CN112105946B - 具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达 - Google Patents

具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达 Download PDF

Info

Publication number
CN112105946B
CN112105946B CN201980030724.1A CN201980030724A CN112105946B CN 112105946 B CN112105946 B CN 112105946B CN 201980030724 A CN201980030724 A CN 201980030724A CN 112105946 B CN112105946 B CN 112105946B
Authority
CN
China
Prior art keywords
chirp
radar
frequency
spw
frequency hopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980030724.1A
Other languages
English (en)
Other versions
CN112105946A (zh
Inventor
约拉姆·斯特廷尔
诺姆·阿尔坎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albert Robot Co ltd
Original Assignee
Albert Robot Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Robot Co ltd filed Critical Albert Robot Co ltd
Publication of CN112105946A publication Critical patent/CN112105946A/zh
Application granted granted Critical
Publication of CN112105946B publication Critical patent/CN112105946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/346Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using noise modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/347Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using more than one modulation frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种新颖且有用的系统和方法,通过该系统和方法显著地改善了雷达角度和距离分辨率,而不增加关键硬件零件的复杂性。描述了一种多脉冲方法学,其中每个脉冲包含由总CPI带宽的一部分构成的部分角度和距离信息,被称为多波段啁啾。相对于单波段处理,每个啁啾具有显著地减小的分数带宽。每个啁啾包含填充“虚拟阵列”的仅一部分的角度信息,同时跨CPI包含全虚拟阵列信息。这使用每脉冲仅单个发射天线来完成,从而显著地简化MIMO硬件实现,其被称为天线复用(AM)。用于生成多波段啁啾以及接收并生成改善的精细距离‑多普勒数据图的技术。也公开了一种部署在与接收器对照的发射器中的加窗技术。

Description

具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率 跳变序列的FMCW汽车雷达
技术领域
本文公开的主题涉及用于经由FMCW信号执行距离测量并且/或者经由数字波束形成和阵列处理执行角度测量的成像雷达、声纳、超声和其他传感器的领域,并且更具体地涉及利用分数带宽时间复用FMCW信号的非线性序列以及相关距离和多普勒处理技术的FMCW雷达的系统和方法。
背景技术
近来,雷达在汽车工业中的应用已开始出现。高端汽车已经具有雷达,这些雷达向驾驶员提供停车辅助和车道偏离警告。当前,对自动驾驶汽车的兴趣增长并且它当前被认为是未来几年汽车行业中的主要驱动力。
自动驾驶汽车对雷达技术在汽车中的应用提供新的视角。不是仅辅助驾驶员,而是汽车雷达还将能够在车辆的控制中发挥积极作用。它们因此很可能成为车辆的自主控制系统的关键传感器。
雷达优先于诸如声纳或激光雷达的其他替代品,因为它不太受天气条件影响并且能够被做得非常小以降低所部署的传感器对车辆的空气动力学和外观的影响。调频连续波(FMCW)雷达是一种与其他雷达相比提供若干优点的雷达。例如,它确保能够同时地检测周围物体的距离和速率信息。此信息对于自动驾驶车辆的控制系统提供安全且无碰撞操作很重要。
对于较短距离检测,如在汽车雷达中一样,通常使用FMCW雷达。FMCW雷达在汽车应用中的若干优点包括:(1)FMCW调制相对地易于生成,提供大带宽、高平均功率、良好的短距离性能、高准确性、由于低带宽处理而导致的低成本并且允许非常好的距离分辨率而且允许使用多普勒频移来确定速率,(2)FMCW雷达能够在短距离下操作,(3)FMCW传感器能够被做小具有带振荡器的单个RF发射源,该振荡器也用于对接收信号进行下转换,(4)由于发射是连续的,所以固态组件的适度输出功率是足够的。
在线性FMCW雷达中,发射频率随时间线性地增加。来自在距离R0的目标的回波信号将在时间(即传播延迟)τ=2R0/c返回。接收器中的混频器的拍频输出由于对于向上啁啾调制信号的目标的距离被给出为
其中
R0是到目标的距离;
是调制频率带宽;
T是调制啁啾的持续时间;
c是光速;
多普勒频率使雷达返回信号的频率-时间图上移或下移。对于接近雷达的目标,所接收到的多普勒频率是正的。多普勒频率被给出为
其中
是目标径向速率(对于接近目标来说为负的);
f0是载波频率;
考虑雷达传感器在频率f0下操作。由于到目标的距离和多普勒频移而导致的拍频fb对于上啁啾被给出为
注意,单次啁啾测量对于每个目标产生频移。此值通过等式4与R0有关。由于许多R和V组合能够满足等式,所以距离和速率估计是含糊的。
安装在汽车中的雷达系统应该能够实时地提供由控制系统所要求的信息。需要能够提供足够的计算能力以满足实时系统要求的基带处理系统。处理系统对所接收到的信号执行数字信号处理以提取诸如周围物体的距离和速率的有用信息。
当前,车辆(尤其是汽车)日益配备有被设计为在关键情形下辅助驾驶员的技术。除了相机和超声传感器之外,随着相关技术的成本降低,汽车制造商正在转向雷达。雷达的吸引力是它在任何天气条件下提供对多个物体的速率和距离的快速且清晰的测量。相关雷达信号被频率调制并且能够用频谱分析器来分析。以这种方式,雷达组件的开发者能够自动地检测、测量并显示时域和频域中的信号,甚至高达500GHz的频率。
现在对于在自主车辆领域中使用雷达更感兴趣,该雷达预计在将来变得更普遍。毫米波汽车雷达适合于用在预防碰撞中并用于自主驾驶。与超声雷达和激光雷达相比,从77GHz至81GHz的毫米波频率不太易受雨、雾、雪和其他天气因素、灰尘和噪声的干扰影响。这些汽车雷达系统通常包括高频雷达发射器,该高频雷达发射器在已知方向上发射雷达信号。发射器可以在连续或脉冲模式下发射雷达信号。这些系统也包括连接到适当的天线系统的接收器,该接收器接收来自所发射的雷达信号的回波或反射。每个这种反射或回波表示由所发射的雷达信号照射的物体。
高级驾驶员辅助系统(ADAS)是为了自动化、适配并增强车辆系统以进行安全且更好的驾驶而开发的系统。安全特征被设计为通过提供向驾驶员提醒潜在问题的技术来避免碰撞和事故,或者通过实现保护措施并且接管车辆的控制来避免碰撞。自适应特征可以使照明自动化,提供自适应巡航控制,使制动自动化,并入GPS/交通警告,连接到智能电话,向驾驶员提醒其他车辆或危险,使驾驶员保持在正确车道中,或者示出在盲区中有什么。
有许多形式的ADAS可用:一些特征被内置到汽车中或者可作为附加包提供。另外,有售后解决方案可用。ADAS依靠来自多个数据源的输入,包括汽车成像、激光雷达、雷达、图像处理、计算机视觉和车内联网。附加输入可能来自主车辆平台外部的其他源,诸如其他车辆,被称为车辆对车辆(V2V)或车辆对基础设施系统(例如,移动电话或Wi-Fi数据网络)。
高级驾驶员辅助系统当前是汽车电子中增长最快的部分之一,同时车辆安全体系ISO 26262中的行业质量标准的采用率稳定地增加,并且正在开发技术特定标准,诸如IEEE2020图像传感器质量和通信协议,诸如车辆信息API。
近年来许多行业正在移向自主解决方案,诸如汽车行业、交付等。这些自主平台在环境中操作,同时与固定对象和移动对象两者交互。出于此目的,这些系统要求允许它们以可靠且高效的方式感测其周围环境的传感器套件。例如,为让自主车辆规划其在上面有其他车辆的道路上的路线,轨迹规划器必须具有环境的带有移动物体的指示的3D地图。
视觉传感器也由于坏天气和差能见度(例如,雾、烟、沙、暴雨、暴雪等)而降级。它们在估计径向速率时也受到限制。光检测和测距设备(LIDAR)用于通过用激光照射目标物来测量到目标物的距离。然而,这些是昂贵的,因为大多数具有可动零件并且距离非常有限。因此,汽车雷达被视为一种增强而非替代技术。
在汽车领域中,雷达传感器是舒适和安全功能的关键组件,例如自适应巡航控制(ACC)或碰撞减轻系统(CMS)。随着渐增数目的汽车雷达传感器同时彼此接近操作,雷达传感器可能接收到来自其他雷达传感器的信号。接收到外来信号(干扰)可能导致诸如重影目标或信噪比降低的问题。在图1中示出了具有来自若干周围车辆的直接干扰的这样的汽车干扰场景。
到目前为止,干扰尚未被认为是主要问题,因为配备有雷达传感器的车辆的百分比低,因此干扰的概率低。另外,传感器被主要用于舒适功能。在这种情况下检测干扰并在干扰的持续时间内关闭功能(即整个雷达)可能就足够了。相反地,未来系统的安全功能要求非常低的故障率。因此,雷达对雷达干扰是雷达传感器网络中的主要问题,尤其是当若干雷达同时在同一频率波段中操作并且彼此相互干扰时。因此,尽管预测会有更高数目的雷达系统,但是必须降低干扰引发的问题的概率。
如上所述,将汽车雷达应用于自主驾驶面临的主要挑战是以下高度可能的情形,即其中可能来自不同供应商的若干不同步雷达在地理邻近中操作并利用重叠频率波段。注意,不能期望雷达的当前安装的基础与新的汽车雷达传感器进入者同步,也不与任何全局同步方案同步。
减少阵列中天线元件的数目的众所周知的方式是通过使用称为“虚拟阵列”的MIMO技术,其中从不同的天线(通常同时地)发射可分开的(例如,正交)波形,并且借助于数字处理生成较大的有效阵列。这种“虚拟阵列”的形状是发射和接收天线的位置的特殊卷积。
也已知借助于带通采样,能够以较低A/D频率对去斜坡信号进行采样,同时保存距离与所设计的带通滤波器匹配的目标的距离信息。
由于(尤其是)硬件复杂性分辨率的线性增加,在角度、距离和多普勒维度上同时地实现高分辨率是重大挑战。
在雷达系统中出现的一个问题被称为距离单元迁移(RCM),其中由于目标的速率,所计算出的雷达返回信号的距离区间随着时间(即慢速时间)的推移而迁移。距离区间的宽度取决于啁啾的RF带宽。带宽越宽,峰越陡。如果距离区间的宽度足够大,则RCM可能被忽视。然而,对于足够大的啁啾带宽,RCM对于足够快的目标或自我速率可能会成为问题。
出现的另一个问题是多普勒速率和距离之间的歧义性(如上文所述),其中在特定条件下,两个具有不同速率和距离的目标的峰值可能会出现在同一位置,即,使用来自峰值位置的信息和峰值之间的相位差来计算目标距离和速率。这会导致错误或错过的检测。
另一个问题涉及距离分辨率,其中啁啾带宽越高,距离分辨率越好。然而,更高的啁啾带宽存在其自身的问题,即更高带宽的接收机中电路的复杂性和成本明显更高。因此,期望将啁啾带宽最小化以将实现成本最小化。
因此,需要使用改进的基于傅立叶的处理方法经由FMCW信号在成像雷达、声纳、超声等领域中改进距离测量,其克服了现有技术雷达系统的问题。
发明内容
本发明提供一种系统和方法,通过该系统和方法,在不增加关键硬件零件的复杂性的情况下显著地改善雷达角和距离分辨率。标准雷达采样方法使用单脉冲方法学,即必须将所有角度和距离信息完全包含在每个单个脉冲内部。图2示出了用于单脉冲处理的频率内容,其在整个相干处理间隔(CPI)中对于每个啁啾来说是相同的。
相比之下,本发明使用一种新颖多脉冲方法学,其中每个脉冲(即啁啾)仅包含部分角度和距离信息,只要通过CPI时间获得所有距离和角度信息即可。图3示出了多脉冲处理的频率内容,其在整个CPI中对于每个啁啾来说是不同的。
部分距离信息意味着每个脉冲仅包含总CPI带宽的一部分,因此单个脉冲相对于单波段处理能够具有显著地减小的带宽。跨CPI使用多个不同的发射频率波段将因此被称为多波段(MB)并且在CPI中发射的啁啾被称为多波段啁啾(MBC)。另外,在每个CPI内使用非线性(例如,随机化)起始频率跳变序列来发射多波段啁啾。
部分角度信息意味着每个脉冲包含填充“虚拟阵列”的仅一部分的角度信息(在基于MIMO的雷达系统中),然而跨CPI包含全虚拟阵列信息。在一个实施例中,每脉冲仅使用单个发射天线来做这个,从而显著地简化MIMO硬件实现。在跨CPI中每脉冲使用不同的天线发射将因此被称为天线复用(AM)。
注意,诸如全MIMO PMCW雷达的现有技术的MIMO解决方案要求更复杂的硬件,包括更高频率的ADC和相关滤波器以在正交发射信号之间分开并使虚拟阵列完整。时间AM FMCWMIMO与从相同的一个或两个频率开始的所有啁啾一起使用,使得聚合带宽等于个别啁啾带宽(即其不是多波段)。
本发明的雷达利用多波段啁啾(例如,频率跳变雷达)来增加距离分辨率,同时维持低采样率。如将在以下更详细地示出的,通过将非线性(例如,随机化)引入到多波段发射的载波频率中以及引入到AM的天线阶数中,能够恢复具有全虚拟阵列的角距离分辨率和全CPI带宽的距离分辨率的雷达图像。此图像包含表征良好的随机化噪声,该随机化噪声能够粗略地被建模为相位噪声并且仅取决于目标的功率和CPI中的脉冲数。通过适当地调整雷达发射参数,能够使脉冲重复间隔(PRI)最小化。这使得能够增加CPI中的脉冲数并且使得能够使噪声保持在不限制性能的可接受水平下,同时使得能实现性能及硬件复杂性和成本之间的优良权衡。
每虚拟信道在模拟硬件、处理和存储器方面简单得多的本发明允许利用多个TX和RX物理阵列元件构建相对较大的MIMO雷达。这直接转换到更大的虚拟阵列,从而提供更好的空间准确性和区分度,并且降低空间旁瓣水平。后者是使强目标对弱目标的可能掩盖最小化同时阻止假检测的关键。
在一个实施例中,本发明是一种雷达传感器,该雷达传感器并入检测、减轻并避免来自其他附近的汽车雷达的相互干扰的能力。用起始频率横跨更宽的带宽并在时间上非线性地(例如,随机地)排序(而不是起始频率的不断增加的序列)的较低带宽、短持续时间啁啾的序列替换线性大带宽FMCW啁啾的通常恒定的起始频率序列,以创建伪随机啁啾跳变序列。然后使用已知非线性跳变序列来重组所接收到的反射波信号。
注意,与其他类型的雷达相比,FMCW雷达提供许多优点。这些优点包括:(1)高精度测量小距离的能力;(2)同时地测量目标距离及其相对速率的能力;(3)能够在相对较低的频率距离下执行信号处理,从而大大简化处理电路的实现;(4)在诸如雨、雪、湿度、雾和多尘条件的各种类型的天气和大气条件下很好地起作用;(5)FMCW调制与固态发射器兼容,并且此外表示对可从这些设备获得的输出功率的最佳使用;以及(6)由于不存在高电路电压而具有轻重量和能耗。
为了减轻干扰,专用接收器设置有宽带侦听能力。所接收到的信号用于估计与其他雷达信号的冲突。如果检测到干扰,则对啁啾的非线性化(例如,随机化)应用约束。跳变序列以及可能个别啁啾的斜率被更改,使得啁啾不会对干扰雷达的啁啾进行干扰。违规啁啾被重新随机化,完全丢弃,或者重新使用另一非违规啁啾的起始频率。
另外,如果检测到干扰,则使用加窗消隐来使所接收到的啁啾的被干扰雷达的啁啾信号损坏的部分归零。另外,受干扰雷达在检测到干扰的同时停止它自己的发射,其目的是使在干扰雷达处接收到的由它自己施以的干扰最小化。
本发明也提供一种用于生成啁啾的非线性起始频率跳变序列的示例技术,以及一种用于在接收器中对多波段啁啾进行慢速时间处理从而导致显著地改善精细距离分辨率并减少旁瓣的新技术。降低啁啾的RF带宽产生更宽距离的峰值,这帮助掩盖距离单元迁移(RCM)。另外,在非线性序列中发射啁啾对于同一目标改变每个啁啾的检测相位,即使固定在同一距离处也如此。由于每个啁啾的起始频率不同而导致的这些相位变化提供了附加分辨率。以这种方式,在快速时间中计算出的啁啾的个别宽峰的相位演化在慢速时间中跨CPI组合以产生具有精细分辨率的单个锐峰。改良傅立叶变换被用于计算经改善的精细分辨率。
另外,提供了一种加窗技术,该加窗技术在不干扰多普勒数据处理的情况下进一步改善旁瓣性能。在此技术中,不是对接收数据应用窗函数,而是生成谱概率窗(SPW)并且在发射器中将其应用于所发射的啁啾。这实际上相当于将加窗函数应用于接收数据。
因此,根据本发明,提供一种用于雷达系统的加窗方法,该方法包括为期望的窗形状选择概率分布函数(pdf),从所述选择的概率分布函数生成具有期望的聚合带宽窗形状的谱概率窗(SPW),以及根据所述概率分布函数生成加窗起始频率跳变序列。
因此,根据本发明,提供一种用于雷达系统的加窗方法,该方法包括生成加窗起始频率跳变序列,使得已发射的啁啾的聚合功率谱具有期望的谱概率窗(SPW)包络形状;以及根据所述加窗起始频率跳变序列的概率密度函数生成啁啾序列。
因此,根据本发明,进一步提供一种用于雷达系统的加窗装置,该装置包括第一电路,该第一电路可操作以从选择的概率分布函数生成谱概率窗(SPW),以及第二电路,该第二电路可操作以根据所述谱概率窗生成加窗起始频率跳变序列。
附图说明
在以下示例性实施例中并参考图进一步详细地说明本发明,其中相同或类似的元件可以部分地由相同或类似的附图标记指示,并且各种示例性实施例的特征是可组合的。在本文中参考附图仅通过示例来描述本发明,其中:
图1是图示并入了配备有汽车雷达传感器单元的若干车辆的示例街景的图;
图2是图示单波段啁啾发射的示例频率内容的图;
图3是图示多波段啁啾发射的示例可能的频率内容的图;
图4是图示示例CW雷达啁啾波形的图;
图5是图示示例发射啁啾信号和接收反射信号的图;
图6是图示多个啁啾全部具有相同的起始频率和全带宽情况下的示例CPI的图;
图7是图示在非线性序列中发射多个分数带宽啁啾情况下的示例CPI的图;
图8是图示根据本发明构造的示例雷达收发器的图;
图9是图示根据本发明构造的示例替代发射器的图;
图10是更详细地图示FMCW啁啾生成器的图;
图11是更详细地图示非线性频率跳变定序器的图;
图12是图示本发明的示例雷达发射器数据处理方法的流程图;
图13是图示用于获得多普勒和精细距离数据的示例慢速时间处理的图;
图14是图示如何能够将每个频移脉冲描述为利用频移增量函数对单个采样内核波形进行卷积的图;
图15是图示用于构造多波段发射的有效距离窗的可视化的图,包括相位噪声频率分布的影响和每脉冲应用的数字距离窗;
图16是图示啁啾频率分布窗的示例可视化的图;
图17是图示啁啾天线分布窗的示例可视化的图;
图18是图示示例发射天线和频率跳变选择的高级框图;
图19是图示根据本发明的示例MIMO FMCW雷达的高级框图;
图20是图示根据本发明构造的示例数字雷达处理器(DRP)IC的框图;
图21是图示示例快速时间和慢速时间处理的图;
图22是图示用于多个接收天线元件的距离-速率数据块的图;
图23是图示用于MIMO天线阵列的示例方位角和仰角处理的图;
图24是图示遍及慢速时间的距离单元迁移的示例的图;
图25是图示示例快速时间傅立叶处理的图;
图26是图示遍及慢速时间维度的示例改良傅立叶处理的图;
图27A是图示改良傅立叶处理的示例结果的透视图的曲线图;
图27B是图示改良傅立叶处理的速率结果的曲线图;
图27C是图示改良傅立叶处理的精细距离结果的曲线图;
图28是图示本发明的示例雷达接收器数据处理方法的流程图;
图29是图示具有加窗的示例时域信号的曲线图;
图30是图示在傅立叶处理之后的所得频谱的曲线图;
图31是图示多波段线性FM(LFM)啁啾的示例非均匀谱分布的图;
图32是图示示例精细分辨率增强方法的流程图;
图33是图示均匀分布的直接频率对时间的曲线图;
图34是图示汉宁分布的直接频率对时间的曲线图;
图35是图示针对均匀分布的聚合频率分布的示例直方图的曲线图;
图36是图示针对汉宁分布的聚合频率分布的示例直方图的曲线图;
图37是图示针对均匀分布和汉宁分布两者的峰值多普勒区间处的示例精细距离功率谱的曲线图;
图38是图示示例受干扰视图的图;
图39是去斜坡后的示例受干扰视图的图;
图40是图示在去斜坡和低通滤波之后的示例受干扰视图的图;
图41是图示在去斜坡之后的示例3D受干扰视图的图;
图42是在去斜坡之后的示例干扰源视图的图;
图43是图示根据本发明的约束啁啾序列的随机化的示例方法的流程图;
图44是图示在干扰检测和避免之后的示例受干扰视图的图;
图45是图示根据本发明的避免干扰的示例方法的流程图;
图46是图示具有干扰检测和避免的示例干扰源视图的图;
图47是图示具有干扰检测和避免后去斜坡的示例受干扰视图的图;
图48是图示具有干扰检测和避免后去斜坡的示例干扰源视图的图;
图49是图示没有干扰的示例雷达IF时域信号的图;
图50是图示没有干扰的示例IF距离谱的图;
图51是图示具有干扰的第一示例时域IF信号的图;
图52是图示根据本发明的减轻干扰的示例方法的流程图;
图53是图示在消隐之前和之后具有干扰的第一示例时域IF信号的图;
图54是图示具有干扰和加窗消隐的第一示例IF距离谱的图;
图55是图示具有干扰的第二示例时域IF信号的图;
图56是图示在消隐之前和之后具有干扰的第二示例时域IF信号的图;以及
图57是图示具有干扰和加窗消隐的第二示例IF距离谱的图。
具体实施例
在以下详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解。然而,本领域技术人员应理解,可以在没有这些具体细节的情况下实践本发明。在其他情况下,尚未详细地描述众所周知的方法、过程和组件以免使本发明混淆。
在已公开的那些益处和改进当中,本发明的其他目的和优点将从结合附图进行的以下描述中变得显而易见。在本文中公开了本发明的详细实施例。然而,应当理解,所公开的实施例仅仅图示可以以各种形式体现的本发明。另外,结合旨在为说明性而不是限制性的本发明的各种实施例给出这些示例中的每一个。
在说明书的结论部分中特别指出并清楚地要求保护被视为本发明的主题。然而,通过参考当与附图一起阅读时的以下详细描述,关于组织和操作方法及其目的、特征和优点,可以最好地理解本发明。
图构成了本说明书的一部分并且包括本发明的说明性实施例,而且图示其各种目的和特征。进一步地,图不一定按比例绘制,一些特征可能被放大以示出特定组件的细节。另外,图中所示的任何测量结果、规格等旨在为说明性的,而非限制性的。因此,本文公开的具体结构和功能细节不应被解释为限制性的,而是仅仅作为用于教导本领域技术人员不同地使用本发明的代表性基础。进一步地,在认为适当的情况下,可以在图当中重复附图标记以指示对应或类似的元件。
因为所图示的本发明的实施例大部分可以使用为本领域技术人员已知的电子组件和电路来实现,所以将不在任何比认为必要的更大程度上说明细节,以便理解和领会本发明的底层构思并且以免使本发明的教导混淆或岔开。
在说明书中对方法的任何引用应该被加以必要变更以应用于能够执行该方法的系统。在说明书中对系统的任何引用应该被加以必要变更以应用于可以由系统执行的方法。
贯穿说明书和权利要求书,除非上下文另外清楚地规定,否则以下术语采取与本文明显关联的含义。如本文所使用的短语“在一个实施例中”、“在示例实施例中”和“在一些实施例中”不一定指代相同的实施例,但是它可以指代相同的实施例。此外,如本文所使用的短语“在另一实施例中”、“在替代实施例中”和“在一些其他实施例中”不一定指代不同的实施例,但是它可以指代不同的实施例。因此,如下所述,在不脱离本发明的距离或精神的情况下,可以容易地组合本发明的各种实施例。
另外,如本文所使用的,除非上下文另外清楚地规定,否则术语“或”是包括性“或”操作符,并且相当于术语“和/或”。除非上下文另外清楚地规定,否则术语“基于”不是排他性的并且允许基于未描述的附加因素。另外,贯穿说明书,“一”、“一个”和“该”的含义包括复数引用。“在...中”的含义包括“在...中”和“在...上”。
调频连续波(FMCW)雷达是使用频率调制的雷达。FMCW雷达的操作原理是发射具有增加(或降低)频率的连续波。这样的波被称为啁啾。在图4中示出了啁啾波形10的示例。在被物体反射之后的发射波由接收器接收。在图5中示出了发射的12个啁啾波形和在接收器处接收(即反射)的14个啁啾波形的示例。
考虑将雷达用于汽车应用,车辆制造商当前能够利用具有不同带宽的24GHz和77GHz处的四个频率波段。虽然24GHz ISM波段具有250MHz的最大带宽,但是76-81GHz超宽带(UWB)提供多达5GHz的带宽。具有多达4GHz带宽的波段位于77至81GHz的频率之间。它当前用于许多应用。注意,用于此应用的其他分配的频率包括带宽仅为1GHz的122GHz和244GHz。由于信号带宽确定距离分辨率,所以具有足够的带宽在雷达应用中是重要的。
常规的数字波束形成FMCW雷达通过跨径向、角度和多普勒维度的非常高的分辨率来表征。成像雷达基于众所周知的相控阵列技术,该技术使用均匀线性分布阵列(ULA)。众所周知,线性阵列架构的远场光束图案是使用傅立叶变换来获得的。距离测量结果是通过对由将发射信号的共轭与接收信号相乘而生成的去斜坡信号执行傅里叶变换而获得的。雷达距离分辨率由雷达的RF带宽确定并且等于光速c除以两倍RF带宽。多普勒处理是通过跨慢速时间维度执行傅立叶变换来执行的,并且其分辨率受相干处理间隔(CPI)(即用于多普勒处理的总发射时间)的限制。
当在汽车应用中使用雷达信号时,期望在单个测量周期内同时地确定多个物体的速度和距离。普通脉冲雷达不能够容易地处理这样的任务,因为基于在周期内发射信号与接收信号之间的定时偏移,只能确定距离。如果还要确定速度,则使用调频信号,例如线性调频连续波(FMCW)信号。脉冲多普勒雷达也能够直接测量多普勒偏移。发射信号与接收信号之间的频率偏移也被称为拍频。拍频具有多普勒频率分量fD和延迟分量fT。多普勒分量包含关于速率的信息,而延迟分量包含关于距离的信息。在距离和速率的两个未知数情况下,确定期望参数需要两次拍频测量。紧接在第一信号之后,将具有线性改良频率的第二信号并入到测量结果中。
能够利用FM啁啾序列在单个测量周期内确定两个参数。由于单个啁啾与总测量周期相比非常短,所以每个拍频主要由延迟分量fT确定。以这种方式,能够在每次啁啾之后直接探知距离。确定序列内的若干连续啁啾之间的相移允许使用傅立叶变换来确定多普勒频率,从而使得有可能计算出车辆的速度。注意,速度分辨率随着测量周期的长度增加而改善。
多输入多输出(MIMO)雷达是一种使用多个TX和RX天线来发射和接收信号的雷达。阵列中的每个发射天线独立地辐射与从另一个天线辐射的信号不同的波形信号。可替换地,信号可以是相同的但是在非重叠时间发射的。能够在接收器天线中容易地分开属于每个发射器天线的反射信号,因为(1)要么在发射中使用正交波形,要么(2)因为在非重叠时间接收它们。创建包含从每个发射天线到每个接收天线的信息的虚拟阵列。因此,如果我们具有M个发射天线和N个接收天线,则仅通过使用M+N个物理天线,我们将在虚拟阵列中具有M·N个独立的发射和接收天线对。MIMO雷达系统的这种特性产生若干优点,诸如增加空间分辨率、增加天线孔径,并且检测缓慢移动物体的灵敏度可能更高。
如上所述,从不同的TX天线发射的信号是正交的。能够通过使用时分复用(TDM)、频分复用或空间编码来获得发射波形的正交性。在本文呈现的示例和描述中,使用了每次仅允许单个发射器发射的TDM。
本发明的雷达可操作来通过实现如与全MIMO FMCW对照的时间复用MIMO FMCW雷达来降低复杂性、成本和功耗。与全MIMO雷达相比,汽车MIMO成像雷达的时间复用方法具有与其相关联的显著成本和功率益处。全MIMO雷达同时地从多个发射阵列元件发射若干可分开的信号。需要通常使用一组匹配滤波器在每个接收信道处分开那些信号。在这种情况下,完整虚拟阵列被立即填充。
利用时间复用MIMO,一次仅有一个发射(TX)阵列元件进行发射。发射侧被大大简化,并且每个接收(RX)信道不需要一组匹配滤波器。虚拟阵列在从阵列中的所有TX元件发射所花费的时间期间被渐进地填充。
然而,请注意,时间复用MIMO与若干问题相关,这些问题包括多普勒与空间方向(方位角和仰角)之间的耦合。在一个实施例中,这通过对TX阵列元件发射应用非线性(例如,随机)顺序来解决。从在所有TX元件之上循环的非线性地排序的发射序列开始,然后在CPI持续时间内重复“再用”次数。每次重复中的TX序列被非线性地(例如,随机地)排列。每次重复使用不同排列。因此,确保了每个TX元件在CPI期间发射相同的次数并且每个TX元件的发射之间的暂停永不长于两个周期持续时间。这是重要的以便使这对于保持多普勒旁瓣保持较低是重要的。尽管没有必要从一个CPI到下一个CPI改变排列,但是这是边际有益的。
解耦有效性主要由CPI中的啁啾数确定。因此,这是使用短持续时间啁啾的另一动机。在较低目标速度下发生多普勒模糊。在一个实施例中,这通过使用非线性(例如,随机)发射(TX)序列(如上所述)并通过使用相对较短的啁啾来解决。啁啾持续时间上的下界是到最远目标的传播延迟加上合理的重叠时间。在一个实施例中,使用七微秒的PRI来覆盖位于多达300米远的目标。注意,更短的啁啾也增加如在下更详细地说明的所需采样率。
在一个实施例中,通过以下步骤来解决灵敏度:(1)增加发射功率,(2)增加TX增益和RX增益两者,(3)获得低噪声系数,以及(4)使处理损失最小化。降低采样率对计算复杂性和存储器要求有直接和成比例的影响。因此优选使IF采样率保持较低以使复杂性、成本和功耗保持在合理的水平。所需采样率由去斜坡后的每个啁啾后去斜坡的最大IF(即非RF)带宽确定。最大IF带宽由啁啾的斜率(即持续时间期间的带宽)乘以到最远目标并回来的传播延迟来确定。因此,优选的通过低啁啾带宽或通过长啁啾持续时间或它们的组合来使啁啾斜率保持较低。然而,这与要求良好的距离分辨率(其要求较大的RF带宽)和低多普勒模糊(其要求较短的啁啾)相矛盾。
在一个实施例中,通过使用具有不同起始频率的低带宽啁啾器来解决此矛盾,使得所有啁啾器横跨的聚合频率波段大得多。图6图示具有相同起始频率的长高带宽啁啾的序列。在相干处理间隔(CPI)20期间发射多个啁啾22,每个啁啾具有持续时间TC(PRI)并且具有带宽(在本文呈现的示例中为1GHz)。图5图示从发射信号延迟的回波信号14。图7图示具有非线性(例如,随机化)起始频率的短低带宽啁啾30的示例序列。每个啁啾30具有更短的持续时间TC(PRI)和更小的带宽Bchirp 34。在此示例中,每个啁啾的带宽从1GHz减小到125MHz。每个啁啾具有起始频率fs和结束频率fe。尽管CPI内的啁啾在时间上不重叠,但是它们可能在频率上重叠。因此,考虑80-81GHz之间的频率距离,两个啁啾的起始频率可以是80.11GHz和80.12GHz,同时每个啁啾具有125MHz的带宽。
使用在以下详细描述的接收处理算法,距离分辨率由聚合带宽确定,然而采样率由小得多的啁啾带宽确定。此技术在此被称为多波段啁啾(MBC)。
本发明的MBC技术的优点是当啁啾更短且带宽更低时减小相互干扰。以下更详细地描述相互干扰技术。
距离单元迁移(RCM)是优选地避免的众所周知不希望的现象。然而,设计雷达以避免RCM通常在应对雷达与目标之间的快相对径向速度时与对良好的(即精细的)距离分辨率的要求冲突。在一个实施例中,MBC的使用解决此矛盾。不会产生RCM的雷达与目标之间的最大相对径向速度由与啁啾带宽相对应的距离分辨率而不是聚合带宽(即粗略距离分辨率)确定。整个CPI的最终距离分辨率由聚合带宽(即精细距离分辨率)确定。
在一个实施例中,处理阶段包括:(1)用于生成粗略距离信息的每啁啾快速时间傅立叶处理;(2)使用改良傅里叶处理的同时多普勒和精细距离距离估计,包括每粗略区间和精细距离的相位校正,其中相位校正是每个啁啾起始频率和粗略距离的函数;以及(3)数字波束形成(DBF)。注意,术语变焦距离是用于精细距离的另一术语。
关于MBC,总带宽被分解成单独的但部分地重叠的波段,其中每个啁啾具有非线性(例如,随机)起始频率和相对较低的带宽(例如,50、75、100、125MHz)。所有啁啾一旦被聚合,就覆盖大得多的总带宽(例如,1GHz)。
本发明的MBC技术的使用可操作来打破一种或多种耦合并解决一种或多种模糊,例如多普勒、方位角和仰角。关于多普勒粗略距离,这种耦合通常较低,因为在大多数汽车FMCW雷达操作模式下,由于距离而导致的频率偏差比由于多普勒而导致的频率偏差大得多。因此,能够在检测后做解耦。以下将更详细地描述多普勒精细距离处理。
关于多普勒与空间方向(即方位角和仰角)之间的耦合,SAR和其他时间复用雷达通常具有多普勒与空间方向(即方位角和仰角)的耦合。在时间复用MIMO雷达中,通过使用被同时采样的多个RX天线来打破耦合。这将模糊函数从刀片状改变为钉床状,其中确切配置尤其取决于RX阵列元件间距。
重要的是注意,在一个实施例中,通过使TX序列随机化来实现进一步解耦。多普勒模糊通过使PRI保持足够低使得TX天线的行(或列)在不到多普勒模糊持续时间(对于40m/s为25微秒)内被线性地扫描以被推向较高的且不相关的速度。在一个实施例中,使一行中的六个TX元件线性地切换强制小于6.25微秒的PRI。
然而注意,通过充分地使发射序列随机化(即,既水平地又垂直地),多普勒模糊仍由单个啁啾持续时间而不是全扫描持续时间确定。单维随机化(即,仅水平地或垂直地)也是可能的,但是在多普勒模糊被推多远方面不如全随机化。
考虑随机化过程的示例。从遍及所有TX元件循环的有序发射序列开始,然后在CPI持续时间内重复再用次数。每次重复中的TX序列被随机地排列。每次重复使用不同排列。因此,确保了每个TX元件在CPI期间发射相同的次数,并且每个TX元件的发射之间的暂停永不长于两个持续时间。注意,将从一个CPI到下一个CPI改变排列是有益的。解耦有效性主要由CPI中的啁啾数确定。因此,附加动机是使用短啁啾。
关于精细距离,将精细距离和多普勒解耦是优选的,因为精细距离和多普勒处理都在慢速时间中被执行。例如,如果啁啾起始频率随时间线性地增加,则不能将慢速时间相位演化与一些多普勒速率的慢速时间相位演化区分开。因此,对于精细距离处理来说优选在CPI结束时提供目标位置(即更多信息可用)。
注意,解耦是通过使用非线性起始频率跳变序列来实现的,其中解耦有效性主要由CPI中的啁啾数确定。因此,这是使用短啁啾的另一动机。另外,在一个实施例中,通过在发射器中对啁啾起始频率的分布进行整形来进一步改善精细距离旁瓣性能。这提供以下好处:(1)在接收器侧没有窗损失;以及(2)由于增益未改变,所以没有与多普勒窗处理的相互作用。
在图8中示出了图示根据本发明构造的示例雷达收发器的图。通常标号为80的雷达收发器包括发射器82、接收器84和控制器83。发射器82包括非线性频率跳变定序器88、FMCW啁啾生成器90、本地振荡器(LO)94、混频器92、功率放大器(PA)96和天线98。
接收器84包括天线100、RF前端块101、混频器102、IF块103、ADC 104、快速时间粗略距离处理106、慢速时间处理块(多普勒和精细距离)108以及方位角和仰角处理。
在操作中,非线性频率跳变定序器88生成非线性起始频率跳变序列。用于每个啁啾的起始频率被输入到FMCW啁啾生成器90,该FMCW啁啾生成器用来以特定起始频率生成啁啾波形。根据LO 94经由混频器92将啁啾上转换到适当的波段(例如,80GHz波段)。经上转换的RF信号经由PA 96被放大并输出到天线98,该天线在MIMO雷达的情况下可以包括天线阵列。
在接收侧,到达天线100的回波信号被输入到RF前端块101。在MIMO雷达中,接收天线100包括天线阵列。来自RF前端电路的信号经由混频器102与发射信号混合以生成拍频,该拍频被输入到IF滤波器块103。IF块的输出经由ADC 104被转换为数字的并且被输入到快速时间粗糙距离处理块106以生成粗略距离数据。慢速时间处理块108用来生成精细距离和多普勒速率数据两者。然后经由方位角/仰角处理块110计算出方位角和仰角数据。4D图像数据112被输入到下游图像处理和检测。
在图9中示出了替代发射器框图。通常标号为310的发射器包括FMCW啁啾生成器块312,该FMCW啁啾生成器块用来经由与包括载波信号(例如,80GHz)的第一LO 316相乘来生成啁啾波形。非线性频率跳变序列326可操作来生成非线性起始频率跳变序列。起始频率被输入到第二LO 320,该第二LO用来生成被应用于载波波形的实际非线性频移。LO 2信号经由混频器318与第一混频器314的输出混合,从而在RF处以适当的起始频率生成啁啾。此信号被放大并输入到发射天线324。
在图10中示出了更详细地图示图8的FMCW啁啾生成器的图。基于锁相环(PLL)的啁啾生成器通常标号为90,该电路包括相位/频率检测器(PFD)570、环路滤波器572、压控振荡器(VCO)574、分频器576、啁啾计数器578和Σ-Δ调制器(SDM)580。
在操作中,啁啾计数器从啁啾定序器接收所需啁啾的起始频率和斜率579。输出573是在每个时钟周期更新的频率值(随时间而增加)的数字序列。SDM用来将啁啾计数器的数字值转换成被输入到PFD 570的模拟基准信号581。分频器(分数整数)576用来对IF输出信号575进行分频以生成被输入到PFD的分频信号577。PFD产生具有表示其两个输入之间的频率差的电压的脉冲。来自PFD的校正脉冲经由低通滤波器(LPF)572被滤波以生成调谐电压586。LPF(即环路滤波器)使调谐电压响应平滑,使得VCO合成平滑线性频率调制(LFM)。VCO可操作以接收控制输出信号575的频率的调谐电压。注意,啁啾生成器电路共享用于同步操作的公共时钟基准信号。
在图11中示出了更详细地图示图8的非线性频率跳变定序器的图。通常标号为88的非线性频率跳变定序器包括查找表(LUT)(例如,RAM,ROM,NVRAM等)590、串行外围设备接口(SPI)592和调度器594,该调度器可以包括硬件、软件或它们的组合。
在操作中,LUT 590包含所有预定义起始频率的列表。SPI 592是主要在嵌入式系统中使用的众所周知的异步串行通信接口协议。SPI读取包含每个啁啾的起始频率和斜率的值的数字字591。SPI在每啁啾(PRI)经由使能信号593被激活一次并且用被馈送到啁啾生成器的啁啾起始频率和啁啾斜率的值更新输出598。调度器用作用于为SPI提供定时控制的控制单元。调度器经由公共时钟基准信号与啁啾生成器同步。
在图12中示出了图示本发明的示例雷达发射器数据处理方法的流程图。首先及时地生成或从存储器存储中检索啁啾起始频率的非线性跳变序列(步骤120)。在后者情况下,非线性跳变序列被先验生成并存储在ROM、RAM或任何其他合适的存储系统中。在示例实施例中,跳变序列被随机化。跳变可以相等地或不相等地(即平坦地或不平坦地,或均匀地或不均匀地)分布在CPI的聚合带宽的全部或一个或多个部分上。在一个实施例中,可以将聚合带宽划分成跳变序列局限于的一个或多个频率块。啁啾序列覆盖总带宽的全部或部分,使得最低频率(即最低起始频率)和最高组合频率(即最高起始频率加上啁啾带宽)限定总聚合带宽。换句话说,只要使用“边缘”频率(即总带宽的底部和顶部),来自总带宽的实际频率覆盖范围就可以是部分的。例如,如果所发射的啁啾被包含在总带宽的单个部分中,则用于啁啾的总带宽变为该部分本身(其小于聚合带宽)。注意,在这种情况下,距离分辨率降低并且精细距离区间宽度增加。同样注意,由于诸如干扰、堵塞等的任何数目的原因,可能有必要使用带宽的一部分。然而,减小跳变序列的频率距离的覆盖范围将使慢速时间旁瓣性能降级。
注意在一个实施例中,窗函数被应用于跳变序列以减小精细距离数据的旁瓣,如以下更详细地描述的。
然后选取用于要发射的啁啾的起始跳变频率(步骤122)。然后,发射器以所选跳变频率生成啁啾波形(步骤124)。在MIMO雷达系统的任选情况下,随机地选择TX天线元件以进行啁啾的发射(步骤125)。注意,由于能够在具有或没有TX元件定序的雷达中使用本发明的MBC技术,所以TX元件非线性定序的使用是任选的。然后,经由所选TX天线元件发射所选起始频率下的啁啾(步骤126)。
在接收器中,在图13中示出了用于获得多普勒和精细距离数据的慢速时间处理的更详细框图。根据本发明并且并在以下更详细地描述,慢速时间处理块108可操作来生成分辨率显著地高于快速时间粗略距离处理的精细距离数据。这通过使用改良傅里叶变换218来实现。在操作中,改良傅里叶变换处理涉及三个项:(1)从快速时间粗略距离处理块106(图8)接收到的粗略距离数据212;(2)线性(即按时间)顺序的慢速时间傅立叶系数214;以及(3)非线性顺序(即根据非线性频率跳变序列)的精细距离傅立叶系数216。改良傅立叶变换的结果是被随后输入到下游方位角/仰角处理的精细距离-多普勒图220。
4D FMCW成像雷达本质上对输入数据执行4D傅立叶变换。多波段(或多脉冲)处理的期望目标是跨如下三个维度对全信息进行二次采样:(1)距离(即发射频率);(2)仰角;和(3)方位角。在一个实施例中,由于多脉冲系统通过CPI收集信息并且跳过脉冲将影响二次采样,所以不对慢速时间(即多普勒)维度进行二次采样。
能够通过两个操作来按二次采样维度对一般二次采样进行建模:(1)根据某个分布函数跨全维度跨度随机地对单个点进行采样;以及(2)将采样点与采样内核进行卷积(诸如多波段中的单脉冲带宽)。当在CPI级别下(在多普勒处理之后)检查时,将示出结果信号是与对随机采样分布函数的傅里叶变换进行卷积的目标信号,并且加上非常类似于相位噪声的噪声。注意,它相当于从目标随机地采样的维度起在一个区间分辨率立方外部的完全随机相位噪声。与采样内核的卷积使信号和作为卷积的结果的“相位噪声”有色。
出于旁瓣估计的目的,使用以下公式来估计有效距离窗是有用的:
注意,采样内核可以包括矩形窗(示出在图14中)、诸如汉宁窗、汉明窗的窗或甚至增量函数(在此情况下它将没有影响)。实体-表示白色的相位噪声并且对于所有频率具有恒定平均值。根据以上R的等式5,能够看到具有专门地设计的频率分布将是有益的,该频率分配与采样内核一起产生所期望的窗特性。
图15图示使用啁啾频率分布的傅立叶变换加上相位噪声乘以每啁啾采样内核的傅立叶变换来修改有效距离窗,其在此示例中包括矩形窗。图16图示示例啁啾频率分布窗。图17图示示例啁啾天线分布窗。通过控制天线发射的分布,类似于距离的情况,例如在假定接收元件水平并且发射元件垂直的十字形天线阵列的仰角中,能够确定有效角窗。注意在这种情况下,仰角采样内核相对简单并包括增量函数,如下
重要的是注意,有效窗包含项因为它是白色相位噪声的标准偏差,该标准偏差对于所有频率具有零的平均值并且允许我们示出如何为噪声有色。注意,这不应与窗的确定性部分混淆。如能够从以上R的等式6看到,窗的有效斜率由采样内核(即每啁啾数字距离窗)确定。由于雷达方程的性质,接收目标功率与距离的负四次幂的功率成比例,由于接收目标功率与负四次幂成比例的雷达方程的性质,斜率为至少12dB/倍频程的距离窗是优选的,使得近距离处的目标不会掩盖距离更远处的目标。
另一方面,R的距离分辨率主要由频率分布窗确定,该频率分布窗下降得非常快并且与CPI中的总(集合)带宽成比例。示例频率分布窗包括众所周知的汉宁和汉明窗。当使用频率分布窗时,每个啁啾的初始频率是从窗形状分布中选取的。可替代地,能够选择起始频率,使得其直方图以确切窗形状成形(无随机性)。然后能够将频率发射的次序选取为非线性伪随机排列。用于非线性(例如,随机化)的一个可能的实现是使用在如图18中所示的存储器表中预先配置的预定天线和发射频率。通常标号为230的发射方案包括接收脉冲(啁啾)索引232的非线性频率跳变起始频率定序器234和TX天线元件定序器236。起始频率和TX元件数据被输入到发射器电路238,并且所得的一个或多个发射信号被输出到TX天线阵列240中的适当元件。
注意,优选的是尽可能多地减小距离傅里叶变换的扇形损失。这能够通过使用数字窗函数来实现,该数字窗函数具有增加等效噪声带宽并且降低相干增益的缺点,但是在存储器使用率方面是高效的。减小扇形损耗的替代方式是通过使用零填充,该零填充既不增加等效噪声带宽,也不降低相干增益,但是增加存储器要求。然而,通过使用减小每个脉冲的带宽的多波段处理,在不增加存储器要求的情况下使用零填充,因为该增加通过使用较小的啁啾带宽被补偿。
现在将提供用于3D随机稀疏采样的模型。注意,能够毫无困难地将模型扩展到4D。假定雷达图像的维度是距离、多普勒和仰角,并且仅在距离和仰角维度上做二次采样,提出了问题的简化3D版本。
注意,我们对具有3D信号的特定类型的3D稀疏采样感兴趣。项Cp是稀疏采样索引组,其中两个索引为一组。项s在行维度上按因子NR随机地下采样,在列维度上按因子一随机地下采样(即没有下采样),而在第三维度上按因子/>随机地下采样。注意,不一定按相等分布而是根据一般分布执行随机下采样,该一般分布能够采取诸如汉宁或汉明窗的窗函数f分布窗的形式。稀疏采样索引根据cp,使用操作符RDNR,1
让我们假定s具有与(m,n,o)3D DFT系数的频率确切地匹配的恒定振幅和线性相位为了简单起见,我们假定f分布窗=1/(NRNE)(即它们均匀地分布)。我们因此能够将不同DFT系数的值表达如下:
对于这种情况,信号与DFT频率精确地匹配,从而在零点处且在目标频率外部的其他频率处对矩形窗函数的变换进行采样以获得与脉冲数成正比的噪声。
通常,能够将3D随机稀疏采样近似如下,其中是三维傅里叶变换:
在图19中示出了图示根据本发明的示例MIMO FMCW雷达的高级框图。通常标号为40的雷达收发器传感器包括多个发射电路66、多个接收电路58、本地振荡器(LO)74、包括本地振荡器(LO)61的斜坡或啁啾生成器60、非线性频率跳变定序器62、任选的TX元件定序器75(虚线)和信号处理模块44。在操作中,雷达收发器传感器通常与主机42进行通信并且可以由主机42控制。每个发射块包括功率放大器70和天线72。发射器接收啁啾生成器60的发射信号输出,该发射信号输出被馈送到每个发射块中的PA。任选的TX元件定序器(虚线)生成控制发射元件序列的多个使能信号64。应领会,本发明的MBC技术能够在有或没有TX元件定序的情况下并且在有或没有MIMO操作的情况下在雷达中操作。
每个接收块包括天线48、低噪声放大器(LNA)50、混频器52、中频(IF)块54和模数转换器(ADC)56。在一个实施例中,雷达传感器40包括专用于侦听的单独的检测宽带接收电路46。传感器使用此接收器来检测由附近的雷达传感器发射的带内干扰信号的存在。处理块使用所检测到的干扰信号的知识来制定响应(若有的话)以减轻并避免任何相互干扰。
信号处理块44可以包括能够处理、接收或者发射数据或指令的任何合适的电子设备。例如,处理单元可以包括下列中的一个或多个:微处理器、中央处理单元(CPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、图形处理单元(GPU)或此类设备的组合。如本文所描述的,术语“处理器”意在包含单个处理器或处理单元、多个处理器、多个处理单元或一个或多个其他合适地配置的计算元件。
例如,处理器可以包括一个或多个通用CPU核心以及任选地一个或多个专用核心(例如,DSP核心、浮点、门阵列等)。一个或多个通用核心执行通用操作码,然而专用核心执行特定于其目的的功能。
附连或嵌入式存储器包括动态随机存取存储器(DRAM)或扩展数据输出(EDO)存储器或其他类型的存储器,诸如ROM、静态RAM、闪存和非易失性静态随机存取存储器(NVSRAM)、可移动存储器、气泡存储器等,或以上中的任一种的组合。存储器存储能够由设备使用的电子数据。例如,存储器能够存储电数据或内容,诸如例如雷达相关数据、音频和视频文件、文档和应用、设备设定和用户首选项、定时和控制信号或用于各种模块、数据结构或数据库的数据等。能够将存储器配置为任何类型的存储器。
发射信号和接收信号被混合(即相乘)以生成要由信号处理块44处理的信号。相乘过程生成两个信号:一个信号具有等于相乘信号之差的相位,而另一个信号具有等于相位之和的相位。和信号被滤出并且差信号由信号处理单元处理。信号处理单元对所接收到的数字信号执行所有所需处理并且也控制所发射的信号。由信号处理块执行的若干功能包括确定粗略距离、速率(即多普勒)、精细距离、仰角、方位角、执行干扰检测、减轻和避免、执行同时定位和映射(SLAM)等。
在图20中示出了图示本发明的示例数字雷达处理器IC的框图。通常标号为390的雷达处理器IC包括包括有温度传感器电路396、看门狗定时器398、通电复位(POR)电路400等的若干芯片服务功能392、包括有电源域电路402的PLL系统394、包括有并行FFT引擎406、数据分析器电路408、直接存储器存取(DMA)电路410的雷达处理单元(RPU)404、包括有TX/RX控制块414、安全核心块418、以及L1和L2高速缓存存储器电路424的CPU块412、存储器系统426以及接口(I/F)电路428。
TX/RX控制块414并入用于消除频率源建立时间的建立时间控制块416。安全核心块418包括系统看门狗定时器电路420和被适配成对雷达系统中的RF元件执行连续测试的RFBIST电路。I/F电路包括用于雷达输出数据430、TX控制432、RX控制434、外部存储器436和RF时钟438的接口。
注意,取决于特定实现方式,能够在单片硅上或跨多个集成电路实现数字雷达处理器电路390。类似地,取决于特定实现方式,能够在单个IC上或跨若干IC实现发射器和接收器电路。
在一个实施例中,DRP 390被用在基于汽车雷达FMCW MIMO的系统中。这样的系统要求多个发射器和接收器信道以实现期望的距离、方位角、仰角和速率。信道数越高,分辨率性能越好。取决于实现方式,可以在单个芯片中并入多个发射信道并且可以在单个芯片中并入多个接收信道。系统可以包括多个TX和RX芯片。每个TX和RX芯片可作为被适配成实现最大系统性能的较大系统的一部分来操作。在一个实施例中,系统也包括至少一个控制信道。控制信道可操作来配置TX设备和RX设备两者。
在一个实施例中,在接收器处理中,数字输入数据采样132表示在混频器填充2D数据网格之后的拍频。在图21中示出了图示示例快速时间和慢速时间处理的图。2D数据网格130的列134表示在快速时间维度上(即遍及每个PRI)接收的数据采样,并且网格的行136表示在慢速时间维度上(即遍及每个CPI)接收的数据采样。
通过在快速时间维度上对数据的每列执行傅立叶变换来生成距离数据140。在距离处理之后,对每行142执行多普勒处理以生成距离-多普勒数据图146。
在MIMO雷达系统的情况下,多个接收天线元件将第三维度添加到2D数据网格。在图22中示出了图示用于多个接收天线元件的距离-速率数据块的图。在3D数据网格150中,深度维度154用于存储来自每个天线元件的距离-多普勒数据。例如,阴影区域152表示跨所有接收天线元件的距离-多普勒数据。
在图23中示出了图示MIMO天线阵列的示例方位角和仰角处理的图。考虑2D天线阵列,能够在空间x和y方向上对距离-多普勒数据执行2D傅里叶变换以产生方位角和仰角数据图166。
为了帮助理解本发明的原理,在下面呈现多波段啁啾技术的更详细描述。特别地,当使用相干处理间隔(CPI)内的时间复用频率跳变(与在每个脉冲处发射全带宽对照)以及使得能够对大带宽RF测量结果进行小带宽数字处理的改良距离-多普勒处理框架来遍及若干频率波段使用线性FM(LFM)连续波(CW)信号时,导出所接收到的信号的表达式。
为了导出接收信号模型,在不失一般性的情况下,我们仅考虑距离和多普勒效应的贡献,相当于单个发射器和接收器(与MIMO系统对照)。然而,应领会的是,所有结果也容易地适用于MIMO雷达收发系统。第k个脉冲处的发射信号是具有表达如下的频率速率β和脉冲宽度T的LFM脉冲(即啁啾):
其中k=0,...,K-1并且0≤t≤T。
其中
s[t,k]是在时间t处并具有频率索引k的发射脉冲或啁啾;
t表示时间(即啁啾内的快速时间);
T是脉冲或啁啾的持续时间;
k是脉冲(啁啾)索引并表示慢速时间;
K是CPI中的脉冲(啁啾)数;
β表示啁啾的斜率;
fk是在索引k处啁啾的频率(即起始频率);
作为啁啾的斜率的频率速率由给出,其中/>是啁啾带宽。根据本发明,载波频率fk(即起始频率)在每个脉冲(PRI)处不恒定,而是相反在值上非线性地变化,使得遍及CPI的集合带宽是/>在一个实施例中,起始频率中的非线性变化被随机化。可替代地,可以使用起始频率的任何序列或演化,只要该序列是非线性的即可。
在由接收天线元件接收之后,经由混频器102(图8)将接收信号乘以发射信号,这被称为去斜坡或去啁啾。
其中
y[t,k]是在时间t处和频率索引k的接收信号;
x是包括距离衰减的目标的雷达横截面(RCS)复系数;
Δ表示从目标反射的脉冲的时间延迟;
表示从目标反射的脉冲k的时间延迟;
时间延迟Δtk由传播延迟给出,其中R0是初始距离(CPI的开始)并且V0是径向速率。注意,假定可忽略的多普勒频率的贡献和可忽略的多普勒频移分别由/>和/>给出,则丢弃项/>在一个实施例中,啁啾起始频率根据由/>给出的非线性(例如,随机)跳变序列在脉冲之间改变,其中中心载波频率f0和位移/>以赫兹表达,其是/>内的非线性分布(例如,随机)序列。注意,频移Δ[k]为发射器和接收器两者已知。在一个实施例中,在单个CPI期间,总带宽/>被完全覆盖,可能具有一个或多个重叠。能够将接收信号重写如下:/>
其中
f0是载波中心频率;
R0是初始距离;
V0是径向速率;
c是光速;
Δ[k]表示在脉冲k处的频移;
注意,在没有本发明的多波段啁啾技术的情况下,等式15中的精细距离项等于一并且常规的接收雷达信号仍然存在。
如在雷达的操作中常见的,由于目标距离与其径向速率之间的耦合,可能出现距离单元迁移(RCM)的现象。具有恒定径向速度V0的目标具有通过作为给出的CPI改变的距离,其中Ru是在CPI开始时的初始距离。这意味着取决于CPI的长度,目标可以移动通过若干距离区间,从而有效地降低灵敏度和距离分辨率。
常规的雷达系统的处理范例由距离-多普勒处理组成:(1)遍及索引t的快速时间(即距离)FFT处理,以及(2)遍及索引k的慢速时间(即速率/多普勒)FFT处理。存在RCM效应,因为项变得更占优势并且(在幅度上)更接近于距离分辨率(在K个脉冲之后)。在这种情况下,目标峰值功率距离区间可以在CPI帧期间移位。结果,慢速时间傅立叶处理将遍及若干区间产生“拖尾”信号功率谱,从而导致相干处理增益衰减,如图24中所示。
为了在相干处理增益的损失最小化的情况下对快速时间和慢速时间维度执行两步傅里叶变换,LFM发射参数被选择为使得在大多数场景中,距离-频率将拖尾(即位移)小于单个距离区间的宽度。能够将此表达如下:
以上不等式相当于慢速时间傅立叶积分中的最大损失3db并且能够被视为慢速目标假定。
注意,粗略距离区间的宽度越宽,RCM具有的影响越低,因为较宽程度的“拖尾”能够被容忍并仍然留在单个粗略距离区间中。粗略距离区间的大小主要由啁啾带宽确定。更较高的带宽导致更较窄的粗略距离区间,从而创建距离单元迁移的更较高可能性。较更低的啁啾带宽导致更较宽的粗略距离区间并且减少距离单元迁移的问题。注意,在存在RCM的情况下跨慢速时间执行多普勒FFT产生遍布多个距离区间的结果,即能量遍及若干距离区间拖尾并且距离分辨率和灵敏度降级。例如,对点目标的峰值位置的确定不太准确。
在一个实施例中,多波段处理的使用支持相对较小的带宽的使用,从而支持每脉冲更宽的距离区间和粗略分辨率。这允许迁移小于快速时间粗略距离分辨率的一半。使用多波段处理,恢复了全距离分辨率,并且通过将基于相位的运动补偿作为多波段回波信号的慢速时间处理的一部分应用而防止了关于精细距离分辨率的RCM。
注意,此RCM补偿方法能够与其他方法组合,其他方法诸如在累积运动超过距离区间分辨率的一半的情况下在距离区间之间转换。这在使用零填充时可能是特别有用的,因为相对于当不使用零填充时,与在距离区间之间转换比是更精细的,并且沿着慢速时间轴创建目标的更小振幅调制(由于扇形损失而导致)。
现在将更详细地描述本发明的改良距离-多普勒处理范例。在一个实施例中,改良距离-多普勒处理(即精细距离和多普勒)处理包括:(1)具有索引t的快速时间傅立叶处理由此生成粗略距离维度,以及(2)改良或扩展慢速时间傅立叶处理由此同时地生成残余距离维度和速率维度。
在一个实施例中,定义了三个频率网格:(1)由ρ表示的粗略距离;(2)由V表示的速率(多普勒);和(3)由Rε表示的残余精细距离。实际的真实距离值被定义如下:
其中ρ0表示目标在粗略距离区间中心的距离频率值(即距离频率的粗略量化)并且表示残余距离值或精细量化。
注意,假定了立即啁啾带宽的RCM效应是可忽略的。在这种情况下,项R0-kV0T在整个CPI期间改变不到粗略距离区间的宽度。因此能够将等式17重写为:
在第一阶段中,接收信号的快速时间傅立叶处理由下式给出并且被示出在图25中:
其中是在快速时间维度(例如,sinc)上对窗的一维离散时间傅立叶变换(DTFT),并且粗略距离轴/>具有区间宽度/>
在第二阶段(示出在图26中)中,执行“改良”慢速时间(遍及索引k)傅里叶处理,其中频谱是Rε和v的二维函数。注意,在常规雷达中,仅单个维度V与慢速时间处理相关联。除了会在由给出的常规慢速时间傅立叶变换中考虑的傅立叶系数之外,还添加另一系数序列,该系数序列说明“精细距离”项,如下:
其中Rs是受作为粗略距离区间的宽度的限制并且具有/>的残余区间宽度的残余(或精细)距离轴。速率频率网格v受/>限制并且具有区间宽度/>
注意,多普勒(即速率)项相对于脉冲索引k具有线性相位演化。第二项包括“精细”或“残余”距离,其中相位序列相对于脉冲索引k是非线性的。注意,非线性序列为发射器和接收器两者已知。
重要的是要注意,由于相对于索引k的非线性相位序列,多普勒和距离维度被解耦,即是不含糊的。这仅在真实或实际距离-多普勒对V0频率位置中产生源自目标反射的单个峰值。
本发明的两步改良傅里叶变换的结果由下式给出:
其中精细距离和多普勒频率项由下式给出:/>
其中对于 由下式给出
图27A、图27B、图27C图示针对单个目标场景的组合距离(即粗略和精细)/多普勒图的示例。特别地,在图27A中示出了示例改良精细距离-多普勒图的透视曲线图。在图27B中示出了示出示例改良精细距离-多普勒图的速率部分的曲线图。在图27C中示出了示出示例改良精细距离-多普勒图的精细距离部分的曲线图。
在图28中示出了图示本发明的示例雷达接收数据处理方法的流程图。利用等式20在快速时间(即PRI)和慢速时间(即CPI)期间获得接收数字雷达返回数据(步骤200)。然后遍及快速时间维度执行傅立叶变换以获得粗略距离-慢速时间数据图(步骤202)。对于每个粗略距离频率数据ρ,利用等式21在慢速时间维度上执行改良傅立叶变换以获得精细距离-多普勒图(步骤204)。生成由[ρ+Rε,V]的所有组合构成的组合精细分辨率距离-多普勒图(步骤205)。然后对组合精细分辨率距离-多普勒图执行方位角和仰角处理(步骤206)。然后生成四维(4D)图像数据并将其输出到后续下游图像处理和对象检测(步骤208)。
注意对于单个频率波段发射(即非MBC),改良精细距离和多普勒处理收敛为常规多普勒处理,即标准慢速时间傅立叶变换。
进一步地,改良精细距离-多普勒处理范例的距离分辨率的极限由CPI聚合带宽支配。因此,本发明的机制可操作以来使用相对较小的带宽处理来获得相对较精细的距离分辨率。这允许实现具有更低的较低带宽和采样率的发射和接收模块,从而与全啁啾带宽系统相比降低成本和复杂性。
同样要注意的是,RCM约束由减小的啁啾带宽而不是更大的聚合带宽/>确定。这允许实现在高速率场景中具有更鲁棒检测概率的更高距离分辨率雷达。
进一步要注意的是,由于非线性跳变序列的使用,在域内产生旁瓣(在一个实施例中也称为随机化旁瓣)是与非线性(例如,随机)相位序列(由于非线性频移顺序而导致的)组合的傅立叶处理的结果。峰均旁瓣比是K,即CPI中的脉冲数。峰最大旁瓣比与K成比例。
同样要注意的是,对于来说,即当速率完美地匹配时,没有随机化旁瓣。
为了简单并在不失一般性的情况下,假定了以约奈奎斯特速率对每个维度进行采样。因此,所提及的用于粗略距离、多普勒和残余距离的频率区间宽度分别由给出。如果利用过采样或零填充执行傅里叶变换以避免扇形损失(数字信号处理中的常规做法),则频率区间宽度小于所提及的用于粗略距离、多普勒和残余距离的值。然而,用于每个维度的波束宽度是物理特性并且与频率区间/零填充的量无关。分辨率束宽度由用于在以上提及的矩形加窗的值给出。
在一个实施例中,在以上描述的多波段啁啾发射框架内,提供了用于改善旁瓣在残余距离维度Rs(即,精细距离)中的行为。在一个实施例中,数字加窗包括将采样时域信号250与加权函数254(虚线)相乘,以减少强信号的旁瓣并且防止掩盖较弱的信号。
在图29中示出了通常加窗的有效性的示例。采样时域信号250的时域采样基本上乘以矩形窗。将采样乘以轮廓窗或加权函数254(虚线)产生迹线252的轮廓信号。应用傅立叶变换处理产生图30中所示的频谱,其中迹线260表示具有低于峰13dB的相对较高的旁瓣的矩形加窗。迹线262表示加窗具有低于峰近40dB的显著更低的旁瓣的频谱。更高的旁瓣产生更低的动态距离。
因此期望将加窗应用于雷达系统的接收处理。尽管能够将加窗应用于粗略距离处理,但是在改善距离分辨率方面不是那么有效的。为了减少旁瓣,优选地将加窗应用于精细距离处理。
通常,对于频率跳变序列的完全非线性(例如,随机化)排列,残余距离和速率[Rε,V]在慢速时间维度上不可分开。因此,为了减少多普勒维度V上的旁瓣而应用的数字加窗将向残余距离维度Rε引入附加“处理噪声”,并且反之亦然。
在一个实施例中,出于实际考虑,数字窗和频率序列排列的组合设计产生可接受的处理噪声水平。本发明提供一种用于在不增加多普勒旁瓣的情况下减少残余距离维度Rε上的旁瓣的方法。
在一个实施例中,为了解决此问题,不是在接收处理中应用加窗函数,而是在发射器中将其应用于所发射的啁啾。特别地,在发射器中使用的频率跳变序列的分布被适当地配置以在不影响多普勒谱的情况下减少残余距离谱Rε中的旁瓣。因此,在发射阶段中而不是在接收阶段中执行加窗。
注意,利用均匀起始频率跳变序列相当于对精细距离数据应用矩形窗函数。根据窗函数应用非均匀序列相当于将窗函数应用于精细距离数据。根据本发明,跳变序列被确定为使得遍及CPI的聚合序列不均匀。
聚合功率谱形状直接确定残余距离ε的旁瓣行为并且由频率跳变
谱分布确定。我们将“谱概率窗”(SPW)定义为聚合功率谱的包络形状。
在均匀分布的情况下,SPW具有近似矩形的形状。但是通过将SPW设计成具有非矩形包络形状(例如,常用窗函数中的任何一个),实现了精细距离采样的有效加窗。在图31中示出了图示示例多波段LFM啁啾的非均匀谱分布的图。连同谱概率窗272一起示出了多波段啁啾270。每个啁啾包括表示每个啁啾横跨有限频率范围的多个刻度线274。每个啁啾的起始频率是不同的并且形成非线性序列。结果是谱概率窗272,该谱概率窗示出与边缘相比在聚合频率波段的中心中更高的频率重用。
假定了聚合带宽和立即啁啾带宽分别由和/>给出。附加地,每个啁啾的非线性(例如,随机)起始频率的跳变序列由/>给出,其中0≤k≤K-1。/>
LFM啁啾的谱概率窗(SPW)的概率密度函数(pdf)是多波段啁啾起始频率与表示单个啁啾的带宽的矩形窗的卷积。
其中,表示卷积操作符。因此,能够通过选取期望的起始频率概率密度函数(PDF)Pr(Δ[k]=f)来生成所需窗,该起始频率概率密度函数与具有单个啁啾带宽的矩形窗的卷积产生所需窗包络形状。然后根据窗包络形状(即SPW)生成起始频率跳变序列以产生加窗起始频率跳变序列。然后利用加窗起始频率跳变序列来生成啁啾。
在图32中示出了图示示例精细分辨率改善方法的流程图。首先,为起始频率选择所期望的概率密度函数(PDF)Pr(Δ[k])(例如,汉明),使得实现所需谱概率窗(SPW)(步骤300)。注意在数学上,用于起始频率的PDF被设计为使得与大小Bchirp的矩形窗进行卷积会产生所期望的窗形状谱概率窗(SPW)。然后根据PDF来生成非线性起始频率序列(步骤302)。使用啁啾起始频率跳变序列来生成并发射啁啾信号(步骤304)。
考虑以下说明性示例。在此示例中假定在的PRI期间在每个啁啾的带宽的情况下发射K=512个LFM脉冲(即啁啾)。聚合带宽是/>所得的粗略距离分辨率被计算出为/>并且速率分辨率δV=0.53m/s。单个目标被以速率V0=10m/s定位在初始距离/>处。
在图33中示出了具有矩形分布窗的多波段啁啾的频率对时间的曲线。注意根据本发明,啁啾根据非线性序列具有分数带宽及其起始频率跳变。应用汉宁分布窗产生如图34中所示的曲线图。注意,啁啾聚集在聚合频率波段的中心周围,其中较少的啁啾出现在波段的边缘处。
考虑以速率V0=10m/s定位在初始距离处的单个目标。在SPW的均匀分布与众所周知的汉宁窗的SPW之间比较峰旁瓣电平的性能。在图35中示出了谱概率窗的聚合均匀频率分布280的直方图282的曲线图。注意,直方图表示跨CPI的啁啾的频率的重用程度。它也与遍及CPI的啁啾序列的功率谱有关。注意,在聚合频率波段的边缘附近频率重用稍微减少。
在图36中示出了谱概率窗的聚合汉宁频率分布290的直方图292的曲线图。注意,直方图示出在聚合频率波段的中心周围频率重用高得多,而在边缘附近频率重用远低得多。此曲线图也与CPI中啁啾的功率谱有关。
因此,经由适合于啁啾起始频率的分布概率的正弦函数获得的汉宁形状SPW如下:
频率跳变序列(根据等式26生成)与大小的矩形窗进行卷积产生所需汉宁窗形状的SPW。应领会的是,本发明不限于使用汉宁窗函数,因为可以使用如本领域中众所周知的任何期望的窗函数,例如,汉明、布莱克曼、纽塔尔、高斯、凯撒、泰勒等。
在图37中示出了图示针对均匀分布和汉宁分布两者的峰多普勒区间处的另一示例精细距离功率谱的曲线图。针对均匀分布的谱294具有低于峰约15dB的第一旁瓣。针对汉宁分布的谱296具有改善了10dB低于峰约25dB的旁瓣。要注意的是,汉宁谱上的主瓣稍微较宽。
因此,根据本发明的加窗啁啾序列将窗函数有效地应用于精细距离数据(而不是多普勒数据),从而降低旁瓣。代价是相对较小的聚合带宽减少,从而导致主瓣稍微较宽。
要注意的是,与常规数字加窗不同,谱概率窗对于任何期望的窗选择维持相干积分增益。这是由于如在均匀频率分布中一样在CPI期间发射的总功率量相同而导致的。
进一步要注意的是,总距离谱(即粗略和精细)是通过将快速时间窗和慢速精细距离窗的傅立叶变换即SPW(.)的傅立叶变换相乘来给出的。
另外,假定采用加窗频率跳变分布,由于有效降低了聚合带宽较低旁瓣的“成本”是稍微较宽的主瓣。
相互干扰
关于抗相互干扰,对于旨在非常拥挤的谱(通常被其他雷达系统部分占用)中操作的雷达系统来说,相互干扰通常是一个问题。减少相互干扰的两个方式包括:
1.通过预测干扰的频率和时间一起避免相互干扰。优选具有带宽小的短脉冲,从而允许雷达使用甚至开放谱和时隙的小分片。这通过使用根据本发明的多波段啁啾来实现。
2.通过将干扰信号乘以零(可能使用窗函数)来消除沿着CPI的干扰信号部分。在多波段啁啾的情况下,即使需要消除信号的大部分,系统的性能也在噪声和旁瓣两者方面适度降级。
本发明的MBC机制解决了相互干扰问题。一种相互干扰抑制方法是将雷达载波频率移位到不受雷达对雷达干扰污染的频率距离。然而,这种方法的问题在于,通常难以找到具有足够带宽以供分布式雷达传感器网络操作的自由频率波段。它也要求使用设计且制造起来更困难的更高带宽天线。
另一种干扰抑制方法去除除了干扰之外的所有信号,类似于关闭发射器,以便从原始雷达信号中扣除。这种技术具有如下局限性:峰必须与干扰分开,或者至少未完全被干扰占用。
在另一种干扰抑制方法中,首先使用迭代滤波算法来抑制雷达对雷达干扰,然后对于每个雷达使用单独地匹配的滤波。
时域或频域中的其他干扰抑制方法包括时频消隐、重建然后相减以及距离域正交投影滤波。在多静态自适应脉冲压缩算法中,给定个别雷达波形的知识,将在相同频率波段内同时接收的雷达信号分开。此算法基于最小均方误差公式的递归实现。通过利用同时分辨率单元的估计值来为每个接收到的雷达信号的每个分辨率单元估计一个自适应接收滤波器。然而,这些方法不适合于应对宽带或不平稳干扰,特别是通常在分布式雷达传感器网络中发生的宽带雷达对雷达干扰。
在另一种干扰抑制方法中,正常地发射的啁啾信号在带宽和持续时间方面显著地减小。在图6中示出了图示具有多个啁啾的示例CPI的图。
为了减轻相互干扰以及为了改善多普勒处理的解耦并且降低在IF阶段中要求的采样率,如在上描述的图7中所示,个别发射的啁啾在带宽和持续时间方面减小。
在一个实施例中,为了改善处理增益并且为了减轻干扰,将每个啁啾的起始频率非线性地(例如,随机地)布置在CPI或某个其他期望的间隔之上。优选地,随机化序列覆盖整个带宽Btotal 32,例如,在此示例中为1GHz。
作为说明性示例,考虑一种雷达传感器,其聚合带宽为1GHz,可转换为15cm的距离分辨率,20ms的相干处理间隔(CPI)和6毫秒的啁啾持续时间TC。这产生CPI÷TC=3,333个啁啾的啁啾序列。如果假定了每个啁啾具有125MHz的带宽并且所分配的RF波段从80GHz扩展到81GHz,则啁啾的起始频率在范围80至80.875GHz内,否则啁啾溢出所分配的范围。
接下来,将80至80.875GHz频率波段划分成3,333个平坦隔开的起始频率fs。注意替换地,起始频率可以不平坦地隔开。接下来,3,333个起始频率被以非线性方式(例如,随机)重新排序并用于发射啁啾序列。注意,需要非线性排序来打破从一个啁啾到下一个啁啾的多普勒感应和距离感应相位演化之间的耦合。这通常被称为慢速时间阶段或视频阶段。如果按单调递增起始频率排序发射啁啾序列,则将几乎不可能确定视频相位演化是源自距离还是多普勒。因此,对啁啾应用“频率跳变”或“啁啾跳变”的形式。跳变图案在CPI上是非线性的,例如是随机的,但是不限于此。在一个实施例中,能够与本文描述的干扰减轻相结合地使用在上描述的SPW技术。
在图38中示出了图示示例受干扰视图的图。该谱图(即,频率与时间的关系以及功率作为颜色阴影)示出其他附近的干扰雷达的示例慢速和高带宽的啁啾330以及本发明的受干扰雷达的快速和小带宽的子啁啾。在此示例中,受干扰雷达发射向上啁啾(正斜率),而干扰雷达发射向下啁啾(负斜率)。示出的是与干扰雷达的规则长啁啾相比受干扰雷达的较短啁啾的非线性跳变。当长向下倾斜啁啾330与在谱图中的许多位置中发生的短向前倾斜啁啾332交叉时发生干扰。
注意,从谱图中明显看出的是,即使在不使用任何避免干扰技术的情况下,一些干扰雷达啁啾也不会干扰受干扰雷达啁啾。因此,与使用横跨全波段(例如,在此示例中为1GHz)的常规长啁啾的雷达相比实现了更好的情形。在全1GHz啁啾的情况下,除非雷达被同步,否则两个雷达之间的交叉将不可避免。同样注意的是,只有当两个雷达具有类似的斜率并且在时间上不重叠时,避免技术才在这种情况下起作用。然而,这样的避免技术将仅适用于一对一情形。避免具有不同斜率的两个或更多个其他雷达将是几乎不可能的。
在图39中示出了图示在去斜坡之后的示例受害者受干扰视图的图。该此谱图(即频率与时间的关系以及功率作为颜色阴影频率对时间以及作为颜色阴影的功率的关系)示出包括受害者受干扰雷达期望的信号334和干扰雷达信号336的图38后去斜坡过程后的谱图。要注意的是,在由受害者受干扰雷达处理期间,由干扰雷达发射的啁啾在受害者受干扰雷达的啁啾重组过程期间被斩波。同样要注意的是,在零频率周围并在12MHz的IF带宽内发生对受害者受干扰雷达的干扰,其中代表干扰雷达信号的线336中的任一条与表示受害者受干扰雷达期望信号的线334交叉。
在图40中示出了图示在去斜坡和低通滤波之后的示例受干扰视图的图。在这里示出的谱图是受干扰雷达的在去斜坡和低通滤波之后具有干扰的基带信号的谱图。在约4MHz处的虚直线338表示雷达的多个啁啾,然而垂直线340表示来自其他(即干扰)雷达的干扰。与线338交叉的每条线340表示对受干扰雷达的干扰。
在图41中示出了图示在去斜坡之后的示例3D受害者受干扰视图的图。该此谱图与图39的谱图相同但是具有不同的观点视点,其中干扰水平通过高度以dB为单位示出。要注意的是,干扰雷达的斩波啁啾344比期望信号342高约30dB。同样要注意的是,受害者受干扰雷达仅在干扰线344与线342交叉的地方遭受干扰。
在图42中示出了图示在去斜坡之后的示例干扰源视图的图。该谱图表示其他(即干扰源)雷达看到什么。本发明的雷达被认为是受干扰的雷达。因此,衬衫倾斜线348表示如由干扰源雷达所看到的跳变啁啾图案,并且在零频率周围的线346表示去斜坡干扰源的期望信号。在这里,只有当线348中的一条与线346交叉时,干扰源的雷达才遭受干扰。
因此,如上所述,在不存在干扰的情况下,用于发射啁啾的随机化无约束次序序列是足够的并且实现了良好的结果。然而,在存在具有已知参数的干扰的情况下,仅随机化不足以防止接收器由于来自附近雷达的啁啾信号(即进入受干扰雷达的接收器的IF的干扰啁啾信号)之间的“冲突”而遭受干扰。
为了克服这个问题,本发明的雷达传感器对非线性化(例如,随机化)过程施加约束。约束是在非线性化之后啁啾均不在时间-频率域中与干扰信号重叠。能够取决于特定应用以任何合适的方式实现此技术。
在图43中示出了图示根据本发明的约束啁啾序列的非线性化的示例方法的图。在一个实施例中,在啁啾序列的非线性化(步骤350)之后,检查啁啾间隔以查看它们是否会与干扰源信号冲突(步骤352)。能够基于啁啾的已知起始带宽及其带宽来确定这个。在序列中干扰的所有啁啾的受干扰雷达上构造列表。这些啁啾中的每一个均被重新非线性化(步骤354)并且再次检查它们是否与干扰源信号重叠(步骤356)。如果是这样的话,则它们被再次重新非线性化。该过程继续直到找到不干扰干扰雷达信号的新非线性间隔或者达到重试次数极限为止(步骤358)。在后者情况下,原始违规啁啾要么被扔掉(即没有东西在其地点中被发射),要么重复非干扰啁啾中的一个(即重用起始频率)(步骤360)。
在图44中示出了图示在干扰检测和避免之后的示例受干扰雷达视图的图。在一个实施例中,受干扰雷达能够减轻并避免上述谱图中示出的相互干扰。使用由检测接收器45(图19)提供的检测能力,雷达用来检测并估计其他干扰雷达的啁啾参数,诸如带宽、持续时间、定时等。
在一个实施例中,能够通过专用检测接收器利用快速ADC对其天线看到的总RF带宽进行采样来实现这个。可替换的,在侦听模式下使用周期性全啁啾(例如,使用直通或单独的LO)。
一旦估计了其他雷达的啁啾特性,受干扰雷达就更改啁啾的起始频率以避免干扰其他干扰雷达的啁啾。更改的结果的示例被示出在图44的谱图中,其中受干扰雷达啁啾364现在被描绘为不与干扰雷达啁啾362中的任一个交叉。这种干扰减少将与图38的谱图进行比较,图38的谱图表示没有本发明的减轻技术的受干扰雷达视图。
要注意的是,能够将雷达配置成(1)更改每个啁啾的起始频率从而创建每个啁啾或仅被估计为与干扰源的啁啾冲突的所选啁啾的定制起始频率;(2)维持啁啾的原始起始频率,但是在非线性化啁啾之后换出被估计为与受干扰的啁啾冲突的啁啾跳变序列并且用与受干扰的啁啾不冲突的啁啾替换它们,而且将被换出的啁啾重新指派给另一时隙,或者(3)以上两种技术的组合。
在另一实施例中,如果检测到干扰,则受干扰雷达除了更改啁啾的起始频率之外,还能够修改每个啁啾的斜率的符号(即,每个啁啾在频率中是上升还是下降,分别相当于正斜率或负斜率)。
在图45中示出了图示根据本发明的避免干扰的示例方法的流程图。如上所述,受干扰的雷达首先检测干扰雷达的一个或多个啁啾序列(步骤370)。然后估计干扰雷达的啁啾的参数(步骤372)。基于所估计的参数,修改用于啁啾的将来跳变序列以避免与干扰雷达的啁啾信号冲突(步骤374)。然后根据跳变序列重组啁啾(步骤376)。
在图46中示出了图示具有干扰检测和避免的示例干扰源视图的图。在此谱图中,干扰雷达的啁啾380与受干扰雷达的非线性化和受约束啁啾382不冲突。要注意的是,优选地考虑如给定汽车场景的性质以及什么被认为是可接受的残余互干扰水平而视为适当的两个雷达之间的最大传播延迟。
在图47中示出了图示具有干扰检测和避免后去斜坡的示例受干扰视图的图。在此谱图中,干扰雷达的啁啾386与受干扰雷达的啁啾384不冲突。要注意的是,无干扰区在零频率周围。然而,同样要注意的是,若干啁啾间隔是空的。这是非线性化约束方法的结果,该非线性化约束方法产生不能够被重新指派起始频率的若干啁啾。不是重用起始频率,而是在此示例中啁啾被简单地删除(即跳过而不发射)。这种干扰减少将与图39的谱图进行比较,图39的谱图表示没有本发明的减轻技术的受干扰雷达视图。
在图48中示出了图示在干扰检测和避免后去斜坡之后的示例干扰源视图的图。在此谱图中,受干扰的啁啾442与干扰雷达的啁啾440不冲突。要注意的是,无干扰区在零频率周围。这种干扰减少将与图41的谱图进行比较,图41的谱图表示没有本发明的减轻技术的受干扰雷达视图。
在图49中示出了图示没有干扰的示例雷达IF信号的图。由于不存在干扰,所以整个帧是有效的并且如通过包含整个帧的消隐信号450所表示的那样被使用。在加窗之前示出没有干扰的雷达信号452。窗(例如,汉宁、汉明等)454被应用于信号452,从而产生加窗信号456。要注意的是,在避免减轻失败或不可能的情况下,发生冲突。
在图50中示出了图示没有干扰的示例IF距离谱的图。加窗信号456(图49)的快速傅立叶变换(FFT)被示出为没有干扰(信号460)、具有干扰(信号462)、具有矩形消隐(信号464)和具有加窗消隐(信号466)。要注意的是,图49和图50提供了以下描述的图51、图52、图53、图54、图55和图56的参考。
除了受干扰的雷达避免与干扰雷达的啁啾冲突之外,本发明的雷达还提供通过消隐啁啾的被干扰啁啾信号损坏的部分(即,冲突区域)来减轻干扰的能力。在下面提供并讨论两个示例。在第一示例中,在两个信号之间(即在干扰啁啾进入受干扰的接收器的IF处)的冲突发生在啁啾开始附近。在第二示例中,两个信号之间的冲突更靠近啁啾的中间发生。
在另一实施例中,干扰减轻可以包括只要检测到干扰则受干扰雷达就停止它自己的发射。这用于最小化受害雷达对附近干扰雷达的干扰。
在图51中示出了图示具有干扰的第一示例时域IF信号的图。在此示例中,干扰出现在受干扰的雷达IF带宽中并且在啁啾间隔的开始附近发生。所示信号包括IF信号(信号470)、包络(信号472)、平滑包络(信号474)和阈值(信号476)。干扰的振幅比期望信号强约30dB。为了检测干扰,计算并且平滑信号的包络(例如,复包络)。例如,然后将阈值设定在30%百分位加上某个正偏置处。应理解的是,可以取决于特定应用而使用其他阈值。干扰检测(即每当平滑包络超过阈值时)例如由均值滤波器滤波。然后标识期望信号没有干扰的区域,并且将每个区域乘以具有匹配长度的窗。然后照常继续进行信号处理,例如具体FFT计算、多普勒FFT计算、方位角和/或仰角计算、数字波束形成等。
在图52中示出了图示根据本发明的减轻干扰的示例方法的图。首先,生成IF信号(步骤550)。计算出IF信号的复包络(步骤552)。然后使用任何合适的滤波器使复包络平滑(步骤554)。使用任何合适的方法来确定要应用于平滑复包络信号的阈值(步骤556)。应用阈值,由此高于阈值的所有值被归零(即消隐)(步骤558)。然后对消隐信号应用窗(步骤560)。
特别地,参考图51,受干扰雷达的IF级(信号470)的时域信号输出因干扰源雷达的啁啾而损坏。计算出信号的复包络(信号472)以及滤波或平滑包络(即在低通滤波之后)(信号474)。使用任何合适的方法来确定阈值476以应用于平滑包络。信号的高于阈值的任何部分被消隐(即归零)。要注意的是,确定阈值的一种方法是计算出平滑包络值加上某个正偏置的百分位。
在图53中示出了图示在消隐之前和之后具有干扰的第一示例时域IF信号的图。在消隐之前示出了信号480。消隐信号484的高电平指示信号的有效且要使用的部分,然而低电平表示信号的要归零(即无效且要丢弃)的那些部分。垂直线492指示有效信号开始的地方,垂直线494指示有效信号停止并且消隐应该开始的地方,垂直线488指示消隐应结束并且有效信号再次开始的地方,并且垂直线490指示有效信号结束的地方。要注意的是,既在应用加窗之前又在应用窗486之后示出在应用消隐之后的信号482。
在图54中示出了图示具有干扰和加窗消隐的第一示例IF距离谱的图。加窗信号482(图53)的快速傅里叶变换(FFT)被示出为没有干扰(信号500)、具有干扰(信号502)且无干扰消隐减轻、具有矩形干扰消隐减轻(信号504)和具有加窗干扰消隐减轻(信号506)。
要注意的是,如距离FFT谱中所示,如果未减轻(消除或消隐)干扰,则用于目标检测的自由动态距离被严重地降级。如果干扰采样仅被归零,即矩形消隐,则动态距离被改善但是仍离无干扰情况很远。然而,如果采用加窗消隐,则可用于检测的动态距离几乎和无干扰情况一样好。因此,使用加窗干扰消隐减轻实现了显著的检测改善。
在图55中示出了图示具有干扰的第二示例时域IF信号的图。在此示例中,干扰出现在受干扰的雷达IF带宽中并且在啁啾间隔的中间附近发生。要注意的是,与无消隐或具有矩形加窗的消隐比,加窗消隐实现更好的结果。在啁啾中间发生干扰的情况下,能够使用(1)啁啾的两个部分,即在干扰之前和之后(如图41中所示,其中所得的峰似乎按预期划分,或者(2)仅使用信号的较长部分,由此获得较宽的峰但是它未被划分。
干扰的振幅比期望信号强约30dB。为了检测干扰,计算然后平滑信号的包络(例如,复包络)。例如,然后将阈值设定在30%百分位处。应理解的是,能够取决于特定应用而使用其他阈值。干扰检测例如使用均值滤波器来滤波(即每当平滑包络超过阈值时)。然后标识期望信号没有干扰的区域,并且将每个区域乘以具有匹配长度的窗。然后照常继续进行信号处理,例如距离FFT计算、多普勒FFT计算等。
特别地,受干扰雷达的IF级(信号510)的时域信号输出因干扰源的雷达啁啾而损坏。计算出信号的复包络(信号512)以及滤波或平滑包络(即在低通滤波之后)(信号514)。使用任何合适的方法来确定阈值516以应用于平滑包络。信号的高于阈值的任何部分被消隐(即归零)。注意,确定阈值的一种方法是计算出平滑包络值加上某个正偏置的百分位。
在图56中示出了图示在消隐之前和之后具有干扰的第二示例时域IF信号的图。在消隐之前示出了信号520。消隐信号528、536的高电平指示信号的有效且要使用的部分,然而低电平表示信号的要归零(即无效且要丢弃)的那些部分。垂直线522指示有效信号开始的地方,垂直线526指示有效信号停止并且消隐应该开始的地方,垂直线530指示消隐应该结束并且有效信号再次开始的地方,并且垂直线534指示有效信号结束的地方。要注意的是,既在应用加窗之后又在应用窗532和538之后示出了在应用消隐之后的信号524。
在图57中示出了图示具有干扰和加窗消隐的第二示例IF距离谱的图。加窗信号524(图56)的快速傅里叶变换(FFT)被示出为没有干扰(信号540)、具有干扰(信号542)且无干扰消隐减轻、具有矩形干扰消隐减轻(信号544)并且具有加窗干扰消隐减轻(信号546)。
要注意的是,如距离FFT谱中所示,如果未减轻(消除或消隐)干扰,则用于目标检测的自由动态距离被严重地降级。如果干扰采样仅被归零,即矩形消隐,则动态距离被改善但是仍离无干扰情况很远。然而,如果采用加窗消隐,则可用于检测的动态距离几乎和无干扰情况一样好。因此,使用加窗干扰消隐减轻实现了显著的检测改善。
用于实现相同功能性的组件的任何布置被有效地“关联”,使得所期望的功能性被实现。因此,可以将在本文中组合以实现特定功能性的任何两个组件视为彼此“相关联”,使得所期望的功能性被实现,而不管架构或中间组件如何。同样地,也能够将如此关联的任何两个组件视为彼此“可操作地连接”或“可操作地耦合”以实现所期望的功能性。
此外,本领域技术人员将认识到,上述操作之间的边界仅仅是说明性的。可以将多个操作组合成单个操作,可以将单个操作分布在附加操作中并且可以在时间上至少部分重叠地执行操作。此外,替代实施例可以包括特定操作的多个实例,并且可以在各种其他实施例中更改操作的次序。
本文使用的术语仅用于描述特定实施例的目的,而不旨在限制本发明。如本文所使用的,除非上下文另外清楚地指示,否则单数形式“一”、“一个”和“该”也旨在包括复数形式。应进一步理解,术语“包括”和/或“包括有”当用在本说明书中时,指定存在陈述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
在权利要求中,放置在括号之间的任何附图标记不应被解释为限制权利要求。在权利要求中使用诸如“至少一个”和“一个或多个”的介绍性短语不应该被解释成暗示即使当同一权利要求包括介绍性短语“一个或多个”或“至少一个”以及诸如“一”或“一个”的不定冠词时,通过不定冠词“一”或“一个”引入另一权利要求要素也将包含这样引入的权利要求要素的任何特定权利要求限于包含仅一个这种要素的发明。定冠词的使用也是如此。除非另外陈述,否则诸如“第一”、“第二”等的术语用于任意地区分此类术语描述的元件。因此,这些术语不一定旨在指示此类元件的时间或其他优先顺序。在相互不同的权利要求中记载某些措施的单纯事实不指示这些措施的组合不能够用于处于优势。
以下权利要求中的所有手段或步骤加上功能元件的对应结构、材料、行为和等同物旨在包括用于与如具体地要求保护的其他要求保护的元件相结合地执行功能的任何结构、材料或行为。已出于图示和描述的目的呈现了本发明的描述,但是本发明的描述不旨在为详尽的或者以所公开的形式限于本发明。因为本领域技术人员将容易地想到许多修改和改变,所以意图是本发明不限于本文描述的有限数目的实施例。因此,应领会,可以诉诸落在本发明的精神和范围内的所有合适的变化、修改和等同物。实施例被选取和描述以便最好地说明本发明的原理和实际应用,并且使得本领域其他普通技术人员能够理解本发明以得到具有如适于所设想的特定用途的各种修改的各种实施例。

Claims (14)

1.一种用在雷达系统中的加窗方法,所述方法包括:
为发射的啁啾的聚合带宽的期望的谱概率窗SPW形状选择概率分布函数pdf,每个啁啾具有固定的分数带宽和固定的持续时间;
根据所述聚合带宽的所述期望的SPW形状,生成非线性加窗起始频率跳变序列,使得发射器啁啾的所述非线性加窗起始频率跳变序列的啁啾的功率谱之和产生所述期望的SPW形状;
从所述选择的概率分布函数和所述非线性加窗起始频率跳变序列生成所述SPW,以在频域中产生期望的聚合带宽的窗形状,从而导致改进的旁瓣行为;
其中,所述SPW是聚合功率谱的包络形状,其根据所述非线性加窗起始频率跳变序列的频谱分布来确定旁瓣行为;以及
根据所述非线性加窗起始频率跳变序列,发射啁啾序列。
2.根据权利要求1所述的方法,其中,所述非线性加窗起始频率跳变序列根据所述概率分布函数产生。
3.根据权利要求1所述的方法,其中,所述SPW选自由汉宁、汉明、布莱克曼、努塔尔、高斯、凯撒和泰勒构成的组。
4.根据权利要求1所述的方法,其中,将所述非线性加窗起始频率跳变序列应用于已发射的啁啾实际上相当于在接收处理路径中对精细距离慢速时间数据进行加窗。
5.根据权利要求1所述的方法,其中,所产生的SPW的包络形状为非矩形。
6.根据权利要求1所述的方法,其中,与聚合频带的边缘相比,在所述聚合频带的中心,所产生的SPW包括更高的频率重用。
7.一种用在雷达系统中的加窗方法,所述方法包括:
生成用于发射的啁啾的非线性加窗起始频率跳变序列,使得所述发射的啁啾的聚合功率谱具有期望的谱概率窗SPW形状,每个啁啾具有固定的分数带宽和固定的持续时间;
根据期望的概率密度函数生成啁啾的所述非线性加窗起始频率跳变序列;
其中,所述SPW是聚合功率谱的包络形状,其根据所述非线性加窗起始频率跳变序列的频谱分布来确定旁瓣行为;以及
根据所述非线性加窗起始频率跳变序列,发射啁啾序列。
8.根据权利要求7所述的方法,其中,所述SPW选自由汉宁、汉明、布莱克曼、努塔尔、高斯、凯撒和泰勒构成的组。
9.根据权利要求7所述的方法,其中,将所述非线性加窗起始频率跳变序列应用于已发射的啁啾实际上相当于在接收处理路径中对精细距离慢速时间数据进行加窗。
10.一种用在雷达系统中的加窗装置,包括:
处理器,所述处理器被编程为:
为发射的啁啾的聚合带宽的期望的谱概率窗SPW形状选择概率分布函数pdf,每个啁啾具有固定的分数带宽和固定的持续时间;
根据所述聚合带宽的所述期望的SPW形状,生成非线性加窗起始频率跳变序列,使得发射器啁啾的所述非线性加窗起始频率跳变序列的啁啾的功率谱之和产生所述期望的SPW形状;
从所述选择的概率分布函数和所述非线性加窗起始频率跳变序列生成所述SPW,以在频域中产生期望的聚合带宽的窗形状,从而导致改进的旁瓣行为;
其中,所述SPW是聚合功率谱的包络形状,其根据所述非线性加窗起始频率跳变序列的频谱分布来确定旁瓣行为;以及
发射器电路,所述发射器电路可操作以根据所述非线性加窗起始频率跳变序列,发射啁啾序列。
11.根据权利要求10所述的加窗装置,其中,所述处理器可操作以通过将概率分布函数与具有啁啾带宽的大小的矩形窗进行卷积来生成所述SPW。
12.根据权利要求10所述的加窗装置,其中,所述SPW选自由汉宁、汉明、布莱克曼、努塔尔、高斯、凯撒和泰勒构成的组。
13.根据权利要求10所述的加窗装置,其中,将所述非线性加窗起始频率跳变序列应用于已发射的啁啾实际上相当于在接收处理路径中对精细距离慢速时间数据进行加窗。
14.根据权利要求10所述的加窗装置,其中,所述SPW由期望的聚合功率谱窗形状定义。
CN201980030724.1A 2018-05-07 2019-05-06 具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达 Active CN112105946B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL259190A IL259190A (en) 2018-05-07 2018-05-07 System and method for frequency hopping MIMO FMCW imaging radar
IL259190 2018-05-07
PCT/IL2019/050514 WO2019215734A1 (en) 2018-05-07 2019-05-06 Fmcw automotive radar incorporating nonlinear frequency hopping sequence of fractional bandwidth multiband chirps with spectral probability windowing

Publications (2)

Publication Number Publication Date
CN112105946A CN112105946A (zh) 2020-12-18
CN112105946B true CN112105946B (zh) 2024-03-29

Family

ID=66624483

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201980030944.4A Active CN112088317B (zh) 2018-05-07 2019-05-06 并入精细距离多普勒数据的改良慢速时间处理的fmcw汽车雷达
CN201980030724.1A Active CN112105946B (zh) 2018-05-07 2019-05-06 具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达
CN201980030728.XA Active CN112088316B (zh) 2018-05-07 2019-05-06 并入分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201980030944.4A Active CN112088317B (zh) 2018-05-07 2019-05-06 并入精细距离多普勒数据的改良慢速时间处理的fmcw汽车雷达

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980030728.XA Active CN112088316B (zh) 2018-05-07 2019-05-06 并入分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达

Country Status (5)

Country Link
US (3) US11513187B2 (zh)
EP (3) EP3791201A4 (zh)
CN (3) CN112088317B (zh)
IL (1) IL259190A (zh)
WO (3) WO2019215732A1 (zh)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220216A1 (de) * 2016-10-17 2018-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Abtasten eines Standortes
IL250253B (en) 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
IL255982A (en) 2017-11-29 2018-01-31 Arbe Robotics Ltd Detection, mitigation and prevention of mutual interference between fixed water radars in vehicles
US10718860B2 (en) * 2018-01-11 2020-07-21 Infineon Technologies Ag System and method to improve range accuracy in FMCW radar using FSK modulated chirps
US10564277B2 (en) 2018-01-30 2020-02-18 Oculii Corp. Systems and methods for interpolated virtual aperature radar tracking
US11914021B2 (en) * 2018-03-30 2024-02-27 Alouette Technology Inc. Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
IL259190A (en) 2018-05-07 2018-06-28 Arbe Robotics Ltd System and method for frequency hopping MIMO FMCW imaging radar
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
IL260694A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
US11187783B2 (en) * 2018-08-14 2021-11-30 Nxp B.V. Radar systems and methods for operating radar systems
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
DE102018217110A1 (de) * 2018-10-05 2020-04-09 Astyx Gmbh Radarsystem, sowie eine geeignete Verwendung und Verfahren hierfür
DE102018222415A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Multikanal-Analog-Digital-Wandlervorrichtung für einen optoelektronischen Sensor, Verfahren zur Signalmodulation in einem optoelektronischen Sensor und laserbasierter Entfernungs- und/oder Geschwindigkeitssensor
KR102175245B1 (ko) * 2019-01-08 2020-11-06 (주)스마트레이더시스템 비균일 선형 배치된 수신 안테나 배치를 가진 레이더 장치
US11487003B2 (en) * 2019-03-12 2022-11-01 Ay Dee Kay Llc Envelope regulation in a frequency-modulated continuous-wave radar system
US11092683B2 (en) 2019-03-18 2021-08-17 Nxp Usa, Inc. Distributed aperture automotive radar system with alternating master radar devices
US11520030B2 (en) 2019-03-18 2022-12-06 Nxp Usa, Inc. High resolution automotive radar system with forward and backward difference co-array processing
US11269049B2 (en) * 2019-03-18 2022-03-08 Nxp Usa, Inc. Distributed aperture automotive radar system
US11061126B2 (en) * 2019-03-26 2021-07-13 The Boeing Company Cooperative frequency-modulated continuous-waveform radar systems
DE102019114551A1 (de) * 2019-05-29 2020-12-03 Infineon Technologies Ag Detektion interferenzbedingter störungen bei fmcw-radarsystemen
EP3757597A1 (en) * 2019-06-26 2020-12-30 NXP USA, Inc. Interference mitigation for radar sensor and radar sensor ic
US11789138B2 (en) * 2019-06-27 2023-10-17 Intel Corporation Methods and apparatus to implement compact time-frequency division multiplexing for MIMO radar
US11205844B2 (en) * 2019-07-08 2021-12-21 GM Global Technology Operations LLC Beam skew mitigation using non-linear frequency modulation signals
CN112567262B (zh) * 2019-07-22 2022-01-14 华为技术有限公司 一种雷达系统及车辆
US11592548B2 (en) * 2019-09-27 2023-02-28 Intel Corporation Methods and apparatus to improve doppler velocity estimation
US11115108B2 (en) * 2019-10-25 2021-09-07 Tata Consultancy Services Limited Method and system for field agnostic source localization
US11287520B1 (en) * 2019-11-05 2022-03-29 Bae Systems Information And Electronic Systems Integration Inc. Extended bandwidth tracking for dynamic environments
US11454715B2 (en) * 2019-12-06 2022-09-27 Infineon Technologies Ag Radar signal modulator with bandwidth compensation and frequency offset sequence
IL271269A (en) 2019-12-09 2021-06-30 Arbe Robotics Ltd Radom for a planar antenna for car radar
WO2021127172A1 (en) 2019-12-20 2021-06-24 Oculii Corp. Systems and methods for phase-modulated radar detection
DE102019135473A1 (de) * 2019-12-20 2021-06-24 Infineon Technologies Ag Fmcw-radar mit frequenzspringen
KR20210082946A (ko) * 2019-12-26 2021-07-06 삼성전자주식회사 레이더 신호 처리 장치 및 방법
CN110875757B (zh) * 2020-01-19 2020-05-05 四川大学 一种具有宽间隔特性的低碰撞区跳频序列集的构造方法
DE102020202500A1 (de) * 2020-02-27 2021-09-02 Robert Bosch Gesellschaft mit beschränkter Haftung MIMO-Radarsystem
DE102020105314A1 (de) 2020-02-28 2021-09-02 HELLA GmbH & Co. KGaA Verfahren zur Bereitstellung von wenigstens einer Zielinformation
DE102020107372A1 (de) * 2020-03-18 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zum Betreiben eines Radarsystems
WO2021212410A1 (zh) * 2020-04-23 2021-10-28 华为技术有限公司 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达
EP3910367B1 (en) 2020-05-11 2022-06-29 Axis AB Method and device for radar interference reduction
US11280879B2 (en) 2020-06-16 2022-03-22 Oculii Corp. System and method for radar interference mitigation
DE102020207879A1 (de) * 2020-06-25 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betrieb eines Radarsensors in einem Kraftfahrzeug
US11876582B2 (en) * 2020-07-20 2024-01-16 Metawave Corporation Hybrid beam steering radar
US11709221B2 (en) * 2020-09-08 2023-07-25 Texas Instruments Incorporated Noise-mitigated radar system
US11614511B2 (en) 2020-09-17 2023-03-28 Infineon Technologies Ag Radar interference mitigation
US11888554B2 (en) * 2020-09-23 2024-01-30 Nxp Usa, Inc. Automotive MIMO radar system using efficient difference co-array processor
DE102020126179A1 (de) 2020-10-07 2022-04-07 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Radarsystems, Radarsystem und Fahrzeug mit wenigstens einem Radarsystem
US11994575B2 (en) * 2020-10-16 2024-05-28 Texas Instruments Incorporated Frequency modulated continuous wave radar system with interference mitigation
CN112363136B (zh) * 2020-10-28 2023-09-22 南京工业职业技术大学 一种基于目标稀疏性和频域去斜的雷达距离超分辨方法
US11802939B2 (en) * 2020-11-16 2023-10-31 Samsung Electronics Co., Ltd. Method and apparatus with radar signal processing
WO2022104259A1 (en) 2020-11-16 2022-05-19 Oculii Corp. System and method for radar-based localization and/or mapping
US11714187B2 (en) * 2020-12-15 2023-08-01 GM Global Technology Operations LLC Frequency division multiple access in vehicle radar system
IL279457A (en) * 2020-12-15 2022-07-01 Qualcomm Inc Motion compensation for fast target detection in vehicle radar
CN112859675B (zh) * 2021-01-04 2021-11-30 北京无线电测量研究所 一种加电顺序控制装置、方法、相控阵天线及雷达
US11828871B2 (en) 2021-01-15 2023-11-28 Apple Inc. Electronic devices having spatial ranging calibration capabilities
US11796630B2 (en) * 2021-01-28 2023-10-24 Ay Dee Kay Llc MIMO channel extenders with associated systems and methods
CN112816960B (zh) * 2021-02-03 2023-03-17 森思泰克河北科技有限公司 车内生命探测方法、装置、设备和存储介质
US11822005B2 (en) * 2021-02-26 2023-11-21 Nxp B.V. Radar communications with offset chirp interval time
US11815585B2 (en) 2021-02-27 2023-11-14 Nxp Usa, Inc. Method and system for time division multiplexing MIMO radar doppler compensation using spurious angle spectrum hypothesis tests
CN113126033B (zh) * 2021-03-01 2023-12-22 西安电子科技大学 一种雷达信号数字正交下变频方法
US11796672B2 (en) * 2021-03-04 2023-10-24 Aptiv Technologies Limited Frequency division multiplexing with polyphase shifters
EP4092446B1 (en) * 2021-05-21 2024-05-15 Axis AB Static scene mapping using radar
US11668790B2 (en) * 2021-05-25 2023-06-06 Nxp B.V. Radar communications with oversampling
JP2022185211A (ja) * 2021-06-02 2022-12-14 Smc株式会社 パターン生成装置、パターン生成方法、及び、無線通信システム
CN115799846A (zh) * 2021-06-21 2023-03-14 华为技术有限公司 天线阵列、探测设备和终端
CN113406572B (zh) * 2021-06-23 2022-08-26 四川九洲电器集团有限责任公司 一种雷达并行处理系统及方法、存储介质、终端
CN113556148B (zh) * 2021-07-19 2022-09-23 上海交通大学 适用于正交频分多址反射通信的抗干扰方法及装置、系统
TWI789912B (zh) * 2021-09-16 2023-01-11 立積電子股份有限公司 調頻連續波雷達裝置及其訊號處理方法
CN114047500B (zh) * 2021-09-28 2023-03-07 电子科技大学 一种大规模频控阵非线性频偏产生电路
US11536801B1 (en) * 2021-10-27 2022-12-27 Aurora Operations, Inc. Vehicle radar sensor utilizing non-uniform frequency modulated continuous wave (FMCW) chirps
CN114217284B (zh) * 2021-12-03 2022-12-30 珠海安自达科技有限公司 一种基于特征的雷达运动目标检测和干扰抑制方法及系统
JP7433554B2 (ja) 2021-12-17 2024-02-19 三菱電機株式会社 バイタル測定装置、バイタル測定方法及びバイタル測定システム
US20230194657A1 (en) * 2021-12-22 2023-06-22 Aptiv Technologies Limited Parameter Defined Stepped Frequency Waveform for Radar
US20230204749A1 (en) * 2021-12-23 2023-06-29 Gm Cruise Holdings Llc Radar sensor processing chain
CN114173405B (zh) * 2022-01-17 2023-11-03 上海道生物联技术有限公司 一种无线通信技术领域快速唤醒方法及系统
SE545649C2 (en) * 2022-02-17 2023-11-21 Topgolf Sweden Ab Doppler radar coexistence
EP4246182A1 (en) * 2022-03-14 2023-09-20 GM Cruise Holdings LLC Multiband digitally modulated radar
US11561299B1 (en) 2022-06-03 2023-01-24 Oculii Corp. System and method for multi-waveform radar tracking
CN115529213B (zh) * 2022-11-28 2023-04-07 中国人民解放军国防科技大学 一种用于分离lfm脉冲重叠信号的方法及装置
CN117111017B (zh) * 2023-10-24 2023-12-22 珠海正和微芯科技有限公司 一种雷达距离谱生成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967286A (zh) * 2005-11-18 2007-05-23 电子科技大学 一种伪随机fsk信号的设计方法
CN101128988A (zh) * 2005-02-23 2008-02-20 Orthotron株式会社 使用啁啾信号的关于发送机和接收机之间的电磁波多径的信道估计的方法和装置
CN101285886A (zh) * 2008-04-29 2008-10-15 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达激光啁啾非线性和频克服方法
CN101779147A (zh) * 2006-09-11 2010-07-14 麦德威Nhs基金信托公司 变形的波带板和非线性啁啾信号
CN101793960A (zh) * 2009-10-27 2010-08-04 北京邮电大学 具有啁啾特性的高精度动态门限目标监测方法
EP3098623A1 (en) * 2015-05-25 2016-11-30 Autoliv Development AB A vehicle radar system
US9645228B1 (en) * 2012-12-14 2017-05-09 Sandia Corporation Shaping the spectrum of random-phase radar waveforms
EP3165941A1 (en) * 2015-11-09 2017-05-10 Infineon Technologies AG Frequency modulation scheme for fmcw radar

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1605477A (zh) * 1960-07-08 1976-12-31
US3603989A (en) 1965-06-07 1971-09-07 Us Navy Two-stage radar system
US4197540A (en) 1977-04-27 1980-04-08 Hughes Aircraft Company Simultaneous transmit and receive radar subsystem
US4166980A (en) 1977-08-25 1979-09-04 Sanders Associates, Inc. Method and apparatus for signal recognition
SE426894B (sv) 1981-06-30 1983-02-14 Ericsson Telefon Ab L M Impedansriktig koaxialovergang for mikrovagssignaler
CA1248218A (en) 1983-07-29 1989-01-03 William R. Wray Method and apparatus for image processing with field portions
US4926185A (en) 1988-10-26 1990-05-15 Hughes Aircraft Company Multiple radio frequency single receiver radar operation
US5063603A (en) 1989-11-06 1991-11-05 David Sarnoff Research Center, Inc. Dynamic method for recognizing objects and image processing system therefor
NL9101459A (nl) 1991-08-29 1993-03-16 Hollandse Signaalapparaten Bv Radarapparaat.
US5424742A (en) * 1992-12-31 1995-06-13 Raytheon Company Synthetic aperture radar guidance system and method of operating same
US5430445A (en) * 1992-12-31 1995-07-04 Raytheon Company Synthetic aperture radar guidance system and method of operating same
US5394151A (en) * 1993-09-30 1995-02-28 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for producing three-dimensional images
AU3361095A (en) * 1994-08-05 1996-03-04 Acuson Corporation Method and apparatus for transmit beamformer system
KR100488028B1 (ko) * 1996-10-17 2005-05-09 사브테크 일렉트로닉스 아베 Fmcw형 레이더 유닛에서의 간섭 제거 방법
US5923280A (en) * 1997-01-17 1999-07-13 Automotive Systems Laboratory, Inc. Vehicle collision radar with randomized FSK wave form
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US6865216B1 (en) * 1998-08-20 2005-03-08 Skyworks Solutions Inc. Frequency hopping spread spectrum modulation and direct sequence spread spectrum modulation cordless telephone
FI114585B (fi) 2000-06-09 2004-11-15 Nokia Corp Siirtojohdin monikerrosrakenteissa
US6577269B2 (en) * 2000-08-16 2003-06-10 Raytheon Company Radar detection method and apparatus
AU2001292686A1 (en) * 2000-09-14 2002-03-26 Time Domain Corporation System and method for detecting an intruder using impulse radio technology
US6828929B2 (en) 2003-01-30 2004-12-07 Raytheon Company Technique for non-coherent integration of targets with ambiguous velocities
US7136012B2 (en) 2003-04-01 2006-11-14 Lockheed Martin Corporation Approach radar with array antenna having rows and columns skewed relative to the horizontal
WO2005033728A2 (en) 2003-05-22 2005-04-14 General Atomics Ultra-wideband radar system using sub-band coded pulses
US7983446B2 (en) 2003-07-18 2011-07-19 Lockheed Martin Corporation Method and apparatus for automatic object identification
US7308043B1 (en) 2003-09-22 2007-12-11 Rockwell Collins, Inc. Scrambled chirp frequency jitter for feature suppression
EP1718179A2 (en) 2004-01-16 2006-11-08 GHZ TR Corporation Methods and apparatus for automotive radar sensors
WO2005086554A1 (en) 2004-03-09 2005-09-15 Nec Corporation Via transmission lines for multilayer printed circuit boards
JP4120692B2 (ja) * 2004-05-11 2008-07-16 株式会社村田製作所 レーダ
US8232907B2 (en) * 2004-08-23 2012-07-31 Telephonics Corporation Step frequency high resolution radar
GB0523676D0 (en) 2005-11-21 2005-12-28 Plextek Ltd Radar system
US7404250B2 (en) 2005-12-02 2008-07-29 Cisco Technology, Inc. Method for fabricating a printed circuit board having a coaxial via
JP4519780B2 (ja) 2006-01-25 2010-08-04 富士通株式会社 レーダー装置及びその故障診断方法
US7804445B1 (en) 2006-03-02 2010-09-28 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for determination of range and direction for a multiple tone phased array radar in a multipath environment
US20120056780A1 (en) * 2006-04-28 2012-03-08 Paul Antonik Method and apparatus for simultaneous synthetic aperture radar and moving target indication
US7639171B2 (en) * 2007-09-27 2009-12-29 Delphi Technologies, Inc. Radar system and method of digital beamforming
GB2462148A (en) 2008-07-31 2010-02-03 Mitsubishi Electric Inf Tech Automotive FMCW radar with multiple frequency chirps
US8175134B1 (en) * 2009-04-29 2012-05-08 L-3 Communications, Corp Radio communications system and method having decreased capability for detection by an adversary
US8803732B2 (en) * 2009-06-05 2014-08-12 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for simultaneous synthetic aperture radar and moving target indication
CN101592842B (zh) * 2009-07-03 2010-09-01 湖南大学 一种宽带激光脉冲高效谐波转换光路系统
US8179305B2 (en) * 2009-08-12 2012-05-15 Tektronix, Inc. Enhanced impulse response measurement of an FM radar transmitter pulse
EP2390679B1 (en) * 2010-05-27 2012-10-03 Mitsubishi Electric R&D Centre Europe B.V. Automotive radar with radio-frequency interference avoidance
CN101950851A (zh) 2010-06-23 2011-01-19 电子科技大学 一种错开分布的mimo雷达阵列天线构造方法
KR101199202B1 (ko) * 2011-01-04 2012-11-07 주식회사 만도 타깃 물체 감지 방법 및 레이더 장치
JP5312503B2 (ja) 2011-03-16 2013-10-09 三菱電機株式会社 レーダ装置
US8970425B2 (en) 2011-06-09 2015-03-03 Sony Corporation Radar apparatus and method
GB2491899A (en) * 2011-06-17 2012-12-19 Thales Holdings Uk Plc Synthetic aperture radar processor
US20160285611A1 (en) * 2011-08-17 2016-09-29 CBF Networks, Inc. Radio with oobe victim detection
US8831155B2 (en) * 2011-12-29 2014-09-09 Qualcomm Incorporated Radar detection method and system using low-resolution FFTS
FR2987683B1 (fr) * 2012-03-02 2016-11-11 Thales Sa Radar a faible probabilite d'interception
US9063225B2 (en) * 2012-03-07 2015-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. High resolution Doppler collision avoidance radar
EP2832192B1 (en) 2012-03-28 2017-09-27 Keyssa, Inc. Redirection of electromagnetic signals using substrate structures
EP2845191B1 (en) 2012-05-04 2019-03-13 Xmos Inc. Systems and methods for source signal separation
US9389306B2 (en) 2012-07-18 2016-07-12 Sony Corporation Radar apparatus and method
US9171798B2 (en) 2013-01-25 2015-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for transmission lines in packages
US9356332B2 (en) 2013-04-29 2016-05-31 Infineon Technologies Ag Integrated-circuit module with waveguide transition element
JP5798150B2 (ja) 2013-05-30 2015-10-21 本田技研工業株式会社 物体検出装置
DE102013105809B4 (de) 2013-06-05 2015-01-22 Airbus Defence and Space GmbH Multifunktionale Radaranordnung
DE102013216251B4 (de) * 2013-08-15 2018-01-25 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Umfelderfassung mittels eines frequenzmodulierten Multirampendauerstrichsignals
CN103744068B (zh) * 2014-01-21 2016-08-31 西安电子科技大学 双通道调频连续波sar系统的动目标检测成像方法
US10627480B2 (en) * 2014-07-17 2020-04-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system
US9739873B2 (en) * 2014-08-19 2017-08-22 Navico Holding As Range sidelobe suppression
US9784828B2 (en) * 2014-08-27 2017-10-10 Texas Insturments Incorporated FMCW doppler processing algorithm for achieving CW performance
US10094920B2 (en) 2014-08-27 2018-10-09 Texas Instruments Incorporated Range resolution in FMCW radars
US9784820B2 (en) 2014-09-19 2017-10-10 Delphi Technologies, Inc. Radar system with phase based multi-target detection
DE102014219113A1 (de) 2014-09-23 2016-03-24 Robert Bosch Gmbh MIMO-Radarvorrichtung zum entkoppelten Bestimmen eines Elevationswinkels und eines Azimutwinkels eines Objekts und Verfahren zum Betreiben einer MIMO-Radarvorrichtung
US9810774B2 (en) 2014-11-13 2017-11-07 The Boeing Company Short-range point defense radar
US10359511B2 (en) 2014-12-29 2019-07-23 Sony Corporation Surveillance apparatus having a radar sensor
US10613208B2 (en) * 2015-05-15 2020-04-07 Texas Instruments Incorporated Low complexity super-resolution technique for object detection in frequency modulation continuous wave radar
US20160377711A1 (en) * 2015-06-26 2016-12-29 Delphi Technologies, Inc. Radar signal processing for automated vehicles
DE102015218538A1 (de) 2015-09-28 2017-03-30 Robert Bosch Gmbh Radarvorrichtung und Verfahren zur Abstands- und Geschwindigkeitsschätzung von Objekten
SE541952C2 (en) * 2015-10-19 2020-01-14 Qamcom Tech Ab Radar apparatus and method with interference detection
WO2017069697A1 (en) 2015-10-21 2017-04-27 Imh Equipment Pte Ltd Lifting pallet
CN105487067B (zh) * 2015-12-25 2017-12-05 哈尔滨工业大学 粗测和精测距离信号处理方法、处理模块及基于该模块的啁啾调制光子计数激光雷达系统
US10082570B1 (en) 2016-02-26 2018-09-25 Waymo Llc Integrated MIMO and SAR radar antenna architecture for self driving cars
US11002829B2 (en) 2016-04-15 2021-05-11 Mediatek Inc. Radar interference mitigation method and apparatus
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
WO2017208670A1 (ja) * 2016-05-30 2017-12-07 日本電気株式会社 物体検知装置、車載レーダシステム、監視レーダシステム、物体検知方法及びプログラム
DE102016109910B4 (de) 2016-05-30 2017-12-07 Infineon Technologies Ag Radarsysteme und Verfahren zum Betreiben eines Radarsystems
CN106100696B (zh) 2016-05-31 2018-07-24 中国航空无线电电子研究所 一种基于tod时间信息的非线性跳频图案生成系统
US10627483B2 (en) * 2016-07-09 2020-04-21 Texas Instruments Incorporated Methods and apparatus for velocity detection in MIMO radar including velocity ambiguity resolution
FR3055049B1 (fr) * 2016-08-11 2018-07-27 Thales Procede de detection radar fmcw a resolution multiple et radar mettant en oeuvre un tel procede
KR102647218B1 (ko) * 2016-09-19 2024-03-12 레스메드 센서 테크놀로지스 리미티드 오디오 신호 및 다중 신호로부터 생리학적 운동을 검출하는 장치, 시스템 및 방법
US10359504B2 (en) 2016-09-30 2019-07-23 Veoneer Us, Inc. Apparatus and method for mitigating interference in an automotive radar system
JP2018072014A (ja) 2016-10-25 2018-05-10 ソニーセミコンダクタソリューションズ株式会社 レーダ装置、信号処理装置及び信号処理方法
DE102016221947A1 (de) * 2016-11-09 2018-05-09 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
DE102016224900A1 (de) 2016-12-14 2018-06-14 Robert Bosch Gmbh MIMO-Radarsensor für Kraftfahrzeuge
US10451723B2 (en) 2016-12-20 2019-10-22 National Chung-Shan Institute Of Science & Technology Signal processing apparatus of a continuous-wave (CW) radar sensing system
IL250253B (en) 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
IL250381A0 (en) 2017-01-31 2017-03-30 Arbe Robotics Ltd A compact array of radar antennas with high horizontal and vertical resolution
IL250382B (en) 2017-01-31 2021-01-31 Arbe Robotics Ltd A radar-based system and method for real-time simultaneous positioning and mapping
US11415664B2 (en) * 2017-03-03 2022-08-16 Iee International Electronics & Engineering S.A. Method and system for obtaining an adaptive angle-doppler ambiguity function in MIMO radars
CN106970386B (zh) * 2017-03-31 2019-09-03 西安电子科技大学 一种雷达多普勒波束锐化的优化方法
US10490511B2 (en) 2017-06-01 2019-11-26 Mediatek Inc. Microelectronic assembly with electromagnetic shielding
US10229092B2 (en) 2017-08-14 2019-03-12 City University Of Hong Kong Systems and methods for robust low-rank matrix approximation
CN108089163A (zh) 2017-11-07 2018-05-29 南京航空航天大学 基于光学双稳混沌模型的跳频雷达发射周期设计方法
IL255982A (en) 2017-11-29 2018-01-31 Arbe Robotics Ltd Detection, mitigation and prevention of mutual interference between fixed water radars in vehicles
IL259190A (en) 2018-05-07 2018-06-28 Arbe Robotics Ltd System and method for frequency hopping MIMO FMCW imaging radar
IL260694A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
US11557545B2 (en) 2018-12-04 2023-01-17 Qorvo Us, Inc. Monolithic microwave integrated circuit (MMIC) with embedded transmission line (ETL) ground shielding
MY202209A (en) 2019-06-10 2024-04-17 Intel Corp Electronic device and crosstalk mitigating substrate
IL271269A (en) 2019-12-09 2021-06-30 Arbe Robotics Ltd Radom for a planar antenna for car radar
US11277902B2 (en) 2020-05-25 2022-03-15 Arbe Robotics Ltd. Single layer radio frequency integrated circuit package and related low loss grounded coplanar transmission line

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128988A (zh) * 2005-02-23 2008-02-20 Orthotron株式会社 使用啁啾信号的关于发送机和接收机之间的电磁波多径的信道估计的方法和装置
CN1967286A (zh) * 2005-11-18 2007-05-23 电子科技大学 一种伪随机fsk信号的设计方法
CN101779147A (zh) * 2006-09-11 2010-07-14 麦德威Nhs基金信托公司 变形的波带板和非线性啁啾信号
CN101285886A (zh) * 2008-04-29 2008-10-15 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达激光啁啾非线性和频克服方法
CN101793960A (zh) * 2009-10-27 2010-08-04 北京邮电大学 具有啁啾特性的高精度动态门限目标监测方法
US9645228B1 (en) * 2012-12-14 2017-05-09 Sandia Corporation Shaping the spectrum of random-phase radar waveforms
EP3098623A1 (en) * 2015-05-25 2016-11-30 Autoliv Development AB A vehicle radar system
CN107683422A (zh) * 2015-05-25 2018-02-09 奥托立夫开发公司 车辆雷达系统
EP3165941A1 (en) * 2015-11-09 2017-05-10 Infineon Technologies AG Frequency modulation scheme for fmcw radar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chirip强度调制与近红外激光合成孔径雷达距离向处理;洪光烈;王建宇;孟昭华;李静文;童鹏;舒嵘;;红外与毫米波学报(03);229-234 *

Also Published As

Publication number Publication date
WO2019215734A1 (en) 2019-11-14
EP3791202A1 (en) 2021-03-17
CN112088317B (zh) 2024-03-12
EP3791202A4 (en) 2022-03-23
WO2019215732A1 (en) 2019-11-14
US20210156982A1 (en) 2021-05-27
US20210156981A1 (en) 2021-05-27
CN112088316B (zh) 2024-03-29
EP3791201A4 (en) 2022-02-09
EP3791201A1 (en) 2021-03-17
EP3791203A1 (en) 2021-03-17
CN112088317A (zh) 2020-12-15
US11609303B2 (en) 2023-03-21
US11525886B2 (en) 2022-12-13
US11513187B2 (en) 2022-11-29
IL259190A (en) 2018-06-28
CN112088316A (zh) 2020-12-15
EP3791203A4 (en) 2022-03-23
US20210156980A1 (en) 2021-05-27
WO2019215733A1 (en) 2019-11-14
CN112105946A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN112105946B (zh) 具有谱概率加窗的并入有分数带宽多波段啁啾的非线性频率跳变序列的fmcw汽车雷达
US11520003B2 (en) Detection, mitigation and avoidance of mutual interference between automotive radars
US11811142B2 (en) Skewed MIMO antenna array for use in automotive imaging radar
CN112639519B (zh) 雷达系统中的两阶段信号处理的装置和方法
KR101598344B1 (ko) 적응형 스케줄러를 이용한 fmcw 레이더 시스템
CN110632587A (zh) 一种基于快速fmcw雷达的弱运动物体监测方法
CN113009424A (zh) 具有跳频的fmcw雷达
Alhumaidi et al. Interference avoidance and mitigation in automotive radar
Slavik et al. Cognitive interference mitigation in automotive radars
JP7480421B2 (ja) 低いシグナル処理負荷において高い距離解像度を有するレーダ変調方法
JP2023548435A (ja) 低ランク近似を使用する効率的な到来方向推定
CN112789516B (zh) 用于汽车成像雷达的偏斜mimo天线阵列
WO2023131941A1 (en) Extended virtual array in an automotive mimo radar
CN116893389A (zh) 具有距离迁移缓解能力的汽车雷达
CN116804739A (zh) 用于雷达系统的自适应tx-rx串扰消除
CN117377887A (zh) 一种信号发送方法、接收方法及对应装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant