解,本发明不限于所公开的特定实施方案,并且所述修改和其他实施方案意图包括在所附权利要求的范围内。尽管本文采用特定术语,但是仅在一般意义和描述性意义上而不是出于限制的目的使用这些术语。
术语
除非另外定义,否则本文使用的所有技术术语和科学术语具有与本发明所属领域中的技术人员通常理解的相同的含义。虽然可在本发明的实践或测试中使用类似或等同于本文所描述的那些方法和材料的任何方法和材料,但本文描述优选方法和材料。
首先定义某些术语。在整个说明书中定义另外的术语。
为了简洁,在小单层囊泡(SUV)、脂质体SNA(LSNA)、脂质体颗粒或球形核酸(SNA)方面对本公开的实施方案的描述也可适用于使用任何其他前述术语的实施方案。作为举例,使用脂质体SNA调控基因表达的方法也可在本文描述为使用脂质体颗粒调控基因表达的方法。小单层囊泡(SUV)是100纳米大小以下的脂质体颗粒并且用作LSNA的前体。SUV和LSNA因而可被视为脂质体颗粒的亚类。
本文使用的术语意图作为“开放”术语(例如,术语“包括”应被解释为“包括但不限于”,术语“具有”应被解释为“具有至少”,术语“包含”应被解释为“包含但不限于”)。
此外,在使用类似于“A、B和C等中的至少一个”的惯例的那些情况下,一般而言这种造句意图是本领域的普通技术人员将理解所述惯例的意义(例如,“一种具有A、B和C中的至少一个的系统”将包括但不限于具有单独A、单独B、单独C、A和B一起、A和C一起、B和C一起和/或A、B和C一起的系统)。本领域的技术人员还将理解,无论在说明书或附图中,表示两个或更多个替代术语的几乎任何转折性词语和/或短语应被理解为考虑包括所述术语中的一个、所述术语中的任一个或两个术语的可能性。例如,术语“A或B”将被理解为包括“A或B”或“A和B”的可能性。
所有语言如“从”、“至”、“达”、“至少”、“大于”、“小于”等包括所列举的数字并且是指可随后分解成如上文所讨论的子范围的范围。
范围包括每个单独成员。因此,例如,具有1-3个成员的组是指具有1、2或3个成员的组。类似地,具有6个成员的组是指具有1、2、3、4、或6个成员的组,依次类推。
情态动词“可”是指在若干描述的实施方案或在所述实施方案内包括的特征之中一个或多个选项或选择的优选使用或选择。在关于具体实施方案或在所述实施方案中包括的特征未公开选项或选择的情况下,情态动词“可”是指关于如何制备或使用所描述的实施方案或在所述实施方案中包括的特征的确认行为,或使用关于所描述的实施方案或在所述实施方案中包括的特征的特定技能的最后决策。在此后者背景下,情态动词“可”与助动词“能够”具有相容意义和涵义。
如本文所用,冠词“一个(种)”(“a”和“an”)是指一个或多于一个(例如指至少一个)的所述冠词的语法宾语。
“约”和“大约”应总体上意指鉴于测量的性质或准确度,所测量的量的可接受的误差程度。示例性误差程度在给定值或值范围的20-25%(%)内,通常在10%内,并且更通常在5%内。
本文描述的化学结构是根据IUPAC命名规则命名的并且在适当的情况下包括本领域公认的常见名称和缩写。IUPAC命名可用化学结构绘图软件程序获得,如
Figure BDA0002691796300000121
(PerkinElmer,Inc.)、
Figure BDA0002691796300000122
(iChemLabs,LLC)和Marvin(ChemAxon Ltd.)。在IUPAC名称错误命名或另外与本文公开的化学结构冲突的程度上以本公开中的化学结构为准。
呈现标题(例如(A)、(B)、(i)等)仅是为了便于阅读本说明书和权利要求书。本说明书或权利要求书中标题的使用并不要求步骤或要素是以字母或数字顺序或以它们出现的顺序进行。
本公开描述被称为脂质体颗粒的新颖颗粒、制备所述颗粒的方法以及这些颗粒的用途。本发明的脂质体颗粒相较于基于其他已知脂质体的材料是有利的,在于所述脂质体颗粒在小于其他已知脂质体颗粒的颗粒大小下是稳定的,并且DNA的致密层提高体内的颗粒稳定性且因此提高脂质体囊泡的循环速率,这改进这些颗粒在体内的生物分布。
A.生育酚修饰的寡核苷酸
在第一实施方案中,公开一种包含生育酚修饰的寡核苷酸的构造。生育酚修饰的寡核苷酸包含亲脂性端和非亲脂性端。所述亲脂性端包含生育酚,并且可选自由生育酚衍生物α-生育酚、β-生育酚、γ-生育酚以及δ-生育酚组成的组。在其他实施方案中,所述亲脂性端包含棕榈酰基、二棕榈酰基、硬脂基或二硬脂基。
生育酚修饰的寡核苷酸的非亲脂性端是寡核苷酸。寡核苷酸是RNA或DNA。RNA可以是执行调控功能的抑制性RNA(RNAi),并且选自由小RNAi组成的组,所述小RNAi选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的RNA以及核酶组成的组。或者,RNA是执行调控功能的微RNA。在其他实施方案中,RNA是piwi相互作用RNA(piRNA)。在一些实施方案中,DNA是反义DNA。
考虑用于根据本公开使用的寡核苷酸的长度是约5至约100个核苷酸。方法和组合物还考虑其中寡核苷酸的长度是约5个至约90个核苷酸、长度是约5至约80个核苷酸、长度是约5至约70个核苷酸、长度是约5至约60个核苷酸、长度是约5至约50个核苷酸、长度是约5至约45个核苷酸、长度是约5至约40个核苷酸、长度是约5至约35个核苷酸、长度是约5与约30个核苷酸、长度是约5至约25个核苷酸、长度是约5至约20个核苷酸、长度是约5至约15个核苷酸、长度是约5至约10个核苷酸,以及处于具体公开的长度大小之间的所有寡核苷酸,只要所述寡核苷酸能够实现所需的结果。因此,考虑长度为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99以及100个核苷酸的寡核苷酸。
修饰的寡核苷酸
寡核苷酸的特定实例包括含有修饰的主链或非天然核苷酸间键联的寡核苷酸。具有修饰主链的寡核苷酸包括在主链中保留磷原子或在主链中不具有磷原子的寡核苷酸。在其核苷酸间主链中不具有磷原子的修饰的寡核苷酸被认为处于“寡核苷酸”的含义之内。
含有磷原子的修饰的寡核苷酸主链包括,例如,具有正常3’-5’键联的硫代磷酸酯类、手性硫代磷酸酯类、二硫代磷酸酯类、磷酸三酯类、氨基烷基磷酸三酯类、甲基和其他烷基磷酸酯类(包括3’-烯基磷酸酯类、5’-烯基磷酸酯类和手性磷酸酯类、次磷酸酯类)、磷酰胺酯类(包括3’-氨基磷酰胺酯和氨烷基磷酰胺酯、硫羰磷酰胺酯(thionophosphoramidates))、硫羰烷基磷酸酯(thionoalkylphosphonates)、硫羰烷基磷酸三酯(thionoalkylphosphotriesters)、硒代磷酸酯和硼烷磷酸酯(boranophosphates)、这些修饰的寡核苷酸主链的2’-5’连接的类似物、以及具有反转极性的修饰的寡核苷酸主链,其中一个或多个核苷酸间键联是3’至5’、5’至5’或2’至’2键联。还考虑具有反转极性的寡核苷酸,其在3’-最末端的核苷酸键联上包含单一3’至3’键联,即,可能无碱基的(此核苷酸失去或在其位置上具有羟基基团)单一反转核苷酸残基。还考虑盐类、混合盐类以及游离酸形式。可教导制备上述含磷的键联的代表性美国专利包括:美国专利号3,687,808、4,469,863、4,476,301、5,023,243、5,177,196、5,188,897、5,264,423、5,276,019、5,278,302、5,286,717、5,321,131、5,399,676、5,405,939、5,453,496、5,455,233、5,466,677、5,476,925、5,519,126、5,536,821、5,541,306、5,550,111、5,563,253、5,571,799、5,587,361、5,194,599、5,565,555、5,527,899、5,721,218、5,672,697和5,625,050,所述专利的公开内容以引用的方式并入本文。
其中不包含磷原子的修饰的寡核苷酸主链具有由短链烷基或环烷基核苷间键联、混合杂原子和烷基或环烷基核苷间键联或一个或多个短链杂原子或杂环核苷间键联形成的主链。这些主链包括:具有吗啉代键联的主链;硅氧烷主链;硫化物、亚砜和砜主链;甲酰乙酰基和硫代甲酰乙酰基主链;亚甲基甲酰乙酰基和硫代甲酰乙酰基主链;核糖乙酰基主链;含烯烃的主链;氨基磺酸酯主链;亚甲基亚氨基和亚甲基肼基主链;磺酸酯和磺酰胺主链;酰胺主链;以及其他具有混合的N、O、S和CH2组成部分的主链。参见例如美国专利号5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033;5,264,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,610,289;5,602,240;5,608,046;5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;5,792,608;5,646,269以及5,677,439,所述专利的公开内容以引用的方式整体并入本文。
在其他实施方案中,考虑其中核苷酸单位的一个或多个糖和/或一个或多个核苷酸间键联被“非天然存在的”基团置换的寡核苷酸。一方面,本实施方案考虑肽核酸(PNA)。在PNA化合物中,寡核苷酸的糖主链被含酰胺的主链置换。参见,例如美国专利号5,539,082、5,714,331和5,719,262,以及Nielsen等,1991,Science,,254:1497-1500,所述文献的公开内容以引用的方式并入本文。
在其他实施方案中,寡核苷酸具有硫代磷酸酯主链,并且寡核苷具有杂原子主链,并且包括在美国专利号5,489,677和5,602,240中所描述的—CH2—NH—O—CH2—、—CH2—N(CH3)—O—CH2—、—CH2—O—N(CH3)—CH2—、—CH2—N(CH3)—N(CH3)—CH2—以及—O—N(CH3)—CH2—CH2—。还考虑具有美国专利号5,034,506中描述的吗啉代主链结构的寡核苷酸。
在各种形式中,寡核苷酸中两个连续单体之间的键联由2至4个(理想情况下是3个)基团/原子组成,所述基团/原子选自—CH2—、—O—、—S—、—NRH—、>C=O、>C=NRH、>C=S、—Si(R")2—、—SO—、—S(O)2—、—P(O)2—、—PO(BH3)—、—P(O,S)—、—P(S)2—、—PO(R")—、—PO(OCH3)—以及—PO(NHRH)—,其中RH选自氢和C1-4-烷基,并且R"选自C1-6-烷基和苯基。这类键联的示例性实例是—CH2—CH2—CH2—、—CH2—CO—CH2—、—CH2—CHOH—CH2—、—O—CH2—O—、—O—CH2—CH2—、—O—CH2—CH=(当用作与下一个单体的键联时包括R5)、—CH2—CH2—O—、—NRH—CH2—CH2—、—CH2—CH2—NRH—、—CH2—NRH—CH2—、—O—CH2—CH2—NRH—、—NRH—CO—O—、—NRH—CO—NRH—、—NRH—CS—NRH—、—NRH—C(=NRH)—NRH—、—NRH—CO—CH2—NRH—O—CO—O—、—O—CO—CH2—O—、—O—CH2—CO—O—、—CH2—CO—NRH—、—O—CO—NRH—、—NRH—CO—CH2—、—O—CH2—CO—NRH—、—O—CH2—CH2—NRH—、—CH=N—O—、—CH2—NRH—O—、—CH2—O—N=(当用作与下一个单体的键联时包括R5)、—CH2—O—NRH—、—CO—NRH—CH2—、—CH2—NRH—O—、—CH2—NRH—CO—、—O—NRH—CH2—、—O—NRH、—O—CH2—S—、—S—CH2—O—、—CH2—CH2—S—、—O—CH2—CH2—S—、—S—CH2—CH=(当用作与下一个单体的键联时包括R5)、—S—CH2—CH2—、—S—CH2—CH2—-O—、—S—CH2—CH2—S—、—CH2—S—CH2—、—CH2—SO—CH2—、—CH2—SO2—CH2—、—O—SO—O—、—O—S(O)2—O—、—O—S(O)2—CH2—、—O—S(O)2—NRH—、—NRH—S(O)2—CH2—;—O—S(O)2—CH2—、—O—P(O)2—O—、—O—P(O,S)—O—、—O—P(S)2—O—、—S—P(O)2—O—、—S—P(O,S)—O—、—S—P(S)2—O—、—O—P(O)2—S—、—O—P(O,S)—S—、—O—P(S)2—S—、—S—P(O)2—S—、—S—P(O,S)—S—、—S—P(S)2—S—、—O—PO(R")—O—、—O—PO(OCH3)—O—、—O—PO(O CH2CH3)—O—、—O—PO(OCH2CH2S—R)—O—、—O—PO(BH3)—O—、—O—PO(NHRN)—O—、—O—P(O)2—NRH H—、—NRH—P(O)2—O—、—O—P(O,NRH)—O—、—CH2—P(O)2—O—、—O—P(O)2—CH2—、以及—O—Si(R")2—O—;其中考虑—CH2—CO—NRH—、—CH2—NRH—O—、—S—CH2—O—、—O—P(O)2—O—O—P(-O,S)—O—、—O—P(S)2—O—、—NRH P(O)2—O—、—O—P(O,NRH)—O—、—O—PO(R")—O—、—O—PO(CH3)—O—以及—O—PO(NHRN)—O—,其中RH选自氢和C1-4-烷基,并且R"选自C1-6-烷基和苯基。Mesmaeker等,1995,Current Opinion in StructuralBiology,5:343-355以及Susan M.Freier和Karl-Heinz Altmann,1997,Nucleic AcidsResearch,第25卷:第4429-4443页中给出了另外的说明性实例。
寡核苷酸的其他修饰形式在美国专利申请号20040219565中进行了详细描述,所述专利的公开内容以引用的方式整体并入本文。
修饰的寡核苷酸还可包含一个或多个取代的糖部分。在某些方面,寡核苷酸在2’位置上包含以下中的一个:OH;F;O-、S-或N-烷基;O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中烷基、烯基以及炔基可以是取代或未取代的C1至C10烷基或C2至C10烯基和炔基。其他实施方案包括O[(CH2)nO]mCH3、O(CH2)nOCH3,O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2以及O(CH2)nON[(CH2)nCH3]2,其中n和m是1至约10。其他寡核苷酸在2’位置包含以下中的一个:C1至C10低级烷基、取代的低级烷基、烯基、炔基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷芳基、氨基烷基氨基、多烷基氨基、取代的甲硅烷基、RNA裂解基团、报告基因、嵌入剂、用于改进寡核苷酸的药代动力学特性的基团或用于改进寡核苷酸的药效学特性的基团,以及其他具有类似特性的取代基。一方面,修饰包括2’-甲氧基乙氧基(2'-O-CH2CH2OCH3,也称为2'-O-(2-甲氧乙基)或2'-MOE)(Martin等,1995,Helv.Chim.Acta,78:486-504),即烷氧基烷氧基。其他修饰包括2’-二甲基氨基氧基乙氧基,即O(CH2)2ON(CH3)2基团,也称为2'-DMAOE,如本文以下实例中所描述;以及2’-二甲基氨基乙氧基乙氧基(在本领域中也称为2'-O-二甲基-氨基-乙氧基-乙基或2'-DMAEOE),即2'-O—CH2—O—CH2—N(CH3)2,也在本文以下实例中描述。
其他修饰包括2’-甲氧基(2'-O—CH3)、2’-氨基丙氧基(2'-OCH2CH2CH2NH2)、2'-烯丙基(2'-CH2—CH=CH2)、2'-O-烯丙基(2'-O—CH2—CH=CH2)以及2’-氟基(2'-F)。2’-修饰可处于阿拉伯糖(上)位或核糖(下)位。一方面,2’-阿拉伯糖修饰是2’-F。类似的修饰还可在所述寡核苷酸上的其他位置处进行,例如,位于3’末端核苷酸或2’-5’连接的寡核苷酸的糖的3’位置以及5’末端核苷酸的5’位置。寡核苷酸还可具有替代五碳呋喃糖的糖类似结构,如环丁基部分。参见例如美国专利号4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,658,873;5,670,633;5,792,747;以及5,700,920,所述专利的公开内容以引用的方式整体并入本文。
一方面,糖的修饰包括锁核酸(LNA),其中2’-羟基连接至糖环的3’或4’碳原子,从而形成双环糖部分。在某些方面,所述键联是桥联2’氧原子和4’碳原子的亚甲基(—CH2—)n基团,其中n是1或2。LNA及其制备描述于WO 98/39352和WO99/14226中。
寡核苷酸还可包含碱基修饰或取代。如本文所使用,“未修饰”或“天然”碱基包括嘌呤碱基腺嘌呤(A)和鸟嘌呤(G)以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰的碱基包括其他合成和天然的碱基,如5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤、2-氨基腺嘌呤、腺嘌呤和鸟嘌呤的6-甲基衍生物和其他烷基衍生物、腺嘌呤和鸟嘌呤的2-丙基衍生物和其他烷基衍生物、2-硫尿嘧啶、2-硫胸腺嘧啶和2-硫胞嘧啶、5-卤代尿嘧啶和胞嘧啶、5-丙炔基尿嘧啶和胞嘧啶以及嘧啶碱基的其他炔基衍生物、6-偶氮基尿嘧啶、胞嘧啶和胸腺嘧啶、5-尿嘧啶(假尿嘧啶)、4-硫尿嘧啶、8-卤代、8-氨基、8-巯基、8-硫烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤、5-卤代(具体为5-溴)、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶、7-甲基鸟嘌呤和7-甲基腺嘌呤、2-F-腺嘌呤、2-氨基-腺嘌呤、8-氮杂鸟嘌呤和8-氮杂腺嘌呤、7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。其他修饰的碱基包括三环嘧啶类,如吩噁嗪胞苷(1H-嘧啶并5,4-b][l,4]苯并噁嗪2(3H)-酮)、吩噻嗪胞苷(1H-嘧啶并[5,4-b][l,4]苯并噻嗪-2(3H)-酮)、G-形钳如取代的吩噁嗪胞苷(例如9-(2-氨基乙氧基)-H-嘧啶并[5,4-b][l,4]苯并噁嗪-2(3H)-酮)、咔唑胞苷(2H-嘧啶并[4,5-b]吲哚-2-酮)、吡啶并吲哚胞苷(H-吡啶并[3',2':4,5]吡咯并[2,3-d]嘧啶2-酮)。修饰的碱基还可包括其中嘌呤或嘧啶碱基被其他杂环类置换的那些碱基,例如7-脱氮腺嘌呤、7-脱氮鸟嘌呤、2-氨基吡啶以及2-吡啶酮。其他碱基包括公开于美国专利号3,687,808中的那些、公开于The Concise Encyclopedia Of Polymer Science AndEngineering,第858-859页,Kroschwitz,J.I.编著John Wiley&Sons,1990中的那些、由Englisch等,1991,Angewandte Chemie,International Edition,30:613公开的那些以及由Sanghvi,Y.S.,第15章,Antisense Research and Applications,第289-302页,Crooke,S.T.和Lebleu,B.编著,CRC Press,1993公开的那些。这些碱基中的某些碱基适用于提高结合亲和力并且包括5-取代的嘧啶、6-氮杂嘧啶以及N-2、N-6和O-6取代的嘌呤,包括2-氨丙基腺嘌呤、5-丙炔基尿嘧啶以及5-丙炔基胞嘧啶。5-甲基胞嘧啶取代已显示使核酸双链体的稳定性提高0.6-1.2℃并且在某些方面与2’-O-甲氧基乙基糖修饰组合。参见美国专利号3,687,808,美国专利号4,845,205;5,130,302;5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121,5,596,091;5,614,617;5,645,985;5,830,653;5,763,588;6,005,096;5,750,692以及5,681,941,所述专利的公开内容以引用的方式并入本文。
“修饰的碱基”或其他类似的术语是指可与天然碱基(例如,腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶和/或胸腺嘧啶)配对和/或可与非天然存在的碱基配对的组合物。在某些方面,修饰的碱基提供15、12、10、8、6、4、或2℃或更小的Tm差异。示例性修饰的碱基描述于EP 1072 679和WO 97/12896中。
“核碱基”是指天然存在的核碱基腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U),以及非天然存在的核碱基,如黄嘌呤、二氨基嘌呤、8-氧代-N6-甲基腺嘌呤、7-脱氮黄嘌呤、7-脱氮鸟嘌呤、N4,N4-桥亚乙基胞嘧啶、N',N'-桥亚乙基-2,6-二氨基嘌呤、5-甲基胞嘧啶(mC)、5-(C3—C6)-炔基-胞嘧啶、5-氟尿嘧啶、5-溴尿嘧啶、假异胞嘧啶、2-羟基-5-甲基-4-三唑并吡啶、异胞嘧啶、异鸟嘌呤、肌苷,以及Benner等,美国专利号5,432,272以及Susan M.Freier和Karl-Heinz Altmann,1997,Nucleic Acids Research,第25卷:第4429-4443页中所描述的“非天然存在的”核碱基。术语“核碱基”因此不仅包括已知的嘌呤和嘧啶杂环类,而且包括其杂环类似物和互变异构体。其他天然和非天然存在的核碱基包括美国专利号3,687,808(Merigan等);Sanghvi的第15章,Antisense Research andApplication,S.T.Crooke和B.Lebleu编著,CRC Press,1993;Englisch等,1991,Angewandte Chemie,国际版本,30:613-722(特别参见第622页和第623页,并且参见Concise Encyclopedia of Polymer Science and Engineering,J.I.Kroschwitz编著,John Wiley&Sons,1990,第858-859页,Cook,Anti-Cancer Drug Design 1991,6,585-607,所述文献各自以引用的方式整体并入本文)中公开的那些。术语“核苷碱基”或“碱基单元”还意图包括可充当核碱基的化合物如杂环化合物,所述核碱基包括在最传统意义上不是核苷碱基但充当核苷碱基的某些“通用碱基”。作为通用碱基尤其提及3-硝基吡咯、任选取代的吲哚(例如5-硝基吲哚)以及任选取代的次黄嘌呤。其他理想的通用碱基包括吡咯、二唑或三唑衍生物,包括本领域中已知的那些通用碱基。
B.制备生育酚修饰的寡核苷酸的方法
在第二实施方案中,公开制备生育酚寡核苷酸的方法。首先,提供寡核苷酸和亚磷酰胺修饰的生育酚。然后,将所述寡核苷酸暴露于所述亚磷酰胺修饰的生育酚以产生生育酚修饰的寡核苷酸。虽然不意图是限制性的,但本领域技术人员已知的任何化学可用于将生育酚连接至寡核苷酸,包括酰胺连接或点击化学。
C.脂质体颗粒
在第三实施方案中,公开脂质体颗粒。所述脂质体颗粒具有至少大致上球形的几何形状、内侧以及外侧,并且包含脂质双层。所述脂质双层包括第一脂质和第二脂质。在一些实施方案中,所述第一脂质和第二脂质是相同的。在其他实施方案中,所述第一脂质和第二脂质是不同的。
所述第一脂质选自脂质的磷酸胆碱家族或脂质的磷酸乙醇胺家族。虽然不意图是限制性的,但所述第一脂质选自由以下各项组成的组:1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二肉豆蔻酰基-sn-磷脂酰胆碱(DMPC)、1-棕榈酰基-2-油酰基-sn-磷脂酰胆碱(POPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DSPG)、1,2-二油酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DOPG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二-(9Z-十八烯酰基)-sn-甘油基-3-磷酸乙醇胺(DOPE)、以及1,2-双十六烷酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。
所述第二脂质选自脂质的磷酸胆碱家族或脂质的磷酸乙醇胺家族。虽然不意图是限制性的,但所述第二脂质选自由以下各项组成的组:1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二肉豆蔻酰基-sn-磷脂酰胆碱(DMPC)、1-棕榈酰基-2-油酰基-sn-磷脂酰胆碱(POPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DSPG)、1,2-二油酰基-sn-甘油基-3-磷酸-(1'-rac-甘油)(DOPG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二-(9Z-十八烯酰基)-sn-甘油基-3-磷酸乙醇胺(DOPE)、以及1,2-双十六烷酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。
所述脂质颗粒还包含生育酚修饰的寡核苷酸,其中所述生育酚修饰的寡核苷酸的亲脂性端被吸收至脂质双层中。生育酚选自由α-生育酚、β-生育酚、γ-生育酚以及δ-生育酚组成的组。生育酚修饰的寡核苷酸的非亲脂性端是寡核苷酸。在各种实施方案中,这种寡核苷酸是RNA或DNA。RNA可以是执行调控功能的抑制性RNA(RNAi),并且在各种实施方案中选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的RNA以及核酶组成的组。或者,并且在其他实施方案中,RNA是执行调控功能的微RNA。DNA任选地是反义DNA。在其他实施方案中,RNA是piwi相互作用RNA(piRNA)。
换言之,本公开提供一种脂质体颗粒,所述脂质体颗粒具有大致上球形的几何形状,所述脂质体颗粒包含脂质双层,所述脂质双层包含多个脂质基团;以及寡核苷酸。在各种实施方案中,寡核苷酸是修饰的寡核苷酸。在一些实施方案中,所述多个脂质基团包含选自由脂质的磷脂酰胆碱、磷脂酰甘油以及磷脂酰乙醇胺家族组成的组的脂质。在其他实施方案中,寡核苷酸是含有亲脂性栓系基团的寡核苷酸-脂质缀合物,其中所述亲脂性栓系基团被吸附至脂质双层中。在各种实施方案中,所述亲脂性栓系基团包含生育酚、棕榈酰基、二棕榈酰基、硬脂基、二硬脂基或胆固醇。
或者,所述脂质体颗粒还包含封装在所述脂质体颗粒的内侧上的治疗剂。在其他实施方案中,本公开的脂质体颗粒还包含直接或间接地连接至所述脂质体颗粒的治疗剂。间接连接包括,例如但不限于,连接至进而连接至脂质体颗粒的寡核苷酸。
在一些实施方案中,所述脂质体颗粒还包含封装在所述脂质体颗粒的内侧上的诊断剂。在一些实施方案中所述诊断剂是钆。
关于本公开的脂质体颗粒的表面上的寡核苷酸的表面密度,考虑如本文所述的脂质体颗粒在其表面上包含约1至约100个寡核苷酸。在各种实施方案中,脂质体颗粒在其表面上包含约10至约100、或10至约90、或约10至约80、或约10至约70、或约10至约60、或约10至约50、或约10至约40、或约10至约30、或约10至约20个寡核苷酸。在其他实施方案中,脂质体颗粒在其表面上包含至少约5、10、20、30、40、50、60、70、80、90或100个核苷酸。
D.制备脂质体颗粒的方法
在第四实施方案中,公开制备脂质体颗粒的方法。首先,提供磷脂、溶剂以及生育酚修饰的寡核苷酸。然后,将磷脂添加至溶剂以形成包含脂质体的第一混合物。所述第一混合物中的脂质体的大小在约100纳米与约150纳米之间。
接下来,将所述脂质体破坏以产生第二混合物,所述第二混合物包含脂质体和小单层囊泡(SUV)。所述第二混合物中的脂质体和SUV的大小在约20纳米与约150纳米之间。
接下来,从所述第二混合物分离具有约20纳米与约50纳米之间的颗粒大小的SUV。最后,将生育酚修饰的寡核苷酸添加至所分离的SUV以制备脂质体颗粒。
通过本公开的方法产生的脂质体颗粒的颗粒大小小于或等于50纳米。在一些实施方案中,产生多个脂质体颗粒,并且所述多个脂质体颗粒中的颗粒具有小于或等于约50纳米(例如,约5纳米至约50纳米、或约5纳米至约40纳米、或约5纳米至约30纳米、或约5纳米至约20纳米、或约10纳米至约50纳米、或约10纳米至约40纳米、或约10纳米至约30纳米、或约10纳米至约20纳米)的平均直径。在其他实施方案中,通过本公开的方法产生的多个脂质体颗粒中的颗粒具有小于或等于20纳米、或小于或等于约25纳米、或小于或等于约30纳米、或小于或等于约35纳米、或小于或等于约40纳米或小于或等于约45纳米。
换言之,在一些方面,本公开提供一种制备脂质体颗粒的方法,所述方法包括将磷脂添加至溶剂以形成第一混合物,所述第一混合物包含多个脂质体;破坏所述多个脂质体以产生第二混合物,所述第二混合物包含脂质体和小单层囊泡(SUV);从所述第二混合物分离所述SUV,所述SUV具有约20纳米与50纳米之间的颗粒大小;并且将寡核苷酸添加至所述分离的SUV以制备脂质体颗粒。
E.脂质体颗粒在基因调控/治疗中的用途
本文提供的用于抑制基因产物表达的方法包括其中相较于在脂质体SNA不存在下的基因产物表达,靶基因产物的表达被抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或100%的那些方法。换言之,所提供的方法涵盖实质上产生靶基因产物的表达的任何程度的抑制的那些方法。
抑制的程度是从体液样品或从活检样品在体内测定或通过本领域中熟知的程序技术来测定。或者,在细胞培养测定中测定抑制的程度,通常作为由于使用特定类型的脂质体SNA和特异性寡核苷酸而可在体内预期的抑制程度的可预测的测量。
在本公开的一些方面,考虑脂质体颗粒执行基因抑制功能以及治疗剂递送功能。在这类方面,治疗剂被封装在本公开的脂质体颗粒中,并且所述颗粒另外用被设计来实现靶基因表达的抑制的一个或多个寡核苷酸功能化。在其他实施方案中,治疗剂被连接至本公开的脂质体颗粒。
在各种方面,所述方法包括使用与靶多核苷酸100%互补(即,完全匹配)的寡核苷酸,而在其他方面,寡核苷酸在所述寡核苷酸的长度上与所述多核苷酸至少(意指大于或等于)约95%互补,在所述寡核苷酸的长度上与所述多核苷酸至少约90%、至少约85%、至少约80%、至少约75%、至少约70%、至少约65%、至少约60%、至少约55%、至少约50%、至少约45%、至少约40%、至少约35%、至少约30%、至少约25%、至少约20%互补,只要所述寡核苷酸能够实现靶基因产物的所需抑制程度。
在本领域中应了解,反义化合物的序列无需与其可特异性杂交的靶核酸的序列100%互补。此外,寡核苷酸可在一个或多个区段上杂交,以使得插入或相邻区段不牵涉到杂交事件中(例如环结构或发夹结构)。互补性百分比在寡核苷酸的长度内测定。例如,在反义化合物的20个核苷酸中的18个与总长度100个核苷酸的靶多核苷酸中的20个核苷酸区互补的反义化合物的情况下,寡核苷酸将是90%互补的。在此实例中,剩下的非互补核苷酸可与互补核碱基集群或穿插在互补核碱基中并且不需要彼此邻接或与互补核苷酸邻接。反义化合物与靶核酸的区的互补性百分比可常规地使用本领域中已知的BLAST程序(基本局部比对搜寻工具(basic local alignment search tool))和PowerBLAST程序来测定(Altschul等,J.Mol.Biol.,1990,215,403-410;Zhang和Madden,Genome Res.,1997,7,649-656)。
因此,在第五实施方案中,提供在基因调控疗法中利用脂质体颗粒的方法。所述方法包括以下步骤:将编码所述基因产物的多核苷酸与同所述多核苷酸的全部或一部分互补的一个或多个寡核苷酸杂交,所述寡核苷酸被连接至脂质体颗粒,其中所述多核苷酸与所述寡核苷酸之间的杂交在所述多核苷酸的具有足以抑制所述基因产物的表达的互补性程度的长度内发生。所述脂质体颗粒具有约小于或等于50纳米的直径。基因表达的抑制可在体内或在体外发生。
在所述方法中使用的寡核苷酸是RNA或DNA。RNA可以是执行调控功能的抑制性RNA(RNAi),并且在各种实施方案中选自由小抑制性RNA(siRNA)、与双链DNA形成三链体的RNA以及核酶组成的组。或者,RNA是执行调控功能的微RNA。在一些实施方案中,DNA是反义DNA。
在本公开的另一方面,脂质体颗粒用于一种治疗创伤性脑损伤(TBI)的方法中。在美国,自从2000年以来在军队中的TBI已经超过244,000例,并且其是45岁以下的人的死亡和残基的主要原因。此外,当前难以预测“轻度严重程度”事件的神经学结果,并且损伤的继发阶段(例如,炎症、局部缺血和细胞凋亡)非常难以治疗。
因此,在一些实施方案中,本公开的方法涉及使用被设计用于靶向在TBL中牵涉的基因产物和调控所述基因产物的表达的脂质体颗粒。例如且不限于,所述靶基因产物选自由以下各项组成的组:组蛋白脱乙酰酶(HDAC)、BCL2相关X(BAX)、基质金属肽酶/金属蛋白酶(MMP;包括但不限于,基质金属肽酶9(MMP-9))、缺氧诱导因子(HIF;包括但不限于,缺氧诱导因子1α(HIF1-α))以及钙蛋白酶。
F.脂质体颗粒在免疫调控中的用途
Toll样受体(TLR)是在岗哨细胞中表达的在先天性免疫系统的调控中起关键作用的一类蛋白质。哺乳动物免疫系统使用两种一般策略来对抗感染性疾病。病原体暴露迅速地引发先天性免疫应答,所述免疫应答特征在于免疫刺激细胞因子、趋化因子和多反应性IgM抗体的产生。先天性免疫系统通过暴露于由一组不同的感染性微生物表达的病原体相关分子模式(PAMP)而活化。PAMP的识别通过Toll-样受体家族的成员介导。对特异性寡核苷酸有反应的TLR受体(如TLR 4、TLR 8和TLR 9)位于被称为内体的内部特异性细胞内区室。TLR 4、TLR 8和TLR9受体的调节机制是基于DNA-蛋白质相互作用。
包含与在细菌DNA中发现的那些相似的CpG基序的合成免疫刺激性寡核苷酸刺激TLR受体的类似反应。因此,免疫调节ODN具有各种潜在治疗用途,包括治疗免疫缺陷和癌症。采用用免疫调节ODN功能化的脂质体纳米颗粒将允许增加的优先摄取且因此增加的治疗功效。值得注意地,较小颗粒(25至40nm)(如本文提供的那些)更有效地穿透组织屏障,从而提供先天性免疫应答的更有效的活化。因此,用含有功能性CpG基序的DNA功能化、稳定化的大小为30nm的小脂质体纳米颗粒将提供增强的治疗作用。
免疫系统的下调将涉及敲低负责Toll样受体的表达的基因。这种反义方法涉及使用用特异性反义寡核苷酸序列功能化以敲除任何toll样蛋白的表达的脂质体纳米颗粒。
因此,在第六实施方案中,公开利用脂质体颗粒调节toll样受体的方法。所述方法通过分别使用TLR激动剂或TLR拮抗剂来上调或下调Toll-样受体。所述方法包括使具有Toll-样受体的细胞与脂质体颗粒相接触。所调节的toll-样受体包括toll-样受体1、toll-样受体2、toll-样受体3、toll-样受体4、toll-样受体5、toll-样受体6、toll-样受体7、toll-样受体8、toll-样受体9、toll-样受体10、toll-样受体11、toll-样受体12以及toll-样受体13。
G.脂质体颗粒在Nanoflare技术中的用途
在本公开的另外方面,脂质体颗粒用于检测细胞内靶标。这类方法公开于美国专利号8,507,200中,所述专利以引用的方式整体并入本文。
简言之,将含有对靶分子具有特异性的识别序列的寡核苷酸连接至如本文所描述的脂质体颗粒。因此,如本文所描述的“识别序列”应被理解为意指与目标靶分子部分或完全互补的序列。
具有含有识别序列的连接的寡核苷酸的脂质体颗粒与报道序列初始相关。如本文所用,“报道序列”应被理解为意指与识别序列部分或完全互补且因此能够与所述识别序列杂交的序列。所述报道序列用可检测的标记(如但不限于荧光团)标记,并且还被称为纤耀斑(nanoflare)。所述报道序列在各种方面包含比识别序列少、相同或更多的碱基,以使得识别序列与其靶分子的结合引起所杂交的报道序列的释放,从而产生连接至所述报道序列的标记的可检测和可测量的变化。
本发明通过以下实施例进行说明,所述实施例不意图以任何方式限制。
实施例
实施例1–通用
所有试剂是从供应商以最高纯度获得且不经任何进一步纯化而使用。在VarianProstar系统上进行HPLC。在Varian Cary 300分光光度计上记录UV/V。在SPEX FluoroLog上荧光计上获得应该光谱。
实施例2–寡核苷酸的合成
在自动DNA合成仪(ABI 3400,Applied Biosystems,Inc.)上以1.0微摩尔规模合成寡核苷酸。在裂解且用水性氢氧化铵(55℃,14小时)脱保护之后,将DNA通过反相HPLC进行纯化且通过UV光谱仪进行定量。
实施例3–脂质体颗粒的合成
将脂质单体(40μmol的溶解于氯仿中的1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC))添加至20mL小瓶且随后蒸发,之后过夜冻干以除去溶剂,从而产生薄脂质膜。然后将所述膜用HBS缓冲液(5.0mL,20mM Hepes缓冲液,150mM NaCl(pH7.4))再水化,接着剧烈混合以形成脂质体悬浮液且随后在冰浴中探头超声处理30分钟而无脉冲。然后将所得悬浮液在104,986g和4℃下超速离心90分钟。使用元素分析计算磷脂浓度。
接下来,在Expedite核苷酸合成系统上经由标准固相亚磷酰胺化学用α-生育酚修饰合成DNA/RNA链。将所述链从固体载体裂解且通过反相高效液相色谱法进行纯化。
最后,将适当的DNA/RNA(16μM)添加至SUV的1.3mM溶液且使其搅拌过夜。然后将所述颗粒在第二天通过具有100kDa截留的离心过滤器进行纯化。然后经由TEM和动态光散射对颗粒进行分析。用FITC封装且用CY5标记的DNA表面功能化得脂质体颗粒的凝胶电泳在图13中示出。
实施例4–脂质体颗粒的细胞摄取的可视化
为了可视化LSNA的细胞摄取,将HeLa细胞在
Figure BDA0002691796300000241
II Chamber#1.5GermanCoverglass System(Nalge Nunc International)上生长过夜且与Cy5-标记的LSNA(0.1μM的DNA浓度)一起孵育。在16小时孵育之后,将培养基用新鲜培养基更换,且用赫斯特33342(Invitrogen)按照制造商的说明书对活细胞进行染色。使用Mai Tai3308激光器(Spectra-Physics)用Zeiss 510LSM在40x放大率下获得所有图像。在390–465nm和650-710nm下收集荧光发射,其中激发分别在729和633nm下(图5)。图5的左图示出脂质体荧光素进入HeLa细胞,而图5的右图示出荧光素和Cy5的共定位,从而表明整个脂质体递送至细胞中。
实施例4–细胞活力
用Alamar
Figure BDA0002691796300000242
测定(Invitrogen)来评价脂质体颗粒的细胞毒性。简言之,将HeLa细胞在96孔板上接种于200μL的培养基中且孵育24小时。然后将细胞用FITC封装的裸露SUV和DNA功能化的LSNA在不同浓度的磷脂浓度(0、32.5、65、162.5μM)下进行处理。在16小时之后,除去培养基,将细胞用PBS洗涤3次且然后与90μL的新鲜培养基和10μL的alamar蓝试剂孵育4小时。然后通过检查在560nm下的激发和在590nm下的发射来对它们进行分析。
实施例5–SUV的制备
材料
1,2-二油酰基-sn-甘油基-3-磷酸胆碱脂质单体(DOPC)购自Avanti PolarLipids公司,呈干燥粉末形式或呈氯仿溶液形式且不经进一步纯化而使用。亚磷酰胺和其他DNA合成试剂以最高纯度购自Glen Research公司且如从制造商所接收样使用。
仪器
冻干使用Freezone Lyohilizer(Labconco,Kansas City,MO)进行。超声处理使用钛合金固体实心探头超声波仪(500瓦特Vibra-CellTM VC 505,Sonics&Materials,Inc.,Newtown,CT)进行,所述超声波仪设置在20kHz的40%强度下而无脉冲。超速离心是使用Beckman-Coulter Avanti J-30I(Beckmann-Coulter,Inc.,Indianapolis,IN)进行。透射电子显微术(TEM)是使用Hitachi-2300 STEM电子显微镜进行。动态光散射(DLS)是使用Malvern Zetasizer Nano-ZS(Malvern Instruments,UK)收集的。MALDI-ToF分析是使用Bruker Autoflex III SmartBean质谱仪(Bruker Daltonics Inc.,MA,USA)进行的。荧光测量在Fluorlog-3系统(HORIBA Jobin Yvon Inc.,NJ,USA)进行。UV-Vis光谱是使用Cary5000 UV-Vis分光光度计(Varian Inc.,CA,USA)收集的。
寡核苷酸合成
使用DCI作为活化剂在Expedite 8909核苷酸合成系统(MM48 Synthesizer,Bioautomation)上使用自动固体载体亚磷酰胺合成来合成寡核苷酸。将生育酚亚磷酰胺经由自动方案使用延长的15分钟偶联时间进行偶联。在完成固相合成之后,使用用水性氢氧化铵(28-30%水溶液,Aldrich)过夜处理将寡核苷酸链从固体载体裂解,在所述时间之后使用氮气(使用室内氮气)的缓慢流动除去过量氨。使用Microsorb C18柱在反相高压液相色谱(HPLC,Varian)上使用TEAA(乙酸三乙铵)缓冲液和乙腈(梯度:10%v/v至100%v/v乙腈历经30分钟)纯化寡核苷酸。在冻干器上浓缩含有产物的所收集的级分。将获得的寡核苷酸再悬浮于超纯水中且使用MALDI-TOF和变性丙烯酰胺凝胶电泳技术分析纯度。
Figure BDA0002691796300000251
表1.用于实验中的寡核苷酸序列
小单层囊泡的合成
将一定体积的脂质单体储备溶液(25–50mg)添加至20mL小瓶且放置到25mL玻璃小瓶中,并且使用氮气流小心地蒸发溶剂。将所获得的脂质单体在真空下进一步干燥过夜以除去残余氯仿。然后将所得脂质膜用20mM HBS(5.0mL)水化,接着涡旋小瓶以形成脂质体悬浮液。将所述悬浮液进一步探头超声处理30分钟,将脂质混合物的温度保持在10℃以下(用冰-水浴冷却)。在超声处理之后,使悬浮液在12℃下经受在100,000×g的超速离心90分钟。在离心之后,收集含有所需小单层囊泡(SUV)的澄清上清液并且丢弃沉淀(图1)。为了获得具有较窄大小分布的颗粒,将所获得的SUV颗粒进一步通过聚碳酸酯膜(30nm空隙大小)挤出。
将获得的SUV使用动态光散射(DLS)和透射电子显微术(TEM)技术(图11)进一步分析。经由感应耦合等离子体质谱(ICP-MS)测定给定样品中的最终磷脂浓度。溶液中的脂质体的数目和脂质体的表面上的寡核苷酸的数目可根据图12中描绘的等式进行计算。
DNA功能化的脂质体SNA的制备
为了制备脂质体SNA,将15μM的所需3'-生育酚修饰的寡核苷酸添加至SUV溶液(1.3mM的[磷脂])且使其振荡过夜。然后将所得溶液在交联琼脂糖柱(Separose CL4B,Aldrich)上经由凝胶过滤色谱法进行纯化。使用DLS分析颗粒大小分布。为了使用TEM观察脂质体SNA,将样品放置到等离子体清洁的碳TEM栅格上且用乙酸铀酰(2%w/v)的溶液进一步染色(染色2分钟,随后用水洗涤且使其干燥)。然后将干燥的栅格在Hitachi-2300 STEM电子显微镜下成像。
脂质体SNA的凝胶电泳
所有凝胶电泳实验都在1×TBE(三硼酸酯,EDTA)缓冲液中的1%琼脂糖凝胶中进行。将样品在作为负载剂的甘油(30%v/v,5μL)的帮助下负载在孔中。将凝胶室填充1×TBE并且用冰预先冷却。将凝胶在10℃下在70V下运行1小时并且用具有Cy5滤器的Fluorchem Q记录凝胶的图像。
脂质体表面上的DNA密度的定量
为了测定脂质体的表面上的DNA的负载,将增加浓度的Cy5-标记的3'生育酚修饰的DNA与固定浓度的SUV(1.3mM的[P])孵育过夜。然后使用凝胶电泳分析脂质体SNA。为了定量SUV上功能化的DNA密度,将构建体溶解于1%SDS溶液中并且在260nm下收集且使用对应DNA链的消光系数计算吸光度。使用理论等式计算相应溶液中脂质体的数目,其中假定脂质体的磷脂浓度在功能化之后保持恒定。
熔融测定
使用用与表1中所描述的接头链互补的链功能化的脂质体SNA形成一种双纳米颗粒-组分系统。通过添加两种DNA功能化的脂质体SNA形成聚集体且将所述聚集体以1:1比例杂交至接头链(总DNA浓度1.5μM,体积1mL)。使用Cary 5000 UV-Vis光谱仪收集具有所述接头的脂质体SNA的吸收光谱并且将其与无所述接头的脂质体SNA的吸收光谱进行比较。然后使所述聚集体经受在0.25℃/分钟速率下温度的从20至65℃的逐渐增加,并且在260nm下监测所述聚集体的吸光度。
若丹明封装
将干燥DOPC单体(25mg)再悬浮于HBS(5mL)中的20mM磺酰若丹明B溶液中。将所得悬浮液通过一系列聚碳酸酯膜(100nm、80nm、50nm、30nm大小)逐渐挤出。经由铰链琼脂糖(琼脂糖CL-4B,Aldrich)上的凝胶过滤色谱法使含有若丹明的脂质体与游离若丹明分离。使用上述程序将所获得的颗粒用DNA-生育酚缀合物功能化。为了分析构建体的血清稳定性,将含有若丹明的脂质体和脂质体SNA悬浮于HBS中的10%胎牛血清溶液中,并且通在420nm下激发样品且测量在480nm下的强度来在Fluorlog-3系统中监测染料的释放。
细胞培养研究
SKOV-3细胞购自美国典型培养物保藏中心(ATCC)且根据ATCC说明书生长在具有10%热灭活的胎牛血清、100U的青霉素和50μg的链霉素的McCoy’s 5A培养基中且维持在37℃、5%CO2下。对于细胞研究,将细胞接种24小时,之后再50%汇合下处理。
脂质体SNA的共焦显微镜检查
为了可视化脂质体SNA的细胞内化,将SKOV3细胞以50%汇合接种在35mmFluoroDishTM室上。将细胞与Cy5标记的脂质体SNA(0.1μM的DNA浓度)在培养基中孵育20小时,接着用含有0.01%(按体积计)tween-20的1×PBS洗涤,然后用新鲜培养基更换。将细胞核用赫斯特3342(Invitrogen)按照制造商的方案进行染色。然后将活细胞用具有Mai Tai3308激光器的Zeiss LSM 510倒置激光扫描共焦显微镜(Spectra-Physics)在40x放大率下成像。将赫斯特在780nm下激发且在390-495nm收集并且在640nm下激发且在650-710nm下发射。
流式细胞术实验
为了比较脂质体SNA与游离DNA链的细胞摄取,将所述细胞在96孔板上接种于100μL的培养基中且与0.1μM浓度的游离DNA或脂质体SNA一起孵育24小时。未处理的细胞用作实验的阴性对照。在所述孵育期之后,将细胞用含有0.01%(按体积计)的Tween-20的1×PBS洗涤三次且然后胰蛋白酶化以形成悬浮液。如针对背景强度使使用来自未处理的细胞的信号在Guava easyCyte 8HT(Millipore,USA)上用Cy5强度通道对细胞悬浮液进行流式细胞术。使用来自表示单一样品的不同孔的中值信号的平均值的标准误差计算误差值。
细胞毒性研究(MTT测定):
为了评价脂质体SNA的细胞毒性,在实验之前24小时将SKOV-3细胞接种在96孔班上。将所述细胞在不同的DNA浓度下用脂质体SNA处理24小时。将脂质体SNA的细胞毒性与
Figure BDA0002691796300000281
1(Dharmacon)(可商购的转染剂)进行比较。将所述细胞用不同浓度的用
Figure BDA0002691796300000282
1转染的DNA按照制造商的转染方案进行转染。未接受处理的细胞用作阴性对照。在24小时的孵育期之后,将所述细胞用1×PBS洗涤三次且与
Figure BDA0002691796300000283
溶液(Thermo Fisher Scientific Inc.)一起孵育且在37℃在5%CO2中孵育4小时。使用BioTek,Synergy H4 Hybrid读书器记录在590nm下的荧光发射。
用于定量HER2蛋白质敲低的蛋白质印迹
将SKOV-3细胞接种在6孔板中且在37℃下在5%CO2中孵育过夜。将细胞与抗HER2反义脂质体SNA和错义脂质体SNA一起孵育。在处理24小时之后,将培养基用新鲜培养基更换并且使细胞生长另外48小时。为了分析HER2蛋白质敲低,将细胞收集且再悬浮于含有蛋白酶和磷酸酶抑制剂(Thermo Scientific,IL,USA)的100μL哺乳动物细胞裂解缓冲液(Cell Signaling,MA,USA)中。使用BCA蛋白质测定试剂盒(Pierce,IL,USA)测定细胞溶解产物中的蛋白质浓度。将相等量(20μg)的蛋白质通过4-20%Precast梯度凝胶(Bio-Rad)分级分离并且转移至硝基纤维素膜(Thermo Scientific,IL,USA)。将膜使用5%脱脂奶粉溶液(w/v)在tris-缓冲盐水(TBS)中封闭。用针对HER2(1:1000)和GAPDH(1:500)的第一兔抗体检测蛋白质,接着用抗兔第二抗体(1:10,000)(LI-COR Biosciences,NE,USA)检测蛋白质。使用
Figure BDA0002691796300000284
红外成像系统(LI-COR Biosciences,NE,USA)记录荧光信号。
合成
在两个步骤中合成典型的脂质体SNA(图7)。第一步骤涉及从脂质单体制备30nm直径单层囊泡。这种大小的颗粒从SNA转染的角度是理想的,并且是用于最大化较高血液循环和最小化通过肾清除的适当范围。不幸的是,这种大小范围中的脂质体经常是不稳定的且融合而形成较大结构。因此,此工作的目标是确定合成这类结构且避免这类颗粒生长途径的方式。
为了制备小单层囊泡(SUV),选择DOPC(1,2-二油酰基-sn-甘油基-3-磷酸胆碱),其是从磷酸酯部分延伸且以季铵头部基团终止的含有两种油酸衍生物的不饱和脂质。在典型实验中,将DOPC单体于20mM HBS中的悬浮液超声处理以产生平均30nm SUV颗粒。将所述颗粒通过离心(100,000×g)分离。通过具有30nm孔的聚碳酸酯膜进一步挤出这种材料产生具有0.11多分散性指数(PDI)、70%总体产率的颗粒。然后将所述颗粒再分散于盐水中,并且DLS用于确认其30±3nm直径,其还使用阴性染色通过TEM分析随后确认。
第二合成步骤涉及用具有疏水性生育酚部分的核酸衍生物进行脂质体的表面功能化,其有效地插入到限定SUV的脂质双层中。虽然多种疏水性头部基团可以是适合的[Pfeiffer等人,J.Am.Chem.Soc.126:10224(2004);Banchelli等人,J.Phys.Chem.B 112:10942(2008);Dave等人,ACS Nano 5:1304(2011);Jakobsen等人,Bioconjugate Chem.24:1485(2013)],但选择α-生育酚(维生素E的一种形式),这是由于其生物相容性和低成本。利用可商购的生育酚亚磷酰胺衍生物(Glenn Research),将α-生育酚经由常规核苷酸合成安装到核酸链(DNA)。通过使用8:1的脂质-核酸比例将SUV的悬浮液(1.3mM按脂质计)与核酸-生育酚缀合物(16mM)在室温下孵育12小时来合成脂质体SNA。然后在琼脂糖柱(琼脂糖4LB)上通过大小排阻色谱法从所述样品除去不含脂质体的生育酚-核酸。在DNA的情况下,从-1至-23的ζ电势的显著降低在所述步骤之后发生,从而指示用带负电荷的核酸脂质体表面功能化。此外,最终纳米颗粒样品的动态光散射(DLS)分析显示颗粒大小从30至46nm的增加,这与8-9nm长双链体结构的负载一致。为了定量地测定负载到脂质体表面上的核酸链的平均数目,将脂质体-SNA在Triton X存在下溶解以释放它们。通过相对于校准的寡核苷酸标准测量在260nm下的吸光度来测定最终核酸浓度。涂覆有DNA的脂质体SNA具有平均70个链/颗粒(图17)。此密度低于典型的基于金的SNA结构[Hurst等人,Anal.Chem.78:8313(2006)],但足以表现出这类结构的许多协作特性。脂质体SNA的图形描述提供于图16中。
这些脂质体SNA结构具有几种令人感兴趣的特性。首先,它们相较于它们所源自的天然30nm脂质体构建体是相当稳定的(图2,图8)。例如,如果将无寡核苷酸表面层的SUV在37℃(生理温度)下储存四天,它们融合且形成较大多分散结构(具有一些微米大小实体的100nm结构)。相较之下,脂质体SNA在几乎相同的条件下载相同时间段内未显示颗粒降解或融合的迹象。脂质体-SNA系统的稳定性的这种增加可能是包含脂质体-SNA表面的带负电荷的核酸链之间的排斥力的结果,所述排斥力使单独颗粒稳定化且抑制颗粒-颗粒融合相互作用[Li等人,Bioconjugate Chem.24:1790(2013)]。此外,脂质体-SNA上的带负电荷的DNA电晕充当脂质体核心的保护层,从而防止其在存在血清蛋白的情况下降解[Senior等人,Life Sci.30:2123(1982);Kim等人,Arch.Pharmacal Res.14:336(1991);
Figure BDA0002691796300000291
等人,J.Mol.Struct.744–747:737(2005)]。例如,通过测量在20mM的自淬灭浓度(核心浓度)下物理地并入脂质体-SNA的核心内的磺酰若丹明染料的释放来研究脂质体-SNA系统的血清稳定性。在所述实验中,脂质体核心的破裂导致磺酰若丹明染料从颗粒的内部释放以及自淬灭的随后消除,从而产生荧光的增加[Versluis等人,J.Am.Chem.Soc.135:8057(2013)]。在典型实验中,将含有若丹明的脂质体纳米颗粒在10%胎牛血清中在37℃下孵育,并且持续3小时连续记录荧光光谱。对于未功能化的颗粒进行相同稳定性研究。类似于热稳定性研究,DNA功能化的颗粒针对实验持续时间在血清中保持稳定。在3小时孵育过程中未观察到染料的释放。相较之下,孵育裸露DOPC脂质体导致若丹明荧光团的显著释放,从而指示脂质体结构在血清中的快速分解(图8)。
脂质体SNA的第二特性是其协同结合互补核酸的能力。这是所有SNA的标志特征并且源自表面结合的核酸的致密包装且高度定向的构型。为了探索脂质体-SNA构建体的结合和随后熔融特性,合成各自用不同的DNA序列制备的两组脂质体-SNA纳米颗粒:颗粒A和颗粒B。与脂质体-SNA的寡核苷酸序列互补的DNA接头序列用于通过杂交促进聚合。在将接头序列添加至两种脂质体SNA颗粒的等摩尔混合物之后,聚集发生,如由DLS所证明;并且最终形成片状沉淀[Dave等人,ACS Nano 5:1304(2011)]。将这些聚集体再悬浮于20mM HBS(150mM NaCl)中,并且通过监测在260nm下的吸光度来进行熔融分析。重要地,在47.5℃下观察到显著较窄的熔融转变(在第一衍生物的半最大值下全部宽度是大约2℃),这高度诊断具有高表面核酸密度的SNA结构(图9)。
SNA的重要特性涉及其无需辅助转染剂进入细胞的能力[Cutler等人,J.Am.Chem.Soc.134:1376(2012)]。为了测定脂质体SNA是否表现出这种行为,将卵巢癌腹水(SKOV3,美国典型培养物保藏中心)在用5'-Cy5-标记的DNA合成的SNA存在下在不存在任何转染剂的情况下在不同DNA浓度下孵育。使用共焦显微镜检查和流式细胞术技术对SKOV3细胞中脂质体-SNA的摄取进行分析。显著地,脂质体SNA即使在1小时孵育之后也容易地大量进入细胞,这证明其作为细胞内探针和靶标调控剂的效用。此外,即使在相同条件下36小时孵育之后,也未检测到SKOV3细胞中游离DNA链(5'-Cy5-标记的)的显著摄取。类似于Au-SNA,SKOV3细胞中脂质体-SNA的高摄取即使在高浓度下也未引起任何细胞毒性(图10)。相反,在试图递送由脂质体-SNA递送的相等DNA中采用DharmaFECTDNA产生显著细胞毒性,这在24小时孵育期内使细胞活力降低至35%。
在确立脂质体-SNA无细胞毒性之后,合成能够敲低人表皮生长因子受体2(HER2)(在SKOV3细胞中过度表达的致癌基因)的脂质体-SNA[Zhang等人,J.Am.Chem.Soc.134:16488(2012)]。为了比较脂质体-SNA与常规转染系统的反义活性的有效性,将SKOV3细胞在抗HER2脂质体-SNA和对照脂质体-SNA(各自在1μM的DNA浓度下)存在下进行孵育。在72小时孵育之后,收获细胞并且通过蛋白质印迹针对蛋白质含量进行分析。重要地,HER2蛋白质水平在抗HER2脂质体-SNA存在下相较于内部参考基因甘油醛-3-磷酸脱氢酶(GAPDH)降低85%(图10)。总之,这些结果证明使用脂质体-SNA来实现细胞转染和基因调控的潜力。
总之,已经开发了新颖无金属脂质体SNA的可缩放的合成途径。这类结构是从可容易获得的无毒起始材料快速组装的。所述核酸构造不仅使这些小脂质体结构稳定化,而且还促进其通过SKOV3细胞的内化。因此,这类结构显示作为新的生物相容的基因调控构建体的效用,所述构建体表现出更常规的基于金纳米颗粒的SNA许多有吸引力的特性。
实施例6–在Ramos-BlueTM细胞中测试脂质体颗粒
Ramos-BlueTM细胞是NF-κB/AP-1受体B淋巴细胞。Ramos-Blue是稳定地表达NF-κB/AP-1-诱导型SEAP(分泌的胚胎碱性磷酸酶)受体基因的B淋巴细胞系。当刺激时,它们产生在上清液中产生SEAP,这可使用QUANTI-Blue测定容易地监测。QUANTI-Blue是在SEAP存在下变蓝的SEAP检测介质(图14)。
当与含有CpG的寡核苷酸相接触时,检测到Ramos-Blue细胞的活化(图15)。基于TLR 9-激动寡核苷酸CpG 7909(5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO:8))合成代表性化合物。这些包括具有在13nm金纳米颗粒上致密功能化的磷酸二酯主链的CpG 7909(CpG 7909-po SNA(Au))、具有完全硫代磷酸酯主链的CpG7909(CpG 7909-ps)、具有磷酸二酯CpG 7909的脂质体SNA(7909靶向(颗粒))、全部磷酸二酯主链寡核苷酸的C和G反转以消除TLR 9结合位点的脂质体SNA(7909对照(颗粒))、具有磷酸二酯主链和3'-生育酚脂质而无需配制成脂质体SNA的CpG 7909(7909靶向(生育酚))、以及具有反转的C和G的也无需配置成脂质体SNA的对照序列(7909对照(生育酚))。将这些化合物连续稀释,然后与Ramos-Blue细胞(一种在活化促炎性转录因子NF-κB时表达分泌的碱性磷酸酶(SEAP)的细胞)孵育过夜,且然后经由QuantiBlue试剂盒(InVivogen)针对细胞培养基中的SEAP水平进行探测。通过在650nm下的光吸收测量活化。
实施例7–使用脂质体颗粒来调控HIF1-α
为了进一步证明本公开的组合物的有效性,将脂质体颗粒设计成单独靶向HIF1-α和BAX。所述实验利用Neuro-2a(N2A)细胞系,其是快速生长的小鼠成神经细胞瘤细胞系。使N2A细胞与靶向HIF1-α(图18)和BAX(图19)的脂质颗粒相接触显示靶基因产物的量的显著减少。在所述实验中的每个中,在于6孔板中开始处理N2A细胞之后72小时通过定量PCR(qPCR)测定mRNA表达的相对量–将细胞在OptiMEM中用脂质体颗粒处理24小时,之后除去脂质体颗粒且用MEM和10%胎牛血清(FBS)更换培养基。
对于靶向HIF1-α的实验,首先使N2A细胞经受Cocl2-刺激的缺氧,这使HIF1-αmRNA表达增加约50%。接着,使N2A细胞与用针对HIF1-α的siRNA功能化的脂质体颗粒相接触。所述接触导致HIF1-α敲低约50%(图18)。
对于靶向BAX的实验,用处理N2A细胞导致通过脂质体颗粒大约65%敲低BAXmRNA,以及通过脂质胶束SNA大于50%敲低BAX mRNA(如针对对照脂质体SNA所测量)(图19)。
这些实验表明本公开的脂质体颗粒在抑制哺乳动物细胞中的靶基因表达方面是高度有效的。
对于本领域的技术人员将显而易见,本发明不限于前述说明性实施例,并且本发明可以其他特定形式实施而不背离其本质属性。因此期望所述实施例在所有方面被视为说明性而非限制性的,参考所附权利要求书而不是参考前述实施例,并且所有变化在权利要求书的等价意义和范围内且因此意图涵盖于其中。
序列表
<110> 西北大学
埃克西奎雷股份有限公司
<120> 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
<130> 30938/2013-201
<150> US 61/911,334
<151> 2013-12-03
<150> US 61/982,269
<151> 2014-04-21
<160> 8
<170> PatentIn 3.5版
<210> 1
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 1
tttttttttt tttttttttt ttttt 25
<210> 2
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 2
aaaaaaaaaa tctcttgga 19
<210> 3
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 3
tgcgtagaca aaaaaaaaa 19
<210> 4
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 4
acgcatctgt ccaagaga 18
<210> 5
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 5
ctccatggtg ctcacttttt ttttt 25
<210> 6
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 6
ctccatggtg ctcacttttt ttttt 25
<210> 7
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 7
gagctgcacg ctgccgtcat ttttttttt 29
<210> 8
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成多核苷酸
<400> 8
tcgtcgtttt gtcgttttgt cgtt 24

Claims (39)

1.一种脂质体颗粒,所述脂质体颗粒具有大致上球形的几何形状,所述脂质体颗粒包含:包括第一脂质和第二脂质的脂质双层;以及与所述脂质体颗粒的表面连接的寡核苷酸,其中所述寡核苷酸上调toll-样受体(TLR)9的活性,其中所述寡核苷酸各自为含有一个亲脂性栓系基团的寡核苷酸-脂质缀合物,所述亲脂性栓系基团锚定至所述脂质双层的外侧中,其中所述脂质体颗粒的直径小于或等于50纳米,并且其中所有的寡核苷酸为单链。
2.一种脂质体颗粒,所述脂质体颗粒具有大致上球形的几何形状,所述脂质体颗粒由脂质双层以及与所述脂质体颗粒的表面连接的寡核苷酸组成,其中所述寡核苷酸上调toll-样受体(TLR)9的活性,其中所述寡核苷酸各自为含有一个亲脂性栓系基团的寡核苷酸-脂质缀合物,所述亲脂性栓系基团锚定至所述脂质双层的外侧中,其中所述脂质体颗粒的直径小于或等于50纳米,并且其中所有的寡核苷酸为单链。
3.如权利要求1所述的脂质体颗粒,其中所述第一脂质和所述第二脂质包含选自由下述组成的组的脂质:脂质的磷脂酰胆碱、磷脂酰甘油以及磷脂酰乙醇胺家族,优选地1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二肉豆蔻酰基-sn-磷脂酰胆碱(DMPC)、1-棕榈酰基-2-油酰基-sn-磷脂酰胆碱(POPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸-(1’-rac-甘油)(DSPG)、1,2-二油酰基-sn-甘油基-3-磷酸-(1’-rac-甘油)(DOPG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二-(9Z-十八烯酰基)-sn-甘油基-3-磷酸乙醇胺(DOPE)或1,2-双十六烷酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。
4.如权利要求1所述的脂质体颗粒,其中所述亲脂性栓系基团包含生育酚或胆固醇。
5.如权利要求1所述的脂质体颗粒,其中所述脂质体颗粒的直径在25纳米至40纳米之间。
6.如权利要求1至5中任一项所述的脂质体颗粒,其中所述寡核苷酸是SEQ ID No.8(5’-TCGTCGTTTTGTCGTTTTGTCGTT-3’)。
7.如权利要求6所述的脂质体颗粒,其中所述第一脂质和所述第二脂质相同。
8.如权利要求6所述的脂质体颗粒,其中所述第一脂质和所述第二脂质是DOPC。
9.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒的所述直径小于或等于40纳米。
10.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒的所述直径小于或等于35纳米。
11.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒的所述直径小于或等于30纳米。
12.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒在其表面上包含至少10个寡核苷酸。
13.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒在其表面上包含10至80个寡核苷酸。
14.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒在其表面上包含70个寡核苷酸。
15.如权利要求6所述的脂质体颗粒,其中所述脂质体颗粒在其表面上包含30个寡核苷酸。
16.如权利要求6所述的脂质体颗粒,其中所述寡核苷酸是修饰的寡核苷酸。
17.如权利要求6所述的脂质体颗粒,其中所述寡核苷酸具有硫代磷酸酯主链。
18.如权利要求6所述的脂质体颗粒,其中所述亲脂性栓系基团位于每个寡核苷酸的3’端处。
19.一种组合物,所述组合物包含如权利要求6所述的脂质体颗粒,其中所述寡核苷酸含有CpG基序。
20.如权利要求19所述的组合物,所述组合物用于治疗癌症。
21.脂质体颗粒在制备用于上调toll-样受体(TLR)9的活性的药物中的用途,所述脂质体颗粒具有大致上球形的几何形状,所述脂质体颗粒包含:包括第一脂质和第二脂质的脂质双层;以及与所述脂质体颗粒的表面连接的寡核苷酸,所述用途包括使具有所述TLR9的细胞与所述脂质体颗粒相接触,其中所述寡核苷酸各自为含有一个亲脂性栓系基团的寡核苷酸-脂质缀合物,所述亲脂性栓系基团锚定至所述脂质双层中,其中所述脂质体颗粒的直径小于或等于50纳米,并且其中所有的寡核苷酸为单链。
22.如权利要求21所述的用途,其中所述第一脂质和所述第二脂质包含选自由下述组成的组的脂质:脂质的磷脂酰胆碱、磷脂酰甘油以及磷脂酰乙醇胺家族,优选地1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二肉豆蔻酰基-sn-磷脂酰胆碱(DMPC)、1-棕榈酰基-2-油酰基-sn-磷脂酰胆碱(POPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸-(1’-rac-甘油)(DSPG)、1,2-二油酰基-sn-甘油基-3-磷酸-(1’-rac-甘油)(DOPG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二-(9Z-十八烯酰基)-sn-甘油基-3-磷酸乙醇胺(DOPE)或1,2-双十六烷酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。
23.如权利要求21所述的用途,其中所述亲脂性栓系基团包含生育酚或胆固醇。
24.如权利要求21所述的用途,其中所述脂质体颗粒的直径在25纳米至40纳米之间。
25.如权利要求21至24中任一项所述的用途,其中所述寡核苷酸是SEQ ID No.8(5’-TCGTCGTTTTGTCGTTTTGTCGTT-3’)。
26.如权利要求25所述的用途,其中所述第一脂质和所述第二脂质相同。
27.如权利要求25所述的用途,其中所述第一脂质和所述第二脂质是DOPC。
28.如权利要求25所述的用途,其中所述脂质体颗粒的所述直径小于或等于40纳米。
29.如权利要求25所述的用途,其中所述脂质体颗粒的所述直径小于或等于35纳米。
30.如权利要求25所述的用途,其中所述脂质体颗粒的所述直径小于或等于30纳米。
31.如权利要求25所述的用途,其中所述脂质体颗粒在其表面上包含至少10个寡核苷酸。
32.如权利要求25所述的用途,其中所述脂质体颗粒在其表面上包含10至80个寡核苷酸。
33.如权利要求25所述的用途,其中所述脂质体颗粒在其表面上包含70个寡核苷酸。
34.如权利要求25所述的用途,其中所述脂质体颗粒在其表面上包含30个寡核苷酸。
35.如权利要求25所述的用途,其中所述寡核苷酸是修饰的寡核苷酸。
36.如权利要求25所述的用途,其中所述寡核苷酸具有硫代磷酸酯主链。
37.如权利要求25所述的用途,其中所述亲脂性栓系基团位于每个寡核苷酸的3’端处。
38.如权利要求25所述的用途,所述用途在体外进行。
39.如权利要求25所述的用途,所述用途在体内进行。
CN202010993754.7A 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途 Active CN112107693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010993754.7A CN112107693B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361911334P 2013-12-03 2013-12-03
US61/911,334 2013-12-03
US201461982269P 2014-04-21 2014-04-21
US61/982,269 2014-04-21
CN201480072672.1A CN105939699B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
CN202010993754.7A CN112107693B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
PCT/US2014/068429 WO2015126502A2 (en) 2013-12-03 2014-12-03 Liposomal particles, methods of making same and uses thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480072672.1A Division CN105939699B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途

Publications (2)

Publication Number Publication Date
CN112107693A true CN112107693A (zh) 2020-12-22
CN112107693B CN112107693B (zh) 2023-05-26

Family

ID=53879215

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480072672.1A Active CN105939699B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
CN202010993754.7A Active CN112107693B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480072672.1A Active CN105939699B (zh) 2013-12-03 2014-12-03 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途

Country Status (8)

Country Link
US (3) US10182988B2 (zh)
EP (1) EP3076918A4 (zh)
JP (2) JP6527516B2 (zh)
CN (2) CN105939699B (zh)
AU (2) AU2014383024B2 (zh)
CA (1) CA2932122C (zh)
MX (2) MX2016007287A (zh)
WO (1) WO2015126502A2 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
CA2787156C (en) 2010-01-19 2020-12-29 Northwestern University Synthetic nanostructures for delivery of oligonucleotides
US10894963B2 (en) 2013-07-25 2021-01-19 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
JP6527516B2 (ja) 2013-12-03 2019-06-05 ノースウェスタン ユニバーシティ リポソーム粒子、前述のものを作製する方法及びその使用
US10413565B2 (en) 2014-04-30 2019-09-17 Northwestern University Nanostructures for modulating intercellular communication and uses thereof
EP3508198A1 (en) * 2014-06-04 2019-07-10 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
JP6741673B2 (ja) 2014-10-06 2020-08-19 イグジキュア, インコーポレーテッドExicure, Inc. 抗tnf化合物
KR20170078843A (ko) 2014-11-21 2017-07-07 노오쓰웨스턴 유니버시티 구형 핵산 나노입자 접합체의 서열 특이적 세포 흡수
WO2016085986A1 (en) 2014-11-24 2016-06-02 Northwestern University High density lipoprptein nanoparticles for inflammation
WO2016115320A1 (en) 2015-01-14 2016-07-21 Exicure, Inc. Nucleic acid nanostructructures with core motifs
US10940201B2 (en) * 2015-09-30 2021-03-09 Shionogi & Co., Ltd. Nucleic acid derivative having immunostimulatory activity
MX2018004637A (es) 2015-10-14 2019-05-06 Bio Path Holdings Inc Ácidos nucleicos p-etoxi para formulacion liposomal.
US10967072B2 (en) 2016-04-27 2021-04-06 Northwestern University Short interfering RNA templated lipoprotein particles (siRNA-TLP)
EP3452598A4 (en) 2016-05-06 2020-04-29 Exicure, Inc. LIPOSOMAL SPHERIC NUCLEIC ACID (SNA) CONSTRUCTS WITH ANTISENSE OLIGONUCLEOTIDES (ASO) FOR THE SPECIFIC KNOCKDOWN OF INTERLEUKIN-17 RECEPTOR MRNA
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
WO2018067302A2 (en) * 2016-09-19 2018-04-12 North Western University Therapeutic effects of cellular delivery of small molecules and macromolecules with liposomal spherical nucleic acids
US11696954B2 (en) 2017-04-28 2023-07-11 Exicure Operating Company Synthesis of spherical nucleic acids using lipophilic moieties
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
EP3652186A4 (en) 2017-07-13 2021-03-31 Northwestern University GENERAL AND DIRECT PROCESS FOR PREPARING NANOPARTICLES WITH ORGANOMETALLIC STRUCTURE FUNCTIONALIZED BY OLIGONUCLEOTIDES
JP2021512044A (ja) 2017-11-02 2021-05-13 ヤンセン バイオファーマ インク. オリゴヌクレオチドコンストラクト及びその使用
US11684579B2 (en) 2018-04-27 2023-06-27 Karma Biotechnologies Multi-vesicular liposomes for targeted delivery of drugs and biologics for tissue engineering
US11197827B2 (en) * 2018-10-31 2021-12-14 Microsoft Technology Licensing, Llc Polynucleotide encapsulation and preservation using self-assembling membranes
US20220175956A1 (en) * 2019-03-06 2022-06-09 Northwestern University Hairpin-like oligonucleotide-conjugated spherical nucleic acid
CN112823811B (zh) * 2019-11-18 2022-07-29 深圳先进技术研究院 一种跨越血脑屏障和特异性靶向脑胶质瘤治疗药物的投递系统的制备方法
US20230147733A1 (en) * 2020-04-10 2023-05-11 Northwestern University Oxidized tumor cell lysates encapsulated in liposomal spherical nucleic acids as potent cancer immunotherapeutics
CN111870581B (zh) * 2020-08-04 2022-07-19 复旦大学附属肿瘤医院 一种利用单链dna纳米结构辅助分选脂质体的方法
CN114686416B (zh) * 2020-12-30 2024-03-19 湖南大学 一种膜融合脂质体及其应用
KR102622653B1 (ko) * 2021-01-06 2024-01-09 주식회사 꿈랩 인산화기를 이용한, 핵산의 전달을 위한 엑소좀 복합체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235609A (zh) * 1996-10-30 1999-11-17 艾奥华大学研究基金会 免疫刺激性核酸分子
WO2007096134A1 (en) * 2006-02-20 2007-08-30 Humboldt-Universität Zu Berlin Lipidated oligonucleotides
US20100003317A1 (en) * 2008-03-27 2010-01-07 Akin Akinc Compositions and methods for mediating rnai in vivo
US20130315831A1 (en) * 2010-09-03 2013-11-28 Massachusetts Institute Of Technology Lipid-polymer hybrid particles

Family Cites Families (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5008050A (en) * 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (fr) 1984-07-19 1989-02-17 Centre Nat Rech Scient Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
FR2575751B1 (fr) 1985-01-08 1987-04-03 Pasteur Institut Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
JP2828642B2 (ja) 1987-06-24 1998-11-25 ハワード フローレイ インスティテュト オブ イクスペリメンタル フィジオロジー アンド メディシン ヌクレオシド誘導体
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
JPH03503894A (ja) 1988-03-25 1991-08-29 ユニバーシィティ オブ バージニア アランミ パテンツ ファウンデイション オリゴヌクレオチド n‐アルキルホスホラミデート
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5194599A (en) 1988-09-23 1993-03-16 Gilead Sciences, Inc. Hydrogen phosphonodithioate compositions
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5721218A (en) 1989-10-23 1998-02-24 Gilead Sciences, Inc. Oligonucleotides with inverted polarity
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
EP0497875B1 (en) 1989-10-24 2000-03-22 Isis Pharmaceuticals, Inc. 2' modified oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5955589A (en) 1991-12-24 1999-09-21 Isis Pharmaceuticals Inc. Gapped 2' modified oligonucleotides
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
DK0455905T3 (da) 1990-05-11 1998-12-07 Microprobe Corp Dipsticks til nukleinsyrehybridiseringsassays og fremgangsmåde til kovalent immobilisering af oligonukleotider
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5614617A (en) 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
MY107332A (en) 1990-08-03 1995-11-30 Sterling Drug Inc Compounds and methods for inhibiting gene expression.
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
US5596086A (en) 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US5672697A (en) 1991-02-08 1997-09-30 Gilead Sciences, Inc. Nucleoside 5'-methylene phosphonates
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
EP0538194B1 (de) 1991-10-17 1997-06-04 Novartis AG Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
EP1256589A3 (en) 1991-11-26 2003-09-17 Isis Pharmaceuticals, Inc. Oligomers containing modified pyrimidines
TW393513B (en) 1991-11-26 2000-06-11 Isis Pharmaceuticals Inc Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines
US5792608A (en) 1991-12-12 1998-08-11 Gilead Sciences, Inc. Nuclease stable and binding competent oligomers and methods for their use
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
FR2687679B1 (fr) 1992-02-05 1994-10-28 Centre Nat Rech Scient Oligothionucleotides.
US5814666A (en) 1992-04-13 1998-09-29 The United States As Represented By The Department Of Health And Human Services Encapsulated and non-encapsulated nitric oxide generators used as antimicrobial agents
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
EP0577558A2 (de) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
AU6449394A (en) 1993-03-30 1994-10-24 Sterling Winthrop Inc. Acyclic nucleoside analogs and oligonucleotide sequences containing them
JPH08508491A (ja) 1993-03-31 1996-09-10 スターリング ウインスロップ インコーポレイティド ホスホジエステル結合をアミド結合に置き換えたオリゴヌクレオチド
DE4311944A1 (de) 1993-04-10 1994-10-13 Degussa Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5646269A (en) 1994-04-28 1997-07-08 Gilead Sciences, Inc. Method for oligonucleotide analog synthesis
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030026782A1 (en) 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5792747A (en) 1995-01-24 1998-08-11 The Administrators Of The Tulane Educational Fund Highly potent agonists of growth hormone releasing hormone
EP2168973A1 (en) 1995-05-04 2010-03-31 Gilead Sciences, Inc. Nucleic acid ligand complexes
US5912340A (en) 1995-10-04 1999-06-15 Epoch Pharmaceuticals, Inc. Selective binding complementary oligonucleotides
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6051698A (en) 1997-06-06 2000-04-18 Janjic; Nebojsa Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
NZ503765A (en) 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
US6271209B1 (en) 1998-04-03 2001-08-07 Valentis, Inc. Cationic lipid formulation delivering nucleic acid to peritoneal tumors
EP1072679A3 (en) 1999-07-20 2002-07-31 Agilent Technologies, Inc. (a Delaware corporation) Method of producing nucleic acid molecules with reduced secondary structure
US6585947B1 (en) 1999-10-22 2003-07-01 The Board Of Trustess Of The University Of Illinois Method for producing silicon nanoparticles
JP2003516151A (ja) 1999-11-29 2003-05-13 エイブイアイ バイオファーマ, インコーポレイテッド 細菌16Sおよび23SrRNAに標的化された、荷電していないアンチセンスオリゴヌクレオチド、ならびにその使用
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7083958B2 (en) 2000-11-20 2006-08-01 The Board Of Trustees Of The University Of Illinois Membrane scaffold proteins
GB0111279D0 (en) 2001-05-10 2001-06-27 Nycomed Imaging As Radiolabelled liposomes
US7514099B2 (en) 2005-02-14 2009-04-07 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
WO2003051278A2 (en) 2001-07-10 2003-06-26 North Carolina State University Nanoparticle delivery vehicle
US20030044354A1 (en) 2001-08-16 2003-03-06 Carpenter Alan P. Gas microsphere liposome composites for ultrasound imaging and ultrasound stimulated drug release
ATE529512T1 (de) 2002-02-01 2011-11-15 Life Technologies Corp Doppelsträngige oligonukleotide
JP4530665B2 (ja) 2002-02-06 2010-08-25 ジョンズ ホプキンス ユニバーシティ 放射性標識された親油性の塩を使用することによる、ミトコンドリアのための非浸襲性の画像診断技術
IL164354A0 (en) 2002-04-04 2005-12-18 Coley Pharm Gmbh Immunostimulatory g,u-containing oligoribonucleotides
US20040219565A1 (en) 2002-10-21 2004-11-04 Sakari Kauppinen Oligonucleotides useful for detecting and analyzing nucleic acids of interest
US7459145B2 (en) 2002-10-25 2008-12-02 Georgia Tech Research Corporation Multifunctional magnetic nanoparticle probes for intracellular molecular imaging and monitoring
US20040158051A1 (en) 2002-11-19 2004-08-12 Mihri Ozkan Mono and dual conjugation of nanostructures and methods of making and using thereof
US7615539B2 (en) 2003-09-25 2009-11-10 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
EP1547581A1 (en) 2003-12-23 2005-06-29 Vectron Therapeutics AG Liposomal vaccine for the treatment of human hematological malignancies
EP1550458A1 (en) 2003-12-23 2005-07-06 Vectron Therapeutics AG Synergistic liposomal adjuvants
EP1718282A4 (en) 2004-01-15 2010-07-14 Sinai School Medicine PROCESS AND COMPOSITIONS FOR IMAGE PRESENTATION
WO2005082922A1 (en) 2004-02-26 2005-09-09 Layerlab Aktiebolag Oligonucleotides related to lipid membrane attachments
GB0411537D0 (en) 2004-05-24 2004-06-23 Midatech Ltd Nanoparticles comprising rna ligands
US7964196B2 (en) 2004-05-25 2011-06-21 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
WO2006016978A1 (en) 2004-06-30 2006-02-16 Applera Corporation Analog probe complexes
US20060083781A1 (en) 2004-10-14 2006-04-20 Shastri V P Functionalized solid lipid nanoparticles and methods of making and using same
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
JP2008533157A (ja) 2005-03-14 2008-08-21 マサチューセッツ・インスティテュート・オブ・テクノロジー 疾患および障害の診断および処置のためのナノセル
US20090018028A1 (en) 2005-05-12 2009-01-15 Stuart Lindsay Self-Assembled Nucleic Acid Nanoarrays and Uses Therefor
WO2006138145A1 (en) 2005-06-14 2006-12-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
BRPI0612408A2 (pt) 2005-07-07 2010-11-03 Pfizer terapia para tratamento de cáncer em combinação com anticorpo anti-ctla-4 e oligodesoxinucleotìdeo sintético contendo o motivo cpg
US8067571B2 (en) 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
US8367628B2 (en) 2005-12-01 2013-02-05 Pronai Therapeutics, Inc. Amphoteric liposome formulation
US20110052697A1 (en) 2006-05-17 2011-03-03 Gwangju Institute Of Science & Technology Aptamer-Directed Drug Delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
EP2046954A2 (en) 2006-07-31 2009-04-15 Curevac GmbH NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
WO2008021908A2 (en) 2006-08-08 2008-02-21 Board Of Regents Of The University Of Texas Multistage delivery of active agents
US7976743B2 (en) 2006-10-16 2011-07-12 Northwestern University Gas-containing liposomes
EP1914234A1 (en) 2006-10-16 2008-04-23 GPC Biotech Inc. Pyrido[2,3-d]pyrimidines and their use as kinase inhibitors
US20080181928A1 (en) 2006-12-22 2008-07-31 Miv Therapeutics, Inc. Coatings for implantable medical devices for liposome delivery
US8415461B2 (en) 2007-01-19 2013-04-09 The Board Of Trustees Of The University Of Illinois Amphiphilic substances and functionalized lipid vesicles including the same
WO2008089771A1 (en) 2007-01-24 2008-07-31 Syddansk Universitet Dna controlled assembly of lipid membranes
EP2121987B1 (en) 2007-02-09 2012-06-13 Northwestern University Particles for detecting intracellular targets
CN101765423B (zh) 2007-05-31 2014-08-06 安特里奥公司 核酸纳米粒子和其用途
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
EP2209472A1 (en) 2007-10-12 2010-07-28 The University of North Carolina at Chapel Hill Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents
CN101980712B (zh) 2007-10-29 2015-02-18 雷古拉斯治疗公司 用于肝癌治疗的靶向微小rna
BRPI0820302A2 (pt) 2007-11-09 2015-05-19 Univ Northeastern Nanopartículas semelhantes a micelas de automontagem para liberação sistêmica de gene
CN105903029A (zh) 2007-12-12 2016-08-31 大学健康网络 高密度脂蛋白样肽磷脂支架(“hpps”)纳米颗粒
US20110059164A1 (en) 2008-01-04 2011-03-10 Aveka, Inc. Encapsulation of oxidatively unstable compounds
US8063131B2 (en) 2008-06-18 2011-11-22 University Of Washington Nanoparticle-amphipol complexes for nucleic acid intracellular delivery and imaging
US8268796B2 (en) * 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
WO2010017436A2 (en) 2008-08-08 2010-02-11 Idera Pharmaceuticals, Inc. Modulation of myeloid differentation primary response gene 88 (myd88) expression by antisense oligonucleotides
BRPI0916884A2 (pt) * 2008-08-28 2016-06-14 Glaxosmithkline Biolog Sa composição imunogênica, processo para preparar uma composição imunogênica, uso de uma composição imunogênica, e, kit
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
CA2742846A1 (en) 2008-11-17 2010-05-20 Enzon Pharmaceuticals, Inc. Releasable fusogenic lipids for nucleic acids delivery systems
CN104922699B (zh) * 2009-03-12 2020-07-24 阿尔尼拉姆医药品有限公司 脂质配制的组合物以及用于抑制Eg5和VEGF基因表达的方法
WO2011017382A2 (en) 2009-08-03 2011-02-10 The Regents Of The University Of California Nanofibers and morphology shifting micelles
DK2494075T3 (en) 2009-10-30 2018-07-23 Univ Northwestern TABLE-MANAGED NANOCONJUGATES
WO2011076873A1 (en) 2009-12-23 2011-06-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Influenza targets
EP2399608B1 (en) 2010-03-05 2020-07-08 Sebastian Fuchs Immunomodulating nanoparticulate composition for use in inhalation therapy
CA2793604C (en) 2010-03-19 2015-10-06 Massachusetts Institute Of Technology Lipid vesicle compositions and methods of use
KR101198715B1 (ko) 2010-05-14 2012-11-13 한국생명공학연구원 핵산 및 친수성 음이온 화합물의 고효율 포획을 위한 비대칭 리포솜 및 이의 제조방법
WO2011156895A2 (en) 2010-06-14 2011-12-22 National Research Council Of Canada Magnetic nanoparticles and uses thereof
EA201291357A1 (ru) 2010-06-16 2013-11-29 Дайнэвокс Текнолоджиз Корпорейшн Способы лечения с применением ингибиторов tlr7 и/или tlr9
CA2811601A1 (en) 2010-09-24 2012-03-29 Mallinckrodt Llc Aptamer conjugates for targeting of therapeutic and/or diagnostic nanocarriers
AR083561A1 (es) 2010-10-26 2013-03-06 Ac Immune Sa Preparacion de una construccion antigenica
MX340363B (es) 2010-11-19 2016-07-06 Idera Pharmaceuticals Inc Compuestos de oligonucleotidos inmuno-reguladores (iro) que modulan la respuesta inmune basada en receptores tipo toll.
US9364433B2 (en) 2011-04-28 2016-06-14 Borje S. Andersson Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
EP2729180B1 (en) 2011-07-08 2019-01-23 The University of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US9517277B2 (en) 2011-07-15 2016-12-13 University Of Georgia Research Foundation, Inc. Immune-stimulating photoactive hybrid nanoparticles
JP2014521687A (ja) 2011-07-29 2014-08-28 セレクタ バイオサイエンシーズ インコーポレーテッド 体液性および細胞傷害性tリンパ球(ctl)免疫応答を生成する合成ナノキャリア
JP6170047B2 (ja) 2011-08-31 2017-07-26 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド アポトーシス−ターゲティングナノ粒子
JP6240077B2 (ja) 2011-10-06 2017-11-29 イムノバクシーン・テクノロジーズ・インコーポレイテッドImmunovaccine Technologies Inc. Tlr2を活性化するか、またはその活性を増加させるアジュバントを含むリポソーム組成物およびその使用
EP3563872A1 (en) 2012-04-05 2019-11-06 Massachusetts Institute Of Technology Immunostimulatory compositions and methods of use thereof
AU2013262972A1 (en) 2012-05-16 2014-12-11 Aadigen, Llc Multi-target modulation for treating fibrosis and inflammatory conditions
US9095625B2 (en) 2012-08-31 2015-08-04 University Of Massachusetts Graft-copolymer stabilized metal nanoparticles
US9868955B2 (en) 2012-09-29 2018-01-16 Dynavax Technologies Corporation Human toll-like receptor inhibitors and methods of use thereof
JP2016507057A (ja) 2013-01-31 2016-03-07 プライベール インコーポレイティド 検査デバイス
CN103212089B (zh) 2013-04-07 2016-08-24 中国科学院上海应用物理研究所 一种碳纳米材料-免疫刺激序列复合物的制备方法及其应用
WO2014169264A2 (en) 2013-04-11 2014-10-16 The Board Of Trustees Of The University Of Illinois Nanoparticle mediated delivery of sirna
US10894963B2 (en) 2013-07-25 2021-01-19 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
JP2016534094A (ja) * 2013-07-25 2016-11-04 イグジキュア, インコーポレーテッドExicure, Inc. 免疫調節剤としての球状核酸に基づくコンストラクト
US20150037374A1 (en) 2013-07-31 2015-02-05 Csl Limited Anti-tumor compositions and uses thereof
WO2015048331A1 (en) 2013-09-25 2015-04-02 Cornell University Compounds for inducing anti-tumor immunity and methods thereof
JP6527516B2 (ja) 2013-12-03 2019-06-05 ノースウェスタン ユニバーシティ リポソーム粒子、前述のものを作製する方法及びその使用
EP3508198A1 (en) 2014-06-04 2019-07-10 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
JP6741673B2 (ja) 2014-10-06 2020-08-19 イグジキュア, インコーポレーテッドExicure, Inc. 抗tnf化合物
PE20171067A1 (es) 2014-10-14 2017-07-24 Novartis Ag Moleculas de anticuerpo que se unen a pd-l1 y usos de las mismas
US10078092B2 (en) 2015-03-18 2018-09-18 Northwestern University Assays for measuring binding kinetics and binding capacity of acceptors for lipophilic or amphiphilic molecules
CN108025051B (zh) 2015-07-29 2021-12-24 诺华股份有限公司 包含抗pd-1抗体分子的联合疗法
JP2018525037A (ja) 2015-08-24 2018-09-06 ハロー−バイオ・アールエヌエーアイ・セラピューティックス、インコーポレイテッド 遺伝子発現の調節のためのポリヌクレオチドナノ粒子及びその使用
WO2018067302A2 (en) 2016-09-19 2018-04-12 North Western University Therapeutic effects of cellular delivery of small molecules and macromolecules with liposomal spherical nucleic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235609A (zh) * 1996-10-30 1999-11-17 艾奥华大学研究基金会 免疫刺激性核酸分子
WO2007096134A1 (en) * 2006-02-20 2007-08-30 Humboldt-Universität Zu Berlin Lipidated oligonucleotides
US20100003317A1 (en) * 2008-03-27 2010-01-07 Akin Akinc Compositions and methods for mediating rnai in vivo
US20130315831A1 (en) * 2010-09-03 2013-11-28 Massachusetts Institute Of Technology Lipid-polymer hybrid particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUNGE A等: "Lipophilic oligonucleotides spontaneously insert into lipid membranes, bind complementary DNA strands, and sequester into lipid-disordered domains", 《LANGMUIR》 *

Also Published As

Publication number Publication date
EP3076918A2 (en) 2016-10-12
MX2016007287A (es) 2017-05-03
AU2014383024B2 (en) 2020-04-30
US10182988B2 (en) 2019-01-22
JP6527516B2 (ja) 2019-06-05
CA2932122C (en) 2022-04-19
CN105939699B (zh) 2020-10-02
CN112107693B (zh) 2023-05-26
CN105939699A (zh) 2016-09-14
US20160310425A1 (en) 2016-10-27
US20210052497A1 (en) 2021-02-25
AU2020210182A1 (en) 2020-08-13
MX2022000490A (es) 2022-02-03
WO2015126502A9 (en) 2015-11-26
US11883535B2 (en) 2024-01-30
WO2015126502A3 (en) 2015-10-15
EP3076918A4 (en) 2017-06-07
JP2019048861A (ja) 2019-03-28
AU2020210182B2 (en) 2022-06-23
CA2932122A1 (en) 2015-08-27
WO2015126502A2 (en) 2015-08-27
US10792251B2 (en) 2020-10-06
US20200022913A1 (en) 2020-01-23
JP2016540777A (ja) 2016-12-28
AU2014383024A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
CN105939699B (zh) 脂质体颗粒、制备所述脂质体颗粒的方法以及其用途
CA2748520C (en) Pharmaceutical composition containing an anionic drug, and a production method therefor
US11213593B2 (en) Sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
WO2018067302A2 (en) Therapeutic effects of cellular delivery of small molecules and macromolecules with liposomal spherical nucleic acids
US11364304B2 (en) Crosslinked micellar spherical nucleic acids
WO2018152327A1 (en) Enhancing stability and immunomodulatory activity of liposomal spherical nucleic acids
EP3332812A1 (en) Nucleic acid-based assembly and use of the assembly in cancer therapy
WO2021053405A2 (en) Compositions for transfer of cargo to cells
Grandhi et al. Sensitizing cancer cells to TRAIL-induced death by micellar delivery of mitoxantrone
JP2010509401A (ja) アンチセンスオリゴヌクレオチドの効率的な核への送達
WO2018088719A1 (ko) Kras를 표적으로 하는 핵산 함유 약제학적 조성물 및 그 제조방법
WO2023215878A2 (en) Calcium salted spherical nucleic acids
CN116997326A (zh) 开发基因组编辑球形核酸(sna)的策略
KR20230150852A (ko) 게놈 편집 구형 핵산 (sna) 개발 전략
US10253315B2 (en) Method for transfection of nucleic acids into eukaryotic cells in 3D scaffold
WO2021177996A1 (en) Fit-flares for detection of intracellular analytes in live cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant