WO2021212410A1 - 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达 - Google Patents

用于控制雷达跳频的方法和装置以及雷达测速方法和雷达 Download PDF

Info

Publication number
WO2021212410A1
WO2021212410A1 PCT/CN2020/086408 CN2020086408W WO2021212410A1 WO 2021212410 A1 WO2021212410 A1 WO 2021212410A1 CN 2020086408 W CN2020086408 W CN 2020086408W WO 2021212410 A1 WO2021212410 A1 WO 2021212410A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
frequency
continuous waves
detection
frequency hopping
Prior art date
Application number
PCT/CN2020/086408
Other languages
English (en)
French (fr)
Inventor
宋思达
马莎
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20932103.3A priority Critical patent/EP4130781A4/en
Priority to PCT/CN2020/086408 priority patent/WO2021212410A1/zh
Priority to CN202080004379.7A priority patent/CN112639521B/zh
Priority to MX2022013268A priority patent/MX2022013268A/es
Priority to CA3176539A priority patent/CA3176539A1/en
Publication of WO2021212410A1 publication Critical patent/WO2021212410A1/zh
Priority to US17/970,949 priority patent/US20230053033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping

Definitions

  • Sensors play a very important role in assisted driving and autonomous driving of smart cars.
  • Various sensors installed on the car such as millimeter wave radar, laser radar, camera, ultrasonic radar, etc., can sense the surrounding environment at any time during the driving process of the car, collect data, identify and track moving objects, and be stationary Scenarios such as the identification of lane lines and signs, combined with navigator and map data for path planning. Sensors can perceive possible dangers in advance and help the driver in time or even take necessary evasive measures autonomously, which effectively improves the safety and comfort of car driving.
  • the commonly used vehicle-mounted millimeter-wave radar systems on the market generally include oscillators, transmitting antennas, receiving antennas, mixers, processors, and controllers.
  • the oscillator generates a signal whose frequency increases linearly with time (Frequency Modulated Continuous Wave, FMCW), part of which is output to the mixer through the directional coupler as a local oscillator signal, and the other part is transmitted through the transmitting antenna
  • FMCW Frequency Modulated Continuous Wave
  • the receiving antenna receives the millimeter wave signal reflected by the object in front of the vehicle, and mixes it with the local oscillator signal in the mixer to obtain the intermediate frequency signal (including the relative distance, speed, angle and other information of the target object), which is low-pass filtered
  • the processor is sent to the processor, and the processor processes the intermediate frequency signal (usually after sampling the signal, performing fast Fourier transform and performing spectrum analysis) to obtain information such as the distance, speed and angle of the target object, and finally Output to the controller to control the behavior of the vehicle
  • the intra-frame random frequency hopping technology has a better effect of reducing the probability of mutual interference, because its transmission frequency is randomly distributed within a certain bandwidth range and has no fixed rules, it cannot use the existing simple digital signal processing.
  • Methods such as Fast Fourier Transform (FFT), etc., process the echo intermediate frequency signal to calculate the relative speed of the target object, which leads to an increase in the amount of calculation of the processor to a certain extent.
  • FFT Fast Fourier Transform
  • this application provides a method for controlling radar frequency hopping, radar frequency hopping device, radar speed measurement method, radar, chip, computer program and readable storage medium, which can achieve the purpose of reducing the probability of radar mutual interference , It can also use the existing simple digital signal processing method for speed measurement calculation, reduce the amount of calculation, and the application is more convenient.
  • a method for controlling radar frequency hopping which includes:
  • the control radar executes frequency hopping and sequentially transmits the plurality of frequency-modulated continuous waves according to the determined starting frequency.
  • this application designs a first function and determines the starting frequencies of multiple FM continuous waves through the first function, so as to control the radar to transmit multiple signals in sequence according to the determined starting frequency when the frequency hopping signal is transmitted.
  • Frequency modulation continuous wave so as to achieve the purpose of frequency hopping. It is worth noting that due to the working bandwidth of the radar and the characteristics of the first function, the frequency difference between adjacent FM continuous waves will become smaller and smaller. Therefore, the number of the above-mentioned multiple FM continuous waves is generally not Take too big.
  • this application can achieve the purpose of radar frequency hopping and reduce the probability of radar mutual interference, and since the starting frequencies of the multiple frequency modulated continuous waves emitted by the radar are determined according to the above-mentioned first function, during the speed measurement process,
  • FFT Fast Fourier Transform
  • the first function is:
  • b k is the starting frequency of the k-th FM continuous wave
  • k is the serial number of each FM continuous wave
  • ⁇ and ⁇ are frequency hopping parameters respectively
  • M is the number of the multiple FM continuous waves.
  • the first function is a monotonic function that changes with the value of k, and the larger the value of k, the smaller the rate of change of the function, that is, as the sequence number of the FM continuous wave increases, the start of the two adjacent FM continuous waves
  • the difference between the starting frequencies will be smaller.
  • determines the "stop" frequency point of the first function. Therefore, by defining the frequency hopping parameters ⁇ and ⁇ according to the working frequency band of the radar, the starting frequency of each FM continuous wave can be determined.
  • the number of the plurality of frequency-modulated continuous waves is a power of two.
  • the above-mentioned first function is a monotonic function that changes with the value of k, and the larger the value of k, the smaller the rate of change of the function. Therefore, in order to ensure that the frequency (starting frequency) of each FM continuous wave can be as much as possible "Jump up", the number of multiple FM continuous waves cannot be too large, and since the minimum calculation unit of the Fast Fourier Transform (FFT) operation is 2, when the time domain length of the waveform is a power of 2. , The very effective 2-basis-fast Fourier transform can be used to speed up the processing time. Therefore, for the convenience of calculation, the value of the number of FM continuous waves can be a power of 2.
  • FFT Fast Fourier Transform
  • the difference between the start frequencies of any two adjacent frequency modulation continuous waves is Greater than the first threshold, the first threshold is determined according to a predefined or pre-configured rule.
  • the purpose of the first threshold is to ensure that the frequency points (starting frequencies) of each FM continuous wave can "jump up” as much as possible.
  • the rule determines that by setting the first threshold, the values of M (the number of multiple frequency-modulated continuous waves) and the frequency hopping parameters ⁇ and ⁇ in the above-mentioned first function can be limited.
  • the first possibility, the second possibility, or the third possible implementation manner of the first aspect in the fourth possible implementation manner of the method for controlling radar frequency hopping, the multiple frequency modulation Continuous waves form a detection subframe, and multiple detection subframes form a detection frame;
  • the multiple detection subframes in the same detection frame use the same first function to determine the start frequencies of the multiple FM continuous waves contained therein.
  • this application will use a certain number of multiple FM Continuous waves form a detection subframe, multiple detection subframes form a detection frame, and multiple detection subframes in the same detection frame, use the above first function to determine the multiple FM continuous waves contained in the first detection subframe
  • the control radar can repeatedly send the FM continuous wave of other detection sub-frames in the same detection frame according to the determined starting frequency, without repeating the first function to determine the starting frequency.
  • the radar can continuously perform frequency hopping to transmit multiple FM continuous waves according to the determined starting frequency, or when it detects the presence of interference signals, continue to perform frequency hopping transmissions according to the determined starting frequency.
  • Frequency modulated continuous wave to reduce workload.
  • the processing module is used to determine the starting frequencies of multiple FM continuous waves according to the first function
  • the transmitting module executes frequency hopping and transmits the plurality of frequency-modulated continuous waves in sequence according to the determined starting frequency.
  • this application designs a first function and determines the starting frequencies of multiple FM continuous waves through the first function, so as to control the radar to transmit multiple signals in sequence according to the determined starting frequency when the frequency hopping signal is transmitted.
  • Frequency modulation continuous wave so as to achieve the purpose of frequency hopping. It is worth noting that due to the working bandwidth of the radar and the characteristics of the first function, the frequency difference between adjacent FM continuous waves will become smaller and smaller. Therefore, the number of the above-mentioned multiple FM continuous waves is generally not Take too big.
  • this application can achieve the purpose of radar frequency hopping and reduce the probability of radar mutual interference, and since the starting frequencies of the multiple frequency modulated continuous waves emitted by the radar are determined according to the above-mentioned first function, during the speed measurement process,
  • FFT fast Fourier transform
  • b k is the starting frequency of the k-th FM continuous wave
  • k is the serial number of each FM continuous wave
  • ⁇ and ⁇ are frequency hopping parameters respectively
  • M is the number of the multiple FM continuous waves.
  • the number of the plurality of frequency-modulated continuous waves is a power of two.
  • the above-mentioned first function is a monotonic function that changes with the value of k, and the larger the value of k, the smaller the rate of change of the function. Therefore, in order to ensure that the frequency (starting frequency) of each FM continuous wave can be as much as possible "Jump up", the number of multiple FM continuous waves cannot be too large, and since the minimum calculation unit of the Fast Fourier Transform (FFT) operation is 2, when the time domain length of the waveform is a power of 2. , The very effective 2-basis-fast Fourier transform can be used to speed up the processing time. Therefore, for the convenience of calculation, the value of the number of FM continuous waves can be a power of 2.
  • FFT Fast Fourier Transform
  • the purpose of the first threshold is to ensure that the frequency points (starting frequencies) of each FM continuous wave can "jump up” as much as possible.
  • the rule determines that by setting the first threshold, the values of M (the number of multiple frequency-modulated continuous waves) and the frequency hopping parameters ⁇ and ⁇ in the above-mentioned first function can be limited.
  • the multiple detection subframes in the same detection frame use the same first function to determine the start frequencies of the multiple FM continuous waves contained therein.
  • the radar when the radar is working, it needs to continuously emit a large number of FM continuous waves. If the starting frequency of all FM continuous waves emitted by the radar is determined according to the above-mentioned first function, because the working bandwidth of the radar has a certain range, and the first The characteristics of the function will cause the difference between the starting frequencies of adjacent FM continuous waves to become smaller and smaller, and the frequency hopping effect is not obvious, which leads to a reduction in the anti-interference effect.
  • this application will use a certain number of multiple FM Continuous waves form a detection subframe, multiple detection subframes form a detection frame, and multiple detection subframes in the same detection frame, use the above first function to determine the multiple FM continuous waves contained in the first detection subframe
  • the control radar can repeatedly send the FM continuous wave of other detection sub-frames in the same detection frame according to the determined starting frequency, without repeating the first function to determine the starting frequency.
  • a trigger module is further included, so The triggering module is used for triggering the transmitting module to perform frequency hopping according to the determined starting frequency when an interference signal is detected.
  • the radar can continuously perform frequency hopping to transmit multiple frequency-modulated continuous waves according to the determined starting frequency, or a trigger module can be set.
  • the transmitter module is triggered to control the radar according to the determined
  • the starting frequency continuously performs frequency hopping and transmits multiple FM continuous waves to reduce the workload.
  • a radar speed measurement method which includes:
  • controlling the radar to perform frequency hopping and sequentially transmit a plurality of frequency-modulated continuous waves
  • the relative speed of the target relative to the radar is calculated.
  • the calculating the relative speed of the target relative to the radar includes:
  • the relative speed of the target is calculated according to the first speed parameter and the second speed parameter.
  • multiple FM continuous waves form a detection sub-frame
  • multiple detection sub-frames form a detection frame
  • multiple detection sub-frames in the same detection frame use the same first function to determine its The starting frequency of the multiple FM continuous waves included.
  • the speed measurement process first performs fast Fourier transform on the phase sequence of the echo intermediate frequency signals corresponding to multiple FM continuous waves in the transmitted at least one detection subframe at the same time sampling point, and the work of the detection subframe can be obtained.
  • the first speed parameter in the frequency band has a larger speed measurement range, but because one detection subframe contains fewer FM continuous waves, that is, the working period is shorter, the resolution of the measured first speed parameter is lower.
  • the detection can be obtained.
  • the second speed parameter within the range of the complete working period of the frame. Since the group of multiple FM continuous waves with the same starting frequency corresponds to the working period of a detection frame, the speed measurement resolution of the second speed parameter is relatively high. , But because the selected interval between adjacent FM continuous waves is larger, the speed measurement range of the second speed parameter is smaller. Through the matching calculation of the above-mentioned first speed parameter and the second speed parameter, a target relative speed with a large speed measurement range and high resolution can be obtained.
  • the calculation includes equivalently expanding the speed measurement range of the second speed parameter, and The speed measurement range of the first speed parameter is matched and calculated to obtain the relative speed of the target.
  • the second speed parameter with higher resolution is waited for. Effectively expand the calculation so that the speed measurement range is the same as the speed measurement range of the first speed parameter. At this time, by matching the data with the higher resolution in the second speed parameter with the data with the lower resolution in the first speed parameter, you can Obtain the relative speed of the target relative to the radar.
  • a radar which includes:
  • a signal receiving module the signal receiving module is used to receive the signal reflected back by the target;
  • the calculation module is used to calculate the relative speed of the target relative to the radar according to the reflected signal received by the signal receiving module.
  • this application provides a radar based on the above radar frequency hopping device, which is used to perform frequency hopping and sequentially transmit multiple frequency-modulated continuous waves with a certain starting frequency to the target, and receive the signal reflected by the target through the signal receiving module,
  • the Doppler frequency can be obtained by the fast Fourier transform of the phase sequence of the received multiple cycles of the intermediate frequency signal at the same time sampling point by the calculation module, and the relative velocity between the radar and the target can be obtained according to the Doppler frequency.
  • multiple FM continuous waves form a detection sub-frame
  • multiple detection sub-frames form a detection frame
  • Multiple detection sub-frames use the same first function to determine the start frequency of multiple FM continuous waves contained therein;
  • the calculation module includes:
  • a first calculation module configured to perform fast Fourier transform on echo intermediate frequency signals corresponding to multiple FM continuous waves in at least one of the detection subframes to obtain a first velocity parameter
  • a second calculation module configured to perform fast Fourier transform on at least one set of echo intermediate frequency signals corresponding to multiple FM continuous waves with the same starting frequency in the detection frame to obtain a second velocity parameter
  • the third calculation module is configured to calculate and obtain the relative speed of the target relative to the radar according to the first speed parameter and the second speed parameter.
  • multiple FM continuous waves form a detection sub-frame
  • multiple detection sub-frames form a detection frame
  • multiple detection sub-frames in the same detection frame use the same first function to determine its The starting frequency of the multiple FM continuous waves included.
  • the speed measurement process first performs fast Fourier transform on the phase sequence of the echo intermediate frequency signals corresponding to multiple FM continuous waves in the transmitted at least one detection subframe at the same time sampling point, and the work of the detection subframe can be obtained.
  • the first speed parameter in the frequency band has a larger speed measurement range, but because one detection subframe contains fewer FM continuous waves, that is, the working period is shorter, the resolution of the measured first speed parameter is lower.
  • the detection can be obtained.
  • the second speed parameter within the range of the complete working period of the frame. Since the group of multiple FM continuous waves with the same starting frequency corresponds to the working period of a detection frame, the speed measurement resolution of the second speed parameter is relatively high. , But because the selected interval between adjacent FM continuous waves is larger, the speed measurement range of the second speed parameter is smaller. Through the matching calculation of the above-mentioned first speed parameter and the second speed parameter, a target relative speed with a large speed measurement range and high resolution can be obtained.
  • the third calculation module is configured to equivalently expand the speed measurement range of the second speed parameter, And perform matching calculation with the speed measurement range of the first speed parameter to obtain the relative speed of the target relative to the radar.
  • the second speed parameter with higher resolution is waited for. Effectively expand the calculation so that the speed measurement range is the same as the speed measurement range of the first speed parameter. At this time, by matching the data with the higher resolution in the second speed parameter with the data with the lower resolution in the first speed parameter, you can Obtain the relative speed of the target relative to the radar.
  • a chip including: an input interface, an output interface, at least one processor, and at least one memory, the at least one memory is used to store code, and the at least one processor is used to execute the code in the memory When the code is executed, the chip implements the method described in any one of a method for controlling radar frequency hopping and a radar speed measurement method.
  • a computer-readable storage medium having program instructions stored thereon, and when the program instructions are executed by a computer, the computer executes any one of a method for controlling radar frequency hopping and a radar speed measurement method. The method described in the item.
  • a computer program product which includes program instructions that, when executed by a computer, cause the computer to execute any one of the method for controlling radar frequency hopping and the method for radar speed measurement Methods.
  • the eighth aspect also provides a vehicle, which includes the above-mentioned radar.
  • Figure 1 shows the architecture diagram of the existing vehicle-mounted millimeter-wave radar system
  • Figure 2A shows a schematic diagram of the time amplitude of a single cycle of a frequency-modulated continuous wave
  • FIG. 2B shows a schematic diagram of the time and frequency of the FM continuous wave with multiple cycles
  • Figure 2C shows a schematic diagram of the relationship between transmit and receive signals and intermediate frequency signals
  • Figure 3 shows a schematic diagram of mutual interference of vehicle-mounted radars
  • 4A to 4F show schematic diagrams of mutual interference when the slopes of the detection radar and the jamming radar are the same or different;
  • Figure 5 shows a schematic diagram of the existing radar random frequency hopping technology
  • FIG. 6A shows a schematic diagram of the implementation environment involved in the radar frequency hopping of the present application
  • Fig. 6B shows a flowchart of the method for controlling radar frequency hopping according to the present application
  • Fig. 6C shows a schematic diagram of a frequency hopping pattern of the present application
  • FIG. 7 shows the architecture diagram of the radar frequency hopping device of the present application
  • FIG. 8A shows a flowchart of the radar speed measurement method of the present application
  • FIG. 8B shows a flowchart of the calculation steps in the radar speed measurement method of the present application.
  • FIG. 9A shows the architecture diagram of the radar of the present application
  • FIG. 9B shows the architecture diagram of the calculation module in the radar of this application.
  • FIG. 10 shows an architecture diagram of a computing device of the present application
  • the frequency modulated continuous wave is a signal whose frequency changes linearly with time.
  • the period of the frequency modulated continuous wave is T c
  • the slope is a 0
  • the bandwidth is B
  • the equivalent baseband signal of the n-th cycle FM continuous wave output by the oscillator can be expressed as:
  • A is the signal amplitude
  • a 0 is the slope of the chirp signal sent by the radar
  • b 0 is the intercept (that is, the starting frequency of the baseband signal)
  • I is the initial phase
  • N is the number of cycles in which the FM continuous wave is continuously sent. Since frequency is defined as the rate of change of phase with respect to time, the frequency of the above-mentioned baseband signal is:
  • f c is the carrier frequency.
  • the transmitted signal will be reflected back when it encounters the target object.
  • the shape of the transmitted wave and the reflected wave are the same, but there is a time delay.
  • the received signal of the n-th cycle FM continuous wave is expressed as
  • ⁇ 0 is the radar echo time delay caused by the reference distance
  • v is the radial relative velocity of the target object and the radar
  • c is the speed of light.
  • the mixer mixes the received signal with the transmitted signal, and after passing through an intermediate frequency filter, outputs an intermediate frequency (IF) signal.
  • IF intermediate frequency
  • the intermediate frequency signal is expressed as:
  • the distance d between the radar and the target object is
  • Doppler frequency can be obtained by fast Fourier transform on the phase sequence of the echo IF signal of multiple consecutive cycles at the same time sampling point
  • the relationship between it and the relative radial velocity v of the target object can be expressed as
  • is the wavelength of the radar signal.
  • the above introduction is the principle of distance measurement and speed measurement of the existing vehicle-mounted millimeter wave radar system.
  • the distance measurement or speed measurement can quickly and accurately measure the distance and relative speed of the target object without interference from other radars.
  • the increase in the penetration rate of vehicle radars and the more and more serious mutual interference between vehicle radars will reduce the probability of successful radar detection or increase the probability of false alarms, which will have a non-negligible impact on safe driving.
  • FIG 3 shows a schematic diagram of mutual interference of vehicle-mounted radars.
  • Radar 1 on the first lane be a detection radar.
  • the slope of the FM continuous wave is a 0
  • the intercept is b 0
  • the period is T c
  • Radar 2 is a jamming radar
  • the slope of the FM continuous wave is a 1
  • the intercept is b 1 .
  • the radar 1 transmits a millimeter wave signal to the target object directly in front of it, and receives the millimeter wave signal reflected from it, so as to measure the distance and speed of the target object in front.
  • adjacent The signal emitted by radar 2 (interfering radar) on the second lane of the vehicle is also received by radar 1.
  • the echo delay corresponding to the maximum ranging distance of radar 1 is ⁇ max (that is, the formula is wrong!
  • the reference source is not found.
  • the time delay of the jamming signal of radar 2 arriving at the receiving antenna of radar 1 is ⁇ 1 , considering that there is a timing error at the time of radar transmission as ⁇ (for example, the transmission time error caused by GPS timing error is 60 ns).
  • the time interval of the signal detection of the radar 1 is ⁇ max ⁇ T c .
  • A′ i is the signal amplitude of the interference radar signal (that is, the radar signal transmitted by radar 2) after the transmitting antenna gain, target object reflection, propagation loss, and receiving antenna gain, Is the initial phase of the jamming radar signal, It is the Doppler frequency formed by the interfering radar signal due to the radial relative velocity of the target object and the detecting radar, ⁇ i is the interfering radar signal (i.e. the radar signal transmitted by the radar 2) transmitted from its transmitter to the interfered radar receiver ( That is, the time delay when the receiver of the radar 1 receives the signal.
  • each peak corresponds to a target object.
  • the radar 1 mistakenly believes that there is a "target object” corresponding to a false target object ahead, but in fact the "target object” does not exist, that is, the so-called “Ghost” or "false alarm”. After the false alarm is generated, the self-driving car will slow down or brake suddenly when there is no object in front, which reduces the driving comfort.
  • the interference signal of radar 2 and the transmitted signal of radar 1 will produce an intermediate frequency signal containing various frequency components.
  • the prior art adopts a random frequency hopping method within a radar frame to prevent interference between multiple radars.
  • FIG. 5 is a schematic diagram of an existing radar random frequency hopping.
  • the radar random frequency hopping technology the radar relies on a completely randomized transmission method to transmit FM continuous waves with different starting frequencies during its operation. , So that the interference is broken up to prevent continuous interference of the work cycle.
  • the intra-frame random frequency hopping technology when multiple interfering radars appear, the effect of reducing the probability of mutual interference can also be achieved.
  • the embodiment of the present application provides a method for controlling the frequency hopping of a radar.
  • the multiple frequency-modulated continuous waves emitted by the radar have different starting points.
  • the frequency greatly reduces the overlap of the working frequency bands of this radar and other interfering radars, and achieves the effect of reducing the probability of mutual interference.
  • the “one FM continuous wave” mentioned above and below actually refers to an FM continuous wave with a pulse repetition period.
  • the “one FM continuous wave” method is used directly.
  • the starting frequencies of multiple FM continuous waves in this application are arranged according to the first function, that is, the multiple corresponding intermediate frequency signals received by them are also arranged according to the first function. Therefore, when calculating the phase sequence of the echo intermediate frequency signal of multiple consecutive cycles at the same time sampling point in the speed measurement process, the existing simple digital signal processing methods, such as fast Fourier transform (FFT), etc. are processed and calculated to complete the speed measurement of the target object.
  • FFT fast Fourier transform
  • FIG. 6A shows a schematic diagram of an implementation environment involved in radar frequency hopping in an embodiment of the present application, where the implementation environment includes a radar 611 and a control device 612;
  • the radar 611 may be the structure shown in FIG. 1 above, which has an oscillator, a transmitting antenna, a receiving antenna, a mixer, a processor, and a controller, and performs its corresponding functions;
  • the control device 612 is used to control the radar 611 to perform frequency hopping. In some embodiments, the following method for controlling the frequency hopping of the radar may be performed.
  • S621 Determine the starting frequencies of multiple FM continuous waves according to the first function.
  • S622 Control the radar to perform frequency hopping according to the determined starting frequency to sequentially transmit the multiple frequency-modulated continuous waves.
  • the first function may be:
  • b k is the starting frequency of the k-th FM continuous wave
  • k is the serial number of each FM continuous wave
  • ⁇ and ⁇ are frequency hopping parameters respectively
  • M is the number of the multiple FM continuous waves.
  • the first function can also be a certain variant, such as a variant with coefficients in the denominator, but the above-mentioned inverse proportional function can be obtained through mathematical changes, so no matter how the form is transformed, as long as it can be transformed to the above-mentioned or Similar function formats can be used.
  • the number of the plurality of FM continuous waves may be a power of two. Since the minimum calculation unit of the Fast Fourier Transform (FFT) operation is 2, when the time domain length of the waveform is a power of 2, the very effective 2-base-Fast Fourier Transform can be used to speed up the processing time and the calculation is convenient . Therefore, when the number of the plurality of frequency-modulated continuous waves is a power of 2, it is convenient to perform the subsequent fast Fourier transform on the echo intermediate frequency signal.
  • FFT Fast Fourier Transform
  • the difference between the start frequencies of any two adjacent FM continuous waves is greater than a first threshold, and the first threshold is determined according to a predefined or pre-configured rule, the purpose of which is to make the frequency of each FM continuous wave
  • the point (starting frequency) can "hop up” as much as possible, that is, the difference between the frequency points (starting frequency) of each FM continuous wave is relatively large, and the frequency hopping is more obvious.
  • the multiple FM continuous waves form a detection subframe, and multiple detection subframes form a detection frame; the multiple detection subframes in the same detection frame use the same first function to determine the detection subframe.
  • the starting frequency of the multiple FM continuous waves included.
  • the radar needs to continuously emit a large number of FM continuous waves when it is working, if the starting frequency of all FM continuous waves emitted by the radar is determined according to the above-mentioned first function, since the working bandwidth of the radar has a certain range, and the first function The characteristics of a function will cause the difference between the starting frequencies of adjacent FM continuous waves to become smaller and smaller, and the frequency hopping effect is not obvious, which leads to a reduction in the anti-interference effect.
  • this application will make a certain number of multiple The FM continuous wave forms a detection subframe, multiple detection subframes form a detection frame, and multiple detection subframes in the same detection frame, use the above first function to determine the multiple FM continuous waves contained in the first detection subframe After the starting frequency of the wave, control the radar to repeatedly send the FM continuous wave of other detection sub-frames in the same detection frame in sequence according to the determined starting frequency, without the need to repeatedly use the first function to determine the above-mentioned starting frequency.
  • the radar is a millimeter wave radar.
  • vehicle-mounted millimeter radar waves, or millimeter radar waves used on the roadside, or even millimeter wave radars mounted on drones are examples.
  • the radar When the radar detects that there is an interference signal, the radar performs frequency hopping according to the determined starting frequency. For example, the interference information from the radar of other vehicles, such as the interference signal from the roadside corresponding radar of the vehicle-road network, such as the speed measurement radar, the flow measurement radar, and the interference signal from the UAV with millimeter wave radar.
  • the interference information from the radar of other vehicles such as the interference signal from the roadside corresponding radar of the vehicle-road network, such as the speed measurement radar, the flow measurement radar, and the interference signal from the UAV with millimeter wave radar.
  • Each detection frame is composed of K FM continuous waves.
  • Each detection frame is equally divided into N detection subframes.
  • the radar needs to continuously emit a large number of FM continuous waves when it is working, if the starting frequency of all FM continuous waves emitted by the radar is determined according to the above-mentioned first function, because the working bandwidth of the radar has a certain range, and the first The characteristics of the function will cause the starting frequency difference between adjacent FM continuous waves to become smaller and smaller, and the frequency hopping effect is not obvious, which leads to a reduction in the anti-interference effect.
  • the method for controlling radar frequency hopping includes the following steps:
  • S621 Determine the starting frequencies of multiple FM continuous waves according to the first function.
  • S622 Control the radar to perform frequency hopping according to the determined starting frequency to sequentially transmit the multiple frequency-modulated continuous waves.
  • the schematic diagram of the frequency hopping pattern is shown in FIG. 6C.
  • the frequency hopping pattern in this embodiment refers to the distribution law of the starting frequencies of multiple FM continuous waves, and is not a real pattern or image.
  • the distribution sequence of the starting frequencies of the FM continuous waves is the same, that is, the starting frequencies of the FM continuous waves with the same sequence number are the same among the N detection subframes.
  • the first function is:
  • b k is the starting frequency of the k-th FM continuous wave in each detection subframe
  • k is the sequence number of each FM continuous wave contained in the detection subframe
  • ⁇ and ⁇ are frequency hopping parameters respectively
  • the first function is a function that changes with the value of k.
  • the number of FM continuous waves in the detection subframe is not infinite. Therefore, the actual stop frequency of the first function is not Equal to ⁇ , but a value closer to ⁇ .
  • the first function is a monotonic function that changes with the value of k, and the larger the value of k, the smaller the rate of change of the function, that is, as the sequence number of the FM continuous wave increases, the difference between the starting frequencies of two adjacent FM continuous waves Therefore, the value of k cannot be too large, that is, the number of FM continuous waves contained in each detection subframe, K/N, cannot be too large, and because the minimum calculation unit of the fast Fourier transform (FFT) operation is 2.
  • FFT fast Fourier transform
  • the time domain length of the waveform is a power of 2
  • the starting frequencies of the last two FM continuous waves of the detection subframe are defined as with The serial number of the FM continuous wave corresponding to k max is K/N, and the serial number of the FM continuous wave corresponding to k max -1 is K/N-1, so
  • the above-mentioned minimum frequency hopping threshold ⁇ f is not a fixed value. It can be selected according to the working frequency band of the radar and the number of FM continuous waves contained in each detection subframe. The specific value is not limited in this embodiment, and it satisfies the above-mentioned “hopping frequency”. The purpose of "getting up" is sufficient.
  • B is the total working bandwidth of the radar
  • B w is the working bandwidth of a frequency-modulated continuous wave
  • the frequency hopping parameters ⁇ and ⁇ that determine the start frequency point and the "stop" frequency point of the first function it is necessary to combine the radar working frequency band, the working bandwidth B w of the FM continuous wave, and the radar emission
  • the slope and other parameters of the frequency modulated continuous wave (FMCW) are predefined or randomly generated.
  • the working frequency band of the radar is 0 ⁇ B
  • the total working bandwidth of the radar is B
  • the slope of is represented by the letter a;
  • the starting frequency b 1 of the first FM continuous wave of the detection sub-frame determined by the radar according to the above-mentioned inverse proportional function that is, the starting frequency of the frequency hopping Point
  • the working bandwidth B w of the FM continuous wave cannot exceed the highest frequency value B of the above-mentioned radar working frequency band
  • the starting frequency of the last FM continuous wave of the detection subframe That is, the end frequency of the frequency hopping
  • the radar determines the starting frequency b 1 of the first FM continuous wave of the detection sub-frame according to the above-mentioned inverse proportional function (that is, the starting frequency of the frequency hopping Point) cannot exceed the highest frequency value B of the above-mentioned radar operating frequency band, the starting frequency of the last FM continuous wave of the detection subframe (That is, the end frequency of frequency hopping) minus the working bandwidth of the FM continuous wave, B w, cannot be lower than the lowest frequency value 0 of the above-mentioned radar working frequency band, then there is the starting frequency b 1 of the first FM continuous wave of the detection sub-frame according to the above-mentioned inverse proportional function (that is, the starting frequency of the frequency hopping Point) cannot exceed the highest frequency value B of the above-mentioned radar operating frequency band, the starting frequency of the last FM continuous wave of the detection subframe (That is, the end frequency of frequency hopping) minus the working bandwidth of the FM continuous wave, B w, cannot be lower than the lowest frequency value
  • the radar determines the starting frequency b 1 of the first FM continuous wave of the detection sub-frame according to the first function (that is, the starting frequency point of the frequency hopping ) Cannot be lower than the lowest frequency value 0 of the above-mentioned radar operating frequency band, the starting frequency of the last FM continuous wave of the detection subframe (That is, the end frequency of the frequency hopping) plus the working bandwidth B w of the FM continuous wave cannot be higher than the highest frequency value B of the above-mentioned radar working frequency band, then there is the starting frequency b 1 of the first FM continuous wave of the detection sub-frame according to the first function (that is, the starting frequency point of the frequency hopping ) Cannot be lower than the lowest frequency value 0 of the above-mentioned radar operating frequency band, the starting frequency of the last FM continuous wave of the detection subframe (That is, the end frequency of the frequency hopping) plus the working bandwidth B w of the FM continuous wave cannot be higher than the highest frequency value B of the above-mentioned radar working frequency band, then
  • the radar determines the starting frequency b 1 of the first FM continuous wave of the detection sub-frame according to the inverse proportional function (ie the starting frequency point of frequency hopping). ) Minus the working bandwidth B w of the FM continuous wave cannot be lower than the lowest frequency value 0 of the above-mentioned radar working frequency band, the starting frequency of the last FM continuous wave of the detection subframe (That is, the end frequency of the frequency hopping) cannot be higher than the highest frequency value B of the above-mentioned radar working frequency band, then there is
  • Fig. 7 shows a schematic diagram of a radar frequency hopping device according to an embodiment of the present application.
  • the radar frequency hopping device 700 includes a storage module 710, a processing module 720, and a transmitting module 730.
  • the transmitting module 730 is configured to perform frequency hopping and sequentially transmit the M frequency-modulated continuous waves according to the determined starting frequency.
  • M FM continuous waves form a detection subframe
  • N detection subframes form a detection frame.
  • the N detection subframes in the same detection frame are determined by using the same first function.
  • the starting frequency of M FM continuous waves are determined by using the same first function.
  • the first function is a monotonic function that changes with the value of k, and the greater the value of k, the smaller the rate of change of the function, that is, as the sequence number of the FM continuous wave increases, the start frequency of the two adjacent FM continuous waves is different The difference will be smaller.
  • the minimum calculation unit of the Fast Fourier Transform (FFT) operation is 2
  • the time domain length of the waveform is a power of 2
  • a very effective 2-basis-fast Fourier transform can be used to Speed up the processing time, so in order to facilitate the subsequent fast Fourier transform of the echo intermediate frequency signal, the number of FM continuous waves contained in each detection subframe, that is, K/N can be a power of 2.
  • S820 Receive the signal reflected by the target, and calculate the relative speed of the target relative to the radar according to the received signal.
  • M FM continuous waves form a detection subframe
  • N detection subframes form a detection frame.
  • the N detection subframes in the same detection frame are determined by using the same first function.
  • the starting frequency of M FM continuous waves are determined by using the same first function.
  • S8201 Perform fast Fourier transform on the echo intermediate frequency signals corresponding to the M FM continuous waves in at least one of the detection subframes to obtain a first velocity parameter
  • the working frequency range of the detection subframe can be obtained
  • the first speed parameter within has a larger speed measurement range, but since a detection sub-frame contains fewer FM continuous waves, that is, the working period is shorter, the resolution of the measured first speed parameter is lower, that is, the measured Two adjacent speed values smaller than the resolution cannot be accurately distinguished and will be output in a fuzzy manner. Therefore, the value obtained in the first speed parameter is actually a set of relatively "fuzzy" values.
  • S8202 Perform fast Fourier transform on at least one set of echo intermediate frequency signals corresponding to N FM continuous waves with the same starting frequency in the detection frame to obtain a second velocity parameter;
  • this step by performing fast Fourier transform on the phase sequence of the echo intermediate frequency signal corresponding to at least one group of N FM continuous waves with the same starting frequency in the detection frame at the same time sampling point, it can be obtained
  • the second speed parameter within the range of the complete working period of the detection frame. Since the group of multiple FM continuous waves with the same starting frequency corresponds to the working period of one detection frame, the speed measurement resolution of the second speed parameter Higher, but because the selected interval between adjacent FM continuous waves is larger, the speed measurement range of the second speed parameter is smaller, that is, the range of the value obtained in the second speed parameter is smaller, but the value is more accurate.
  • S8203 Calculate and obtain the relative speed of the target according to the first speed parameter and the second speed parameter;
  • Fig. 9A shows a schematic diagram of a radar according to an embodiment of the present application.
  • the radar 900 includes a radar frequency hopping device 910, a signal receiving module 920, and a calculation module 930.
  • the signal receiving module 920 is used to receive the signal reflected by the target
  • the calculation module 930 is configured to calculate the relative speed of the target relative to the radar according to the reflected signal received by the signal receiving module 920.
  • M FM continuous waves form a detection subframe
  • N detection subframes form a detection frame.
  • the N detection subframes in the same detection frame are determined by using the same first function.
  • the starting frequency of M FM continuous waves are determined by using the same first function.
  • the first calculation module 9301 is configured to perform fast Fourier transform on the echo intermediate frequency signals corresponding to the M FM continuous waves in at least one of the detection subframes to obtain the first velocity parameter;
  • the third calculation module 9303 is configured to perform matching calculation according to the first speed parameter and the second speed parameter to obtain the relative speed of the target.
  • Fig. 10 shows a structural diagram of a computing device according to an embodiment of the present application.
  • the computing device 1000 includes a processor 1010, a memory 1020, a communication interface 1030, and a bus 1040.
  • the processor 1010 may be connected to the memory 1020.
  • the memory 1020 can be used to store the program code and data. Therefore, the memory 1020 may be a storage module inside the processor 1010, or an external storage module independent of the processor 1010, or may include a storage module inside the processor 1010 and an external storage module independent of the processor 1010. part.
  • the processor 1010 may adopt a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made programmable gate arrays (field programmable gate arrays, FPGAs) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor 1010 adopts one or more integrated circuits to execute related programs to implement the technical solutions provided in the embodiments of the present application.
  • the processor 1010 executes the computer-executable instructions in the memory 1020 to execute the operation steps of the foregoing method.
  • the computing device 1000 may correspond to a corresponding subject in executing the method according to each embodiment of the present application, and the above-mentioned and other operations and/or functions of each module in the computing device 1000 are respectively intended to realize the present application.
  • the corresponding flow of each method in the embodiment will not be repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical or other forms.
  • each functional module in each embodiment of the present application may be integrated in a processing module or a chip, or each module may exist alone physically, or two or more modules may be integrated in a module or chip.
  • the function is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computing device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it is used to execute a method for controlling radar frequency hopping or a method for radar speed measurement.
  • the method includes At least one of the solutions described in each of the foregoing embodiments.
  • computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory Erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including, but not limited to, wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access the Internet). connect).
  • LAN local area network
  • WAN wide area network
  • Fig. 11 shows a structural diagram of a vehicle according to an embodiment of the present application.
  • the vehicle 1100 may be a conventional vehicle or an autonomous driving vehicle.
  • Autonomous driving vehicles may also be called unmanned vehicles or intelligent driving vehicles, etc., which can drive in manual mode, fully autonomous mode, or partially autonomous mode.
  • an autonomous vehicle can drive autonomously over a geographic area with little or no control input from the driver.
  • the radar system 1110 may be, but is not limited to, the radar 900 in FIG. 9A, which may be a system composed of at least one millimeter wave radar, but in practical applications, a vehicle is often equipped with multiple millimeter wave radars, lidars, etc. , In order to complete automatic operations or auxiliary operations such as collision avoidance, speed measurement, and distance measurement during driving.
  • the communication system 1120 which is connected to the radar system 1110, can communicate wirelessly with one or more devices directly or via a communication network.
  • the communication system 1120 may use third-generation (3G) cellular communication (such as CDMA, EVDO, GSM/GPRS), fourth-generation (4G) cellular communication (such as LTE), or fifth-generation (5G) cellular communication.
  • 3G third-generation
  • 4G fourth-generation
  • 5G fifth-generation
  • the communication system 1120 may use WiFi to communicate with a wireless local area network (WLAN).
  • WLAN wireless local area network
  • the communication system 1120 may directly communicate with other devices using an infrared link, Bluetooth, or ZigBee.
  • a computing system 1130 which is connected to the communication system 1120.
  • the computing system 1130 can be, but is not limited to, the control device 612 in FIG. 6 or the computing device 1000 in FIG. 10, with program instructions stored thereon.
  • the radar system 1110 can be controlled through the communication system 1120 to execute one or all of the above methods for controlling radar frequency hopping or radar speed measurement methods;
  • the foregoing computing system 1130 may also be, but is not limited to, the foregoing computer storage medium, on which program code is stored.
  • the radar system 1110 can be controlled through the communication system 1120 to perform the foregoing control.

Abstract

提供了一种用于控制雷达跳频的方法、装置以及雷达测速方法和雷达,其中用于控制雷达跳频的方法包括:根据第一函数确定多个调频连续波的起始频率(621);控制雷达按照确定的起始频率执行跳频依次发射该多个调频连续波(622)。该方法既能实现降低雷达互干扰概率的目的,还能利用现有的简单的数字信号处理方法进行测速,降低计算量,应用较为方便。

Description

用于控制雷达跳频的方法和装置以及雷达测速方法和雷达 技术领域
本申请涉及雷达测量技术领域,特别涉及一种用于控制雷达跳频的方法、雷达跳频装置、雷达测速方法、雷达、芯片、计算机程序和可读存储介质。
背景技术
随着社会的发展,智能汽车正在逐步进入人们的日常生活中。传感器在智能汽车的辅助驾驶和自动驾驶中发挥着十分重要的作用。安装在车上的各式各样的传感器,比如毫米波雷达,激光雷达,摄像头,超声波雷达等,在汽车行驶过程中随时感知周围的环境,收集数据,进行移动物体的辨识与追踪,以及静止场景如车道线、标示牌的识别,并结合导航仪及地图数据进行路径规划。传感器可以预先察觉到可能发生的危险并及时帮助驾驶员甚至自主采取必要的规避手段,有效提高了汽车驾驶的安全性和舒适性。
其中,毫米波(Millimeter Wave)是指波长介于1-10mm的电磁波,其对应的频率范围一般为30-300GHz。在这个频段,毫米波雷达具有带宽大、波长短、雷达分辨率高等特性,并且其相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作等特性,基于其以上特性,使得毫米波雷达相对于其他传感器,更加适合应用于车载领域。
如图1所示,现在市面常用的车载毫米波雷达系统,一般包括振荡器、发射天线、接收天线、混频器、处理器和控制器等装置。其工作原理为:振荡器会产生一个频率随时间线性增加的信号(调频连续波,Frequency Modulated Continuous Wave,FMCW),一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出 去,接收天线接收车辆前方物体反射回来的毫米波信号,在混频器与本振信号进行混频,得到中频信号(包含了目标物体的相对距离、速度、角度等信息),经过低通滤波器并经过放大处理后输送到处理器,处理器对中频信号进行处理(一般对信号采样后,进行快速傅里叶变换,进行频谱分析)以得到目标物体的距离、速度和角度等信息,最后输出到控制器控制车辆的行为。
随着车载雷达渗透率的提升,汽车雷达之间的互干扰越来越严重,将会极大降低雷达检测概率或提升其虚警概率,对安全或舒适性造成不可忽视的影响。如何降低车载雷达之间的干扰是必须要解决的问题。
现有的车载雷达抗干扰的方法有雷达波形跳频技术,指的是雷达在其工作频段检测到有其他雷达产生的干扰后,即跳到另一个工作频段,以防止多雷达之间的干扰。雷达普遍通过帧内随机跳频技术,以达到降低互干扰概率的效果。
然而,帧内随机跳频技术虽然有较好的降低互干扰概率的效果,但是由于其发射频率是在一定带宽范围内随机分布,无固定规律,因此也无法使用现有的简单的数字信号处理方法,例如快速傅里叶变换(FFT)等对回波中频信号进行处理,从而计算目标物体的相对速度,导致一定程度上增加了处理器的运算量。
发明内容
有鉴于此,本申请提供了一种用于控制雷达跳频的方法、雷达跳频装置、雷达测速方法、雷达、芯片、计算机程序和可读存储介质,既能实现降低雷达互干扰概率的目的,还能利用现有的简单的数字信号处理方法进行测速计算,降低计算量,应用较为方便。
第一方面,提供一种用于控制雷达跳频的方法,其中,包括:
根据第一函数确定多个调频连续波的起始频率;
控制雷达按照所述确定的起始频率,执行跳频依次发射所述多个调频连续波。
由上,本申请通过设计一个第一函数,并通过该第一函数确定多 个调频连续波的起始频率,从而控制雷达在跳频发射信号时,按照该确定的起始频率依次发射多个调频连续波,从而达到跳频的目的。值得说明的是,由于雷达的工作带宽有一定范围,以及第一函数的特性,会导致相邻调频连续波之间的频率差异越来越小,因此上述多个调频连续波的数量一般不会取太大。至此,本申请既可实现雷达跳频,降低雷达互干扰概率的目的,并且由于雷达发射的多个调频连续波的起始频率是按照上述第一函数确定的,因此,在进行测速过程中,当对连续多个周期的回波中频信号,在同一个时间采样点上的相位序列进行计算时,可以使用现有的简单的数字信号处理方法,例如快速傅里叶变换(Fast Fourier Transform,FFT)等进行处理并计算,以完成对目标物体的测速。
根据第一方面,在所述控制雷达跳频方法的第一种可能的实现方式中,所述第一函数为:
Figure PCTCN2020086408-appb-000001
且M≥2,
其中,b k是第k个调频连续波的起始频率,k是各调频连续波的序号,α、β分别是跳频参数,M是所述多个调频连续波的数量。
由上,该第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,即随着调频连续波序号的增大,相邻两个调频连续波的起始频率之差则会越小,当k=1时,b 1=α,即α决定了该第一函数的起始频点(第一个调频连续波的起始频率),当k→+∞时,b k=β,(
Figure PCTCN2020086408-appb-000002
可忽略不计),即β决定了该第一函数的“终止”频点,因此,根据雷达的工作频段对跳频参数α、β进行定义,即可确定每个调频连续波的起始频率。
根据第一方面或第一方面的第一种可能的实现方式,在所述控制雷达跳频方法的第二种可能的实现方式中,所述多个调频连续波的数量为2的幂次。
由上,由于上述第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,因此,为保证各个调频连续波的频点(起始 频率)能够尽可能的“跳起来”,多个调频连续波的数量不能取值太大,并且,由于快速傅里叶变换(FFT)运算的最小计算单元为2,当波形的时域长度为2的幂次时,可以使用非常有效的2基底-快速傅里叶变换来加快处理时间,因此为方便运算,调频连续波的数量的取值可以为2的幂次。
根据第一方面的第二种可能的实现方式,在所述控制雷达跳频方法的第三种可能的实现方式中,任意相邻的两个所述调频连续波的所述起始频率之差大于第一阈值,该第一阈值根据预定义或预先配置的规则确定。
由上,该第一阈值的目的是为保证各个调频连续波的频点(起始频率)能够尽可能的“跳起来”,在取值时,可根据预定义确定,也可根据预先配置的规则确定,通过设定该第一阈值可对上述第一函数中M(多个调频连续波的数量)以及跳频参数α、β的取值进行限定。
根据第一方面、第一方面的第一种可能、第二种可能或第三种可能的实现方式,在所述控制雷达跳频方法的第四种可能的实现方式中,所述多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;
同一个探测帧内的所述多个探测子帧,使用相同的所述第一函数,用于确定其包含的多个调频连续波的起始频率。
由上,雷达在工作时,需要连续发射数量较多的调频连续波,若根据上述第一函数确定雷达发射的全部调频连续波的起始频率,由于雷达的工作带宽有一定范围,以及第一函数的特性,则会导致相邻调频连续波之间的起始频率之差越来越小,跳频效果不明显,从而导致防干扰效果降低,基于此,本申请将一定数量的多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧,并且该同一探测帧内的多个探测子帧,使用上述第一函数确定第一个探测子帧包含的多个调频连续波的起始频率后,控制雷达按照该确定的起始频率重复依次发送同一探测帧内的其他探测子帧的调频连续波即可,无需重复使用第一函数进行上述起始频率的确定。
根据第一方面、第一方面的第一种可能、第二种可能或第三种可能的实现方式,在所述控制雷达跳频方法的第五种可能的实现方式中,在所述雷达检测到存在干扰信号时,所述雷达按照所述确定的起始频率执行跳频。
由上,本申请中,雷达可按照确定的起始频率持续执行跳频发射多个调频连续波,也可在检测到存在干扰信号时,再按照确定的起始频率持续执行跳频发射多个调频连续波,以降低工作负荷。
第二方面,提供一种雷达跳频装置,其中,包括:
处理模块,用于根据第一函数确定多个调频连续波的起始频率;
发射模块,按照所述确定的起始频率,执行跳频依次发射所述多个调频连续波。
由上,本申请通过设计一个第一函数,并通过该第一函数确定多个调频连续波的起始频率,从而控制雷达在跳频发射信号时,按照该确定的起始频率依次发射多个调频连续波,从而达到跳频的目的。值得说明的是,由于雷达的工作带宽有一定范围,以及第一函数的特性,会导致相邻调频连续波之间的频率差异越来越小,因此上述多个调频连续波的数量一般不会取太大。至此,本申请既可实现雷达跳频,降低雷达互干扰概率的目的,并且由于雷达发射的多个调频连续波的起始频率是按照上述第一函数确定的,因此,在进行测速过程中,当对连续多个周期的回波中频信号,在同一个时间采样点上的相位序列进行计算时,可以使用现有的简单的数字信号处理方法,例如快速傅里叶变换(FFT)等进行处理并计算,以完成对目标物体的测速。
根据第二方面,在所述雷达跳频装置的第一种可能的实现方式中,所述第一函数为:
Figure PCTCN2020086408-appb-000003
且M≥2,
其中,b k是第k个调频连续波的起始频率,k是各调频连续波的序号,α、β分别是跳频参数,M是所述多个调频连续波的数量。
由上,该第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,即随着调频连续波序号的增大,相邻两个调频连续 波的起始频率之差则会越小,当k=1时,b 1=α,即α决定了该第一函数的起始频点(第一个调频连续波的起始频率),当k→+∞时,b k=β,(
Figure PCTCN2020086408-appb-000004
可忽略不计),即β决定了该第一函数的“终止”频点,因此,根据雷达的工作频段对跳频参数α、β进行定义,即可确定每个调频连续波的起始频率。
根据第二方面或第二方面的第一种可能的实现方式,在所述雷达跳频装置的第二种可能的实现方式中,所述多个调频连续波的数量为2的幂次。
由上,由于上述第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,因此,为保证各个调频连续波的频点(起始频率)能够尽可能的“跳起来”,多个调频连续波的数量不能取值太大,并且,由于快速傅里叶变换(FFT)运算的最小计算单元为2,当波形的时域长度为2的幂次时,可以使用非常有效的2基底-快速傅里叶变换来加快处理时间,因此为方便运算,调频连续波的数量的取值可以为2的幂次。
根据第二方面的第一种可能的实现方式,在所述雷达跳频装置的第三种可能的实现方式中,任意相邻的两个所述调频连续波的所述起始频率之差大于第一阈值,该第一阈值根据预定义或预先配置的规则确定。
由上,该第一阈值的目的是为保证各个调频连续波的频点(起始频率)能够尽可能的“跳起来”,在取值时,可根据预定义确定,也可根据预先配置的规则确定,通过设定该第一阈值可对上述第一函数中M(多个调频连续波的数量)以及跳频参数α、β的取值进行限定。
根据第二方面、第二方面的第一种可能、第二种可能或第三种可能的实现方式,在所述雷达跳频装置的第四种可能的实现方式中,所述多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;
同一个探测帧内的所述多个探测子帧,使用相同的所述第一函数,用于确定其包含的多个调频连续波的起始频率。
由上,雷达在工作时,需要连续发射数量较多的调频连续波,若 根据上述第一函数确定雷达发射的全部调频连续波的起始频率,由于雷达的工作带宽有一定范围,以及第一函数的特性,则会导致相邻调频连续波之间的起始频率之差越来越小,跳频效果不明显,从而导致防干扰效果降低,基于此,本申请将一定数量的多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧,并且该同一探测帧内的多个探测子帧,使用上述第一函数确定第一个探测子帧包含的多个调频连续波的起始频率后,控制雷达按照该确定的起始频率重复依次发送同一探测帧内的其他探测子帧的调频连续波即可,无需重复使用第一函数进行上述起始频率的确定。
根据第二方面、第二方面的第一种可能、第二种可能或第三种可能的实现方式,在所述雷达跳频装置的第五种可能的实现方式中,还包括触发模块,所述触发模块用于在检测到存在干扰信号时,触发所述发射模块按照所述确定的起始频率执行跳频。
由上,本申请中,雷达可按照确定的起始频率持续执行跳频发射多个调频连续波,也可设置一触发模块,当检测到存在干扰信号时,再触发发射模块控制雷达按照确定的起始频率持续执行跳频发射多个调频连续波,以降低工作负荷。
第三方面,提供一种雷达测速方法,其中,包括:
采用上述的用于控制雷达跳频的方法,控制所述雷达执行跳频依次发射多个调频连续波;
接收所述目标反射回的信号,
根据所述接收到的信号,计算所述目标相对于所述雷达的相对速度。
由上,本申请基于上述用于控制雷达跳频的方法执行跳频,并将确定好起始频率的多个调频连续波向目标发射,并接收经过目标反射回的信号,通过对接收到并经过内部混频滤波处理的多个周期的中频信号在同一时间采样点上的相位序列进行快速傅里叶变换可得到多普勒频率,根据多普勒频率即可得到雷达与目标的相对速度。
根据第三方面,在所述雷达测速方法的第一种可能的实现方式中, 所述多个调频连续波组成一个探测子帧,多个探测子帧组成一探测帧;其中,对于同一个探测帧内的所述多个探测子帧,使用相同的第一函数,用于确定其包含的多个调频连续波的起始频率;
所述计算所述目标相对于所述雷达的相对速度包括:
对至少一个所述探测子帧内的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
对所述探测帧内的至少一组具有相同起始频率的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
根据所述第一速度参数和第二速度参数计算获得所述目标的所述相对速度。
由上,在雷达的测速过程中,多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧,同一个探测帧内的多个探测子帧使用相同的第一函数确定其包含的多个调频连续波的起始频率。该测速过程首先通过对发射的至少一个探测子帧中的多个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测子帧的工作频段范围内的第一速度参数,其测速范围较大,但是由于一个探测子帧包含的调频连续波较少,即工作周期较短,因此测得的第一速度参数的分辨率较低。其次,通过对所述探测帧内的至少一组具有相同起始频率的多个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测帧的完整工作周期范围内的第二速度参数,由于该一组具有相同起始频率的多个调频连续波对应的是一个探测帧的工作周期,因此该第二速度参数的测速分辨率较高,但由于选取的相邻调频连续波之间的间隔较大,使得第二速度参数的测速范围较小。通过对上述第一速度参数和第二速度参数进行匹配计算,即可得到测速范围大,分辨率高的目标相对速度。
根据第三方面的第一种可能的实现方式,在所述雷达测速方法的第二种可能的实现方式中,所述计算包括将所述第二速度参数的测速范围进行等效扩展,并与所述第一速度参数的测速范围进行匹配计算, 获得所述目标的所述相对速度。
由上,由于第一速度参数的测速范围较大但分辨率较低,而第二速度参数的测速范围较小但分辨率较高,此时通过对分辨率较高的第二速度参数进行等效扩展计算,使其测速范围与第一速度参数的测速范围相同,此时通过将第二速度参数中分辨率较高的数据与第一速度参数中分辨率较低的数据进行匹配,即可获得目标相对于雷达的相对速度。
第四方面,提供一种雷达,其中,包括:
上述雷达跳频装置;
信号接收模块,所述信号接收模块用于接收目标反射回的信号;
计算模块,用于根据所述信号接收模块接收的反射回的信号,计算目标相对于雷达的相对速度。
由上,本申请提供了一种基于上述雷达跳频装置的雷达,用于执行跳频依次向目标发射确定起始频率的多个调频连续波,并通过信号接收模块接收目标反射回的信号,通过计算模块对接收到的多个周期的中频信号在同一时间采样点上的相位序列进行快速傅里叶变换可得到多普勒频率,根据多普勒频率即可得到雷达与目标的相对速度。
根据第四方面,在所述雷达的第一种可能的实现方式中,多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;其中,同一个探测帧内的所述多个探测子帧,使用相同的第一函数,用于确定其包含的多个调频连续波的起始频率;
所述计算模块包括:
第一计算模块,用于对至少一个所述探测子帧内的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
第二计算模块,用于对所述探测帧内的至少一组具有相同起始频率的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
第三计算模块,用于根据所述第一速度参数和第二速度参数计算获得所述目标相对于雷达的相对速度。
由上,在雷达的测速过程中,多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧,同一个探测帧内的多个探测子帧使用相同的第一函数确定其包含的多个调频连续波的起始频率。该测速过程首先通过对发射的至少一个探测子帧中的多个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测子帧的工作频段范围内的第一速度参数,其测速范围较大,但是由于一个探测子帧包含的调频连续波较少,即工作周期较短,因此测得的第一速度参数的分辨率较低。其次,通过对所述探测帧内的至少一组具有相同起始频率的多个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测帧的完整工作周期范围内的第二速度参数,由于该一组具有相同起始频率的多个调频连续波对应的是一个探测帧的工作周期,因此该第二速度参数的测速分辨率较高,但由于选取的相邻调频连续波之间的间隔较大,使得第二速度参数的测速范围较小。通过对上述第一速度参数和第二速度参数进行匹配计算,即可得到测速范围大,分辨率高的目标相对速度。
根据第四方面的第一种可能的实现方式,在所述雷达的第二种可能的实现方式中,所述第三计算模块用于将所述第二速度参数的测速范围进行等效扩展,并与所述第一速度参数的测速范围进行匹配计算,获得所述目标相对于雷达的相对速度。
由上,由于第一速度参数的测速范围较大但分辨率较低,而第二速度参数的测速范围较小但分辨率较高,此时通过对分辨率较高的第二速度参数进行等效扩展计算,使其测速范围与第一速度参数的测速范围相同,此时通过将第二速度参数中分辨率较高的数据与第一速度参数中分辨率较低的数据进行匹配,即可获得目标相对于雷达的相对速度。
第五方面,提供一种芯片,包括:输入接口、输出接口、至少一个处理器和至少一个存储器,所述至少一个存储器用于存储代码,所述至少一个处理器用于执行所述存储器中的代码,当所述代码被执行 时,所述芯片实现用于控制雷达跳频的方法、雷达测速方法中的任意一项所述的方法。
第六方面,提供一种计算机可读存储介质,其上存储有程序指令,所述程序指令当被计算机执行时使得所述计算机执行用于控制雷达跳频的方法、雷达测速方法中的任意一项所述的方法。
第七方面,提供一种计算机程序产品,其包括有程序指令,所述程序指令当被计算机执行时使得所述计算机执行用于控制雷达跳频的方法、雷达测速方法中的任意一项所述的方法。
本第八方面还提供一种车辆,其中,包括上述雷达。
附图说明
本申请的特征、特点、特性和优点通过以下结合附图的详细描述将变得更加显而易见。
图1示出了现有车载毫米波雷达系统的架构图;
图2A示出了调频连续波单周期的时间幅度示意图;
图2B示出了调频连续波多周期的时间频率示意图;
图2C示出了发射、接收信号与中频信号的关系示意图;
图3示出了车载雷达互干扰的示意图;
图4A~4F示出了探测雷达与干扰雷达的斜率相同或不同时,互干扰情况的示意图;
图5示出了现有雷达随机跳频技术的示意图;
图6A示出了本申请的雷达跳频所涉及的实施环境的示意图;
图6B示出了本申请用于控制雷达跳频的方法的流程图;
图6C示出了本申请跳频图样的示意图;
图7示出了本申请雷达跳频装置的架构图;
图8A示出了本申请雷达测速方法的流程图;
图8B示出了本申请雷达测速方法中计算步骤的流程图;
图9A示出了本申请雷达的架构图;
图9B示出了本申请雷达中计算模块的架构图;
图10示出了本申请一种计算设备的架构图;
图11示出了本申请一种车辆的架构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
在以下的描述中,所涉及的术语“第一\第二\第三等”或模块A、模块B、模块C等,仅用于区别类似的对象,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
在以下的描述中,所涉及的表示步骤的标号,如S621、S622……等,并不表示一定会按此步骤执行,在允许的情况下可以互换前后步骤的顺序,或同时执行。
对本申请具体实施方式进行进一步详细说明之前,对本申请实施例中涉及的雷达系统、调频连续波(Frequency Modulated Continuous Wave,FMCW)、中频(Intermediate Frequency,IF)等技术术语,以及其在雷达的测距\测速应用中的原理进行说明。
毫米波雷达的调频连续波波形一般是锯齿波,以下以锯齿波为例详细介绍一下毫米波雷达的测距测速原理,为分析方便,使用解析信号进行分析。
如图2A和图2B所示,调频连续波(FMCW)是频率随时间线性变化的信号,假设调频连续波的周期为T c,斜率为a 0,带宽为B,其基带信号的起始频率为b 0,则振荡器输出的第n个周期的调频连续波的等效基带信号可以表示为:
Figure PCTCN2020086408-appb-000005
其中,A是信号幅度,a 0是雷达发送线性调频信号的斜率,b 0是截距(即基带信号的起始频率),
Figure PCTCN2020086408-appb-000006
是初相,N是连续发送调频连续波的周期数。由于频率定义为相位相对于时间的变化率,因此,上述基带信号的频率为:
Figure PCTCN2020086408-appb-000007
该式(1.2)的图像正如图2B所示。
第n个周期的调频连续波的等效基带信号经过上述变频后由发射天线向外发射,发射信号可表示为:
Figure PCTCN2020086408-appb-000008
其中,f c是载波频率,该发射信号遇到目标物体后,会反射回来,发射波与反射波的形状相同,只是有一段时延,第n个周期调频连续波的接收信号表示为
Figure PCTCN2020086408-appb-000009
其中A'是信号经过发射天线增益、目标物体反射、传播损耗、接收天线增益后的信号幅度,τ是雷达信号从发射机发射,经过目标物体反射到接收机接收到信号回波的总时延,
Figure PCTCN2020086408-appb-000010
其中,τ 0是参考距离造成的雷达回波时延,v是目标物体与雷达的径向相对速度,c为光速。考虑到速度v远远小于光速c,对于基带信号,在后续检测中,上式第二项贡献很小,所以在基带信号中,忽略(1.5)式中的第二项;但是在载频中,上式第二项对速度检测起关键作用,所以保留该项,可得
Figure PCTCN2020086408-appb-000011
混频器将接收信号与发射信号混频,并经中频滤波器后,输出中频(IF)信号,中频信号表示为:
Figure PCTCN2020086408-appb-000012
其中,
Figure PCTCN2020086408-appb-000013
是目标物体与雷达的径向相对速度形成的多普勒频率,将中频信号送入处理器进行快速傅里叶变换可得到中频频率f IF
Figure PCTCN2020086408-appb-000014
Figure PCTCN2020086408-appb-000015
则f IF≈a 0τ 0
另外,如图2C所示,中频信号的频率为发射波斜率与时延 τ的乘积,即
Figure PCTCN2020086408-appb-000016
故雷达与目标物体的距离d为
Figure PCTCN2020086408-appb-000017
以上推导是针对于一个目标物体进行的,对于多个目标物体的情况,其同样适用,即接收混频后会得到多个中频信号,送入处理器进行快速傅里叶变换后可得到多个目标物体各自对应的中频频率。
通过上面的推导可以看出,发射信号与接收信号的频率差(中频信号频率)和时延呈线性关系:目标物体越远,返回的波收到的时间就越晚,那么它跟入射波的频率差值就越大。通过判断中频信号频率的高低就可以判断目标物体的距离。
对于速度检测,由式(1.7)可以看出,相邻两个周期的回波中频信号在同一个时间采样点上的相位差是一个定值,
Figure PCTCN2020086408-appb-000018
对连续多个周期的回波中频信号在同一个时间采样点上的相位序列进行快速傅里叶变换可以得到多普勒频率
Figure PCTCN2020086408-appb-000019
其和目标物体的径向相对速度v的关系可以表示为
Figure PCTCN2020086408-appb-000020
其中,λ为雷达信号波长。
故雷达与目标物体的径向相对速度v为,
Figure PCTCN2020086408-appb-000021
以上介绍为现有的车载毫米波雷达系统的测距和测速原理,该测距或测速在没有其他雷达干扰的情况下,能够比较迅速精确的测出目标物体的距离和相对速度,然而随着车载雷达渗透率的提升,汽车雷达之间的互干扰越来越严重,将会降低雷达检测成功概率或提升其虚警概率,对安全驾驶造成不可忽视的影响。
下面参考图3、图4A~4F对车载雷达互干扰的原理进行详细介绍。
如图3所示为车载雷达互干扰示意图,令第一车道上的雷达1为探测雷达,其调频连续波的斜率是a 0,截距是b 0,周期是T c;第二车道上的雷达2为干扰雷达,其调频连续波的斜率是a 1,截距是b 1。当 雷达1在工作时,通过向其正前方的目标物体发射毫米波信号,并接收其反射回来的毫米波信号,以此来对前方的目标物体进行测距和测速,与此同时,相邻的第二车道上雷达2(干扰雷达)所发射的信号也被雷达1所接收。
此时假设b 1=b 0,雷达1的最大测距距离对应的回波时延为τ max(即式错误!未找到引用源。中代入雷达1的最大测距距离,如250m,算出的时延,如1.67us),到达雷达1接收天线的雷达2的干扰信号的时延为τ 1,考虑雷达发射时刻存在定时误差为Δτ(如由于GPS定时误差产生的发射时刻误差60ns)。雷达1的信号检测的时间区间是τ max~T c
若雷达1的信号波形的斜率与雷达2的信号波形的斜率一致,即a 0=a 1,且两者的工作频段相同时,则会出现虚警(ghost),此时在雷达1的接收机处形成的中频信号为,
Figure PCTCN2020086408-appb-000022
其中
Figure PCTCN2020086408-appb-000023
A′ i是干扰雷达信号(即雷达2发射的雷达信号)经过发射天线增益、目标物体反射、传播损耗、接收天线增益后的信号幅度,
Figure PCTCN2020086408-appb-000024
是干扰雷达信号的初相,
Figure PCTCN2020086408-appb-000025
是干扰雷达信号由于目标物体与探测雷达的径向相对速度形成的多普勒频率,τ i是干扰雷达信号(即雷达2发射的雷达信号)从其发射机发射,到被干扰雷达接收机(即雷达1的接收机)接收到信号的时延。
如图4A所示,对上述中频信号进行快速傅里叶变换后的距离响应可以发现两个峰值,如图4B所示,每个峰值对应着一个目标物体。雷达1误认为前方有虚假目标物体所对应的“目标物体”,而实际上该“目标物体”是不存在的,即所谓的“Ghost”或者“虚警”。虚警产生后会使得自动驾驶汽车在前方并没有物体的情况下减速或急刹,降低了驾驶的舒适度。
如果雷达1的信号波形与雷达2的信号波形在斜率上存在差异, 如图4C所示,雷达2的干扰信号与雷达1的发射信号混频之后会产生一个包含各种频率分量的中频信号,
Figure PCTCN2020086408-appb-000026
其中,
Figure PCTCN2020086408-appb-000027
经过快速傅里叶变换后如图4D所示,会出现一个干扰平台,使得真实目标物体的“凸出”程度不够,对检测带来困难,提升出现漏检的可能。漏检产生后会使得自动驾驶汽车在前方有目标物体的情况下,误以为没有目标物体,不采取减速或制动,造成交通事故,降低车辆行驶的安全性。
雷达1的信号波形与雷达2的信号波形在斜率上存在差异,分为以下两种情况:
当a 1<a 0时,如图4E所示,由于干扰中频区域的存在,会产生干扰平台问题,产生漏检;
当a 1>a 0时,如图4F所示,由于干扰中频区域的存在,也会产生干扰平台问题,产生漏检。
基于上述雷达互干扰的问题,现有技术采用了一种雷达帧内随机跳频的方式,以防止多雷达之间的干扰。
具体的,如图5所示为现有的雷达随机跳频的示意图,按照该雷达随机跳频技术,雷达在其工作过程中,依靠完全随机化的发射方式发射不同起始频率的调频连续波,使得干扰被打散,以防止出现连续被干扰的工作周期。通过帧内随机跳频技术,当出现多个干扰雷达时,也可以达到降低互干扰概率的效果。
现有技术存在的缺陷:帧内随机跳频技术虽然有较好的降低互干扰概率的效果,但是由于其发射频率是在一定带宽范围内随机分布,无固定规律,因此无法使用现有的简单的数字信号处理方法,例如快速傅里叶变换(FFT)等对连续多个周期的回波中频信号在同一个时 间采样点上的相位序列进行处理以计算目标物体的相对速度。
基于上述现有技术所存在的缺陷,本申请的实施例提供了一种用于控制雷达跳频的方法,通过预先设计的第一函数,使雷达发射的多个调频连续波具有不同的起始频率,极大降低了本雷达与其他干扰雷达出现工作频段重合的情况,达到降低互干扰概率的效果。需要说明的是,上述及下文所述的“一个调频连续波”实际指的是一个脉冲重复周期的调频连续波,为便于描述,直接使用“一个调频连续波”的方式。同时,通过下述具体实施例可知,本申请中多个调频连续波的起始频率按照该第一函数进行排布,即,其接收到的多个对应的中频信号也同样按照该第一函数进行排布,因此,当进行测速过程中的对连续多个周期的回波中频信号在同一个时间采样点上的相位序列的计算时,可以使用现有的简单的数字信号处理方法,例如快速傅里叶变换(FFT)等进行处理并计算,以完成对目标物体的测速。下面对本申请进行详细介绍。
参见图6A示出的本申请的实施例的雷达跳频所涉及的实施环境的示意图,该实施环境包括雷达611和控制设备612;
其中雷达611可以是上述图1所示的结构,具有振荡器、发射天线、接收天线、混频器、处理器和控制器等装置,并执行其对应的功能;
控制设备612用于控制雷达611执行跳频,在一些实施例中,可执行下述的用于控制雷达跳频的方法。
下面参见图6B示出的流程图,对本申请用于控制雷达跳频的方法的一实施例进行介绍,该方法包括:
S621:根据第一函数确定多个调频连续波的起始频率。
S622:控制雷达按照所述确定的起始频率执行跳频依次发射所述多个调频连续波。
其中,所述第一函数可以为:
Figure PCTCN2020086408-appb-000028
且M≥2,
其中,b k是第k个调频连续波的起始频率,k是各调频连续波的序号,α、β分别是跳频参数,M是所述多个调频连续波的数量。
所述第一函数还可以是某种变体,例如分母还设置有系数的变体等,但都可以通过数学变化得到上述类似反比例函数,故无论形式上怎样变换,只要都能变换到上述或类似的函数格式,均可采用。
另外,所述多个调频连续波的数量可以为2的幂次。由于快速傅里叶变换(FFT)运算的最小计算单元为2,当波形的时域长度为2的幂次时,可以使用非常有效的2基底-快速傅里叶变换来加快处理时间,运算方便。因此,当所述多个调频连续波的数量为2的幂次时,便于进行后续对回波中频信号进行快速傅里叶变换。
并且,任意相邻的两个所述调频连续波的所述起始频率之差大于第一阈值,该第一阈值根据预定义或预先配置的规则确定,其目的是使得各个调频连续波的频点(起始频率)能够尽可能的“跳起来”,即使得各个调频连续波的频点(起始频率)的差值相对较大,跳频更明显。
所述多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;同一个探测帧内的所述多个探测子帧,使用相同的所述第一函数,用于确定其包含的多个调频连续波的起始频率。
具体的,由于雷达在工作时,需要连续发射数量较多的调频连续波,若根据上述第一函数确定雷达发射的全部调频连续波的起始频率,由于雷达的工作带宽有一定范围,以及第一函数的特性,则会导致相邻调频连续波之间的起始频率之差越来越小,跳频效果不明显,从而导致防干扰效果降低,基于此,本申请将一定数量的多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧,并且该同一探测帧内的多个探测子帧,使用上述第一函数确定第一个探测子帧包含的多个调频连续波的起始频率后,控制雷达按照该确定的起始频率重复依次发送同一探测帧内的其他探测子帧的调频连续波即可,无需重复使用第一函数进行上述起始频率的确定。
所述雷达为毫米波雷达。例如车载毫米雷达波,或路侧使用的毫米雷达波、甚至无人机上装配的毫米波雷达等。
在所述雷达检测到存在干扰信号时,所述雷达按照所述确定的起始频率执行跳频。例如来自其他车辆的雷达的干扰信息,如来自车-路联网的路侧相应雷达,如测速雷达、测流量雷达的干扰信号,又如来自具有毫米波雷达的无人机的干扰信号等。
仍然参见图6B示出的按照本申请实施例的用于控制雷达跳频的方法的流程图,对本申请用于控制雷达跳频的方法的一具体实施方式进行说明。
在进行说明之前,对探测帧、探测子帧和调频连续波之间的关系进行解释,每个探测帧由K个调频连续波组成,每个探测帧等分为N个探测子帧,每个探测子帧包含M=K/N个调频连续波,K>1,N>1;
其中,由于雷达在工作时,需要连续发射数量较多的调频连续波,若根据上述第一函数确定雷达发射的全部调频连续波的起始频率,由于雷达的工作带宽有一定范围,以及第一函数的特性,则会导致相邻调频连续波之间的起始频率之差越来越小,跳频效果不明显,从而导致防干扰效果降低。通过将雷达发射的M个调频连续波组成一个探测子帧,将N个探测子帧组成一个探测帧,每个探测帧包含K个调频连续波(M=K/N),该同一个探测帧内的多个探测子帧使用相同的第一函数确定其包含的M(M=K/N)个调频连续波的起始频率。
本实施例中,用于控制雷达跳频的方法包括下述步骤:
S621:根据第一函数确定多个调频连续波的起始频率。
S622:控制雷达按照所述确定的起始频率执行跳频依次发射所述多个调频连续波。
如图6C所示的跳频图样的示意图,这里需要说明的是,本实施例中的跳频图样指的是多个调频连续波的起始频率的分布规律,并非真实的图样或图像。该跳频图样中的点状分布反应了探测子帧内的M(M=K/N)个调频连续波的起始频率分布序列,同一探测帧内的N个 探测子帧的(M=K/N)个调频连续波的起始频率的分布序列相同,即N个探测子帧之间,具有相同序号的调频连续波的起始频率是相同的。
具体的,该第一函数为:
Figure PCTCN2020086408-appb-000029
其中,b k是每个探测子帧内第k个调频连续波的起始频率,k是探测子帧包含的各调频连续波的序号,α、β分别是跳频参数,K/N=M是每个探测子帧包含的所述调频连续波的数量。
从上式可以看出,该第一函数是一个随着k值变化的函数,当k=1时,b 1=α,即α决定了上述第一函数的起始频点(探测子帧的第一个调频连续波的起始频率),当k→+∞时,b k=β(
Figure PCTCN2020086408-appb-000030
可忽略不计),即β决定了该第一函数的“终止”频点,在实际应用中,探测子帧内的调频连续波的数量并非无穷的,因此上述第一函数的实际终止频点并非等于β,而是一个比较贴近β的数值。
由于跳频的初衷是为了对抗干扰(较小干扰发生的概率),因此希望各个调频连续波的频点(起始频率)能够尽可能的“跳起来”,而通过上述第一函数可知,该第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,即随着调频连续波序号的增大,相邻两个调频连续波的起始频率之差则会越小,因此,k值不能取太大,即每个探测子帧包含的调频连续波的数量K/N不能太大,并且由于快速傅里叶变换(FFT)运算的最小计算单元为2,当波形的时域长度为2的幂次时,可以使用非常有效的2基底-快速傅里叶变换来加快处理时间,因此为方便运算,k的最大值k max=K/N尽可能选为2的幂次(例如8),同时还需要保证探测子帧中最后两个调频连续波的起始频率差距大于第一阈值Δf,以实现上述“跳起来”的目的,为便于描述,将探测子帧的最后两个调频连续波的起始频率分别定义为
Figure PCTCN2020086408-appb-000031
Figure PCTCN2020086408-appb-000032
k max对应的调频连续波序号为K/N,k max-1对应的调频连续波序号为K/N-1,则有
Figure PCTCN2020086408-appb-000033
即得到不等式,
|α-β|≥k max(k max-1)Δf;     式(2)
上述最小跳频阈值Δf并非一固定值,可根据雷达的工作频段,以及每个探测子帧包含的调频连续波的数量进行选值,本实施例对其具体数值不做限定,满足上述“跳起来”的目的即可。
除此之外,考虑到雷达的工作频段的限制,上述雷达在执行跳频时,不可能超出雷达的工作总带宽,同时,还需要考虑到调频连续波的工作带宽,则有
Figure PCTCN2020086408-appb-000034
其中,B是雷达可工作的总带宽,B w是一个调频连续波的工作带宽,B≥B w,代入b 1=α和
Figure PCTCN2020086408-appb-000035
则有
Figure PCTCN2020086408-appb-000036
即得到不等式,
Figure PCTCN2020086408-appb-000037
在实际应用中,对决定上述第一函数的起始频点和“终止”频点的跳频参数α、β的选取时,需要结合雷达工作频段、调频连续波的工作带宽B w以及雷达发射的调频连续波(FMCW)的斜率等参数进行预定义或随机生成,为便于下文描述,假设雷达的工作频段为0~B,雷达的工作总带宽为B,雷达发射的调频连续波(FMCW)的斜率用字母a表示;
下面结合上述两个不等式(式(2)和式(3)),对α、β的选取进行详细分析,具体如下:
假设α>β,即第一函数的起始频点大于“终止”频点,雷达执行跳频是由高频向低频跳跃,由上述两个不等式(式(2)和式(3)) 可以得到:
Figure PCTCN2020086408-appb-000038
当a>0时,即雷达波形是上斜坡锯齿波时,此时雷达根据上述类反比例函数确定的探测子帧的第一个调频连续波的起始频率b 1(即跳频的起始频点)加上调频连续波的工作带宽B w不能超过上述雷达工作频段的最高频率值B,该探测子帧的最后一个调频连续波的起始频率
Figure PCTCN2020086408-appb-000039
(即跳频的结束频点)不能低于上述雷达工作频段的最低频率值0,则有
Figure PCTCN2020086408-appb-000040
当a<0时,即雷达波形是下斜坡锯齿波时,此时雷达根据上述类反比例函数确定的探测子帧的第一个调频连续波的起始频率b 1(即跳频的起始频点)不能超过上述雷达工作频段的最高频率值B,该探测子帧的最后一个调频连续波的起始频率
Figure PCTCN2020086408-appb-000041
(即跳频的结束频点)减去调频连续波的工作带宽B w不能低于上述雷达工作频段的最低频率值0,则有
Figure PCTCN2020086408-appb-000042
同理,假设α<β,即上述第一函数的起始频点小于“终止”频点,雷达执行跳频是由低频向高频跳跃,由上述两个不等式(式(2)和式(3))可以得到:
Figure PCTCN2020086408-appb-000043
当a>0时,即雷达波形是上斜坡锯齿波时,此时雷达根据第一函数确定的探测子帧的第一个调频连续波的起始频率b 1(即跳频的起始频点)不能低于上述雷达工作频段的最低频率值0,该探测子帧的最后一个调频连续波的起始频率
Figure PCTCN2020086408-appb-000044
(即跳频的结束频点)加上调频 连续波的工作带宽B w不能高于上述雷达工作频段的最高频率值B,则有
Figure PCTCN2020086408-appb-000045
当a<0时,即雷达波形是下斜坡锯齿波时,此时雷达根据类反比例函数确定的探测子帧的第一个调频连续波的起始频率b 1(即跳频的起始频点)减去调频连续波的工作带宽B w不能低于上述雷达工作频段的最低频率值0,该探测子帧的最后一个调频连续波的起始频率
Figure PCTCN2020086408-appb-000046
(即跳频的结束频点)不能高于上述雷达工作频段的最高频率值B,则有
Figure PCTCN2020086408-appb-000047
综上所述,可得
当α>β,a>0时,由式(4)和式(5)得
Figure PCTCN2020086408-appb-000048
当α>β,a<0时,由式(4)和式(6)得
Figure PCTCN2020086408-appb-000049
当α<β,a>0时,由式(7)和式(8)得
Figure PCTCN2020086408-appb-000050
当α<β,a<0时,由式(7)和式(9)得
Figure PCTCN2020086408-appb-000051
基于上述式(10)、式(11)、式(12)、式(13),在对上述第一函数的跳频参数α、β进行预定义或选取时,需要根据跳频方式(高频向低频或低频向高频)、对应雷达工作频段、调频连续波的工作带宽等,使所定义或选取的跳频参数α、β满足上述式(10)、式(11)、式(12)、式(13)中的至少一个即可。
假设k max=8,即每个探测子帧最多包含8个调频连续波,第一阈值Δf=20Mhz,雷达可工作的总带宽B=20Ghz,调频连续波的工作带宽B w=200Mhz,另α、β的单位为Mhz,将各参数代入上述式(10)、式(11)、式(12)、式(13),有
当α>β,a>0时,有
Figure PCTCN2020086408-appb-000052
当α>β,a<0时,有
Figure PCTCN2020086408-appb-000053
当α<β,a>0时,有
Figure PCTCN2020086408-appb-000054
当α<β,a<0时,有
Figure PCTCN2020086408-appb-000055
因此,基于上述式(14)、式(15)、式(16)、式(17),在实际应用中,雷达根据设计上的要求使得跳频参数α、β满足上述式(14)、式(15)、式(16)、式(17)中的至少一个即可,例如,当α=1200,β=0时,则满足上述式(14),即可满足上述式(14)。
图7示出了按照本申请实施例的雷达跳频装置的示意图。该雷达跳频装置700包括存储模块710、处理模块720、发射模块730。
存储模块710用于存储雷达的跳频参数,该跳频参数包括第一函数;
处理模块720用于根据第一函数确定M(K/N=M)个调频连续波的起始频率;
发射模块730用于按照所述确定的起始频率执行跳频依次发射所述M个调频连续波。
在一些实施例中,上述存储模块710可以为雷达系统中的存储器,还可以为外置的存储设备,通过无线或有线的方式与处理模块720通信,提供其内部存储的跳频参数;上述处理模块720也并不局限为一个单独的处理模块或处理芯片,在满足上述根据第一函数确定M个调频连续波的起始频率的功能基础上,其可以为雷达系统中的处理器或微控制单元(Microcontroller Unit;MCU)等。
在一些实施例中,M个调频连续波组成一个探测子帧,N个探测子帧组成一个探测帧,同一个探测帧内的所述N个探测子帧,使用相同的第一函数确定其包含的M个调频连续波的起始频率。
在一些实施例中,本申请中所使用的第一函数可以为上述用于控制雷达跳频的方法中的第一函数,即
Figure PCTCN2020086408-appb-000056
其中,b k是每个探测子帧内第k个调频连续波的起始频率,k是探测子帧包含的各调频连续波的序号,α、β分别是跳频参数,K是每个探测帧包含的调频连续波的数量,K/N=M是每个探测子帧包含的所述调频连续波的数量。
该第一函数是随着k值变化的单调函数,并且k值越大,函数的变化率越小,即随着调频连续波序号的增大,相邻两个调频连续波的起始频率之差则会越小,当k=1时,b 1=α,即α决定了上述第一函数的起始频点(探测子帧的第一个调频连续波的起始频率),当k→+∞时,b k=β(
Figure PCTCN2020086408-appb-000057
可忽略不计),即β决定了该第一函数的“终止”频点,因此,根据雷达的工作频段对跳频参数α、β进行定义,即可确定探测子帧内每个调频连续波的起始频率。
在一些实施例中,由于快速傅里叶变换(FFT)运算的最小计算单元为2,当波形的时域长度为2的幂次时,可以使用非常有效的2基底-快速傅里叶变换来加快处理时间,因此为便于进行后续对回波中频信号进行快速傅里叶变换,每个探测子帧包含的调频连续波的数量,即K/N可以为2的幂次。
图8A示出了按照本申请实施例的雷达测速方法的流程图。该方法包括:
S810:采用上述实施例中用于控制雷达跳频的方法,控制雷达执行跳频依次向目标发射M(K/N=M)个调频连续波;
S820:接收目标反射回的信号,并根据接收的信号,计算所述目标相对于所述雷达的相对速度。
在一些实施例中,M个调频连续波组成一个探测子帧,N个探测子帧组成一个探测帧,同一个探测帧内的所述N个探测子帧,使用相同的第一函数确定其包含的M个调频连续波的起始频率。
在一些实施例中,如图8B所示,步骤S820还包括:
S8201:对至少一个所述探测子帧内的M个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
该步骤中,通过对至少一个探测子帧包含的M个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测子帧的工作频段范围内的第一速度参数,其测速范围较大,但是由于一个探测子帧包含的调频连续波较少,即工作周期较短,因此测得的第一速度参数的分辨率较低,即测得的小于该分辨率的相邻的两个速度值无法被精确分辨,会进行模糊输出,因此该第一速度参数中得到的值实际上为一组相对较为“模糊”的值。
S8202:对所述探测帧内的至少一组具有相同起始频率的N个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
该步骤中,通过对所述探测帧内的至少一组具有相同起始频率的N个调频连续波对应的回波中频信号在同一时间采样点上的相位序列进行快速傅里叶变换,可得到该探测帧的完整工作周期范围内的第二速度参数,由于该一组具有相同起始频率的多个调频连续波对应的是一个探测帧的工作周期,因此该第二速度参数的测速分辨率较高,但由于选取的相邻调频连续波之间的间隔较大,使得第二速度参数的测速范围较小,即该第二速度参数中得到的值的范围较小,但是取值更为精确。
S8203:根据所述第一速度参数和第二速度参数计算获得所述目标的所述相对速度;
该步骤中,由于第一速度参数的测速范围较大但分辨率较低,而第二速度参数的测速范围较小但分辨率较高,此时通过对分辨率较高的第二速度参数进行等效扩展计算,使其测速范围与第一速度参数的测速范围相同,此时通过将第二速度参数中等效扩展后的分辨率较高的数据(即等效扩展后的更为精确的值)与第一速度参数中分辨率较低的数据(即相对较为“模糊”的值)进行匹配,即可获得目标相对于雷达的相对速度。
图9A示出了按照本申请实施例的雷达的示意图。该雷达900包 括雷达跳频装置910、信号接收模块920、计算模块930。
本实施例中,雷达跳频装置910可以为上述图7中的雷达跳频装置700,该雷达跳频装置910采用上述实施例中的用于控制雷达跳频的方法,执行跳频依次向目标发射M(K/N=M)个调频连续波;
信号接收模块920用于接收目标反射回的信号;
计算模块930用于根据所述信号接收模块920接收的反射回的信号,计算目标相对于雷达的相对速度。
在一些实施例中,上述计算模块930并不局限为一个单独的计算模块或芯片,在满足上述计算目标相对于雷达的相对速度的功能基础上,其可以为上述图7中的处理模块720,还可以为雷达系统中的处理器或CPU等。
在一些实施例中,M个调频连续波组成一个探测子帧,N个探测子帧组成一个探测帧,同一个探测帧内的所述N个探测子帧,使用相同的第一函数确定其包含的M个调频连续波的起始频率。
在一些实施例中,如图9B所示,计算模块930包括第一计算模块9301、第二计算模块9302、第三计算模块9303;
第一计算模块9301用于对至少一个所述探测子帧内的M个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
第二计算模块9302用于对所述探测帧内的至少一组具有相同起始频率的N个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
第三计算模块9303用于根据所述第一速度参数和第二速度参数,进行匹配计算获得所述目标的所述相对速度。
图10示出了按照本申请实施例的计算设备的结构图。该计算设备1000包括:处理器1010、存储器1020、通信接口1030、总线1040。
应理解,图10所示的计算设备1000中的通信接口1030可以用于与其他设备之间进行通信。
其中,该处理器1010可以与存储器1020连接。该存储器1020 可以用于存储该程序代码和数据。因此,该存储器1020可以是处理器1010内部的存储模块,也可以是与处理器1010独立的外部存储模块,还可以是包括处理器1010内部的存储模块和与处理器1010独立的外部存储模块的部件。
其中,计算设备1000还可以包括总线1040。其中,存储器1020、通信接口1030可以通过总线1040与处理器1010连接。总线1040可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线1040可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,在本申请实施例中,该处理器1010可以采用中央处理模块(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器1010采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
该存储器1020可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据。处理器1010的一部分还可以包括非易失性随机存取存储器。例如,处理器1010还可以存储设备类型的信息。
在计算设备1000运行时,所述处理器1010执行所述存储器1020中的计算机执行指令执行上述方法的操作步骤。
应理解,根据本申请实施例的计算设备1000可以对应于执行根据本申请各实施例的方法中的相应主体,并且计算设备1000中的各个模块的上述和其它操作和/或功能分别为了实现本实施例各方法的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和方法的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块或一个芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块或芯片中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备 (可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行一种多用于控制雷达跳频的方法或雷达测速方法,该方法包括上述各个实施例所描述的方案中的至少之一。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括、但不限于无线、电线、光缆、RF等等,或者上述的任意合适 的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
图11示出了按照本申请实施例的一种车辆的结构图。该车辆1100可以是常规车辆或自动驾驶车辆。自动驾驶车辆也可以称为无人驾驶车辆或智能驾驶车辆等,其可以在手动模式、全自主模式或部分自主模式下行驶。当被配置成在全自主模式或部分自主模式下行驶时,自动驾驶车辆可以在极少或没有来自驾驶员的控制输入的情况下在地理区域上自主行驶。
除了诸如发动机或电动机、车轮、方向盘、变速器这样的常用部件之外,车辆1100还包括雷达系统1110、通信系统1120和计算系统1130。
雷达系统1110可以是但不限于上述图9A中的雷达900,其可以是由至少一个毫米波雷达构成的系统,但在实际应用中,一个车辆上往往安装有多个毫米波雷达、激光雷达等,以便于完成行驶中的避撞、测速、测距等自动操作或辅助操作。
通信系统1120,其与所述雷达系统1110连接,可以直接或者经由通信网络与一个或多个装置无线通信。例如,通信系统1120可以使用第三代(3G)蜂窝通信(例如CDMA、EVD0、GSM/GPRS)、第四代(4G)蜂窝通信(例如LTE)或者第五代(5G)蜂窝通信。 例如,通信系统1120可以利用WiFi与无线局域网(WLAN)通信。例如,通信系统1120可以利用红外链路、蓝牙或ZigBee与其他设备直接通信。
计算系统1130,其与所述通信系统1120连接,该计算系统1130可以是但不限于上述图6中的控制设备612或上述图10中的计算设备1000,其上存储有程序指令,当该程序指令被激活时,可通过通信系统1120控制雷达系统1110执行上述用于控制雷达跳频的方法或雷达测速方法中的一个或全部流程;
在一些实施例中,上述计算系统1130还可以是但不限于上述计算机存储介质,其上存储有程序代码,当该程序代码被激活时,可通过通信系统1120控制雷达系统1110执行上述用于控制雷达跳频的方法或雷达测速方法中的一个或全部流程。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,均属于本申请保护范畴。

Claims (22)

  1. 一种用于控制雷达跳频的方法,其特征在于,包括:
    根据第一函数确定多个调频连续波的起始频率;
    控制雷达按照所述确定的起始频率,执行跳频依次发射所述多个调频连续波。
  2. 根据权利要求1所述的方法,其特征在于,所述第一函数为:
    Figure PCTCN2020086408-appb-100001
    M为整数,且M≥2,
    其中,b k是第k个调频连续波的起始频率,k是各调频连续波的序号,α、β分别是跳频参数,M是所述多个调频连续波的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个调频连续波的数量为2的幂次。
  4. 根据权利要求2所述的方法,其特征在于,任意相邻的两个所述调频连续波的所述起始频率之差大于第一阈值,该第一阈值根据预定义或预先配置的规则确定。
  5. 根据权利要求1至4任意一项权利要求所述的方法,其特征在于,所述多个调频连续波组成一个探测子帧,多个所述探测子帧组成一个探测帧;
    同一个探测帧内的所述多个探测子帧,使用相同的所述第一函数,用于确定其包含的多个调频连续波的起始频率。
  6. 根据权利要求1至4任意一项权利要求所述的方法,其特征在于,在检测到存在干扰信号时,控制所述雷达按照所述确定的起始频率执行跳频。
  7. 一种雷达跳频装置,其特征在于,包括:
    处理模块,用于根据第一函数确定多个调频连续波的起始频率;
    发射模块,按照所述确定的起始频率,执行跳频依次发射所述多个调频连续波。
  8. 根据权利要求7所述的装置,其特征在于,所述第一函数为:
    Figure PCTCN2020086408-appb-100002
    M为整数,且M≥2,
    其中,b k是第k个调频连续波的起始频率,k是各调频连续波的序号,α、β分别是跳频参数,M是所述多个调频连续波的数量。
  9. 根据权利要求7或8所述的装置,其特征在于,所述多个调频连续波的数量为2的幂次。
  10. 根据权利要求8所述的装置,其特征在于,任意相邻的两个所述调频连续波的所述起始频率之差大于第一阈值,该第一阈值根据预定义或预先配置的规则确定。
  11. 根据权利要求7至10任意一项权利要求所述的装置,其特征在于,所述多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;
    同一个探测帧内的所述多个探测子帧,使用相同的所述第一函数,用于确定其包含的多个调频连续波的起始频率。
  12. 根据权利要求7至10任意一项权利要求所述的装置,其特征在于,还包括触发模块,所述触发模块用于在检测到存在干扰信号时,触发所述发射模块按照所述确定的起始频率执行跳频。
  13. 一种雷达测速方法,其特征在于,包括:
    采用权利要求1至6任意一项权利要求所述的方法,控制雷达执行跳频依次向目标发射多个调频连续波;
    接收所述目标反射回的信号,
    根据所述接收到的信号,计算所述目标相对于所述雷达的相对速度。
  14. 根据权利要求13所述的方法,其特征在于,
    所述多个调频连续波组成一个探测子帧,多个探测子帧组成一探测帧;其中,对于同一个探测帧内的所述多个探测子帧,使用相同的第一函数,用于确定其包含的多个调频连续波的起始频率;
    所述计算所述目标相对于所述雷达的相对速度包括:
    对至少一个所述探测子帧内的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
    对所述探测帧内的至少一组具有相同起始频率的多个调频连续 波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
    根据所述第一速度参数和第二速度参数计算获得所述目标的所述相对速度。
  15. 根据权利要求14所述的方法,其特征在于,所述计算包括:
    将所述第二速度参数的测速范围进行等效扩展,并与所述第一速度参数的测速范围进行匹配计算,获得所述目标的所述相对速度。
  16. 一种雷达,其特征在于,包括:
    如权利要求7至12任意一项权利要求所述的雷达跳频装置;
    信号接收模块,所述信号接收模块用于接收目标反射回的信号;
    计算模块,用于根据所述信号接收模块接收的反射回的信号,计算目标相对于雷达的相对速度。
  17. 根据权利要求16所述的雷达,其特征在于,
    多个调频连续波组成一个探测子帧,多个探测子帧组成一个探测帧;其中,同一个探测帧内的所述多个探测子帧,使用相同的第一函数,用于确定其包含的多个调频连续波的起始频率;
    所述计算模块包括:
    第一计算模块,用于对至少一个所述探测子帧内的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第一速度参数;
    第二计算模块,用于对所述探测帧内的至少一组具有相同起始频率的多个调频连续波对应的回波中频信号进行快速傅里叶变换,获得第二速度参数;
    第三计算模块,用于根据所述第一速度参数和第二速度参数计算获得所述目标相对于雷达的相对速度。
  18. 根据权利要求17所述的雷达,其特征在于,所述第三计算模块用于将所述第二速度参数的测速范围进行等效扩展,并与所述第一速度参数的测速范围进行匹配计算,获得所述目标相对于雷达的相对速度。
  19. 一种芯片,其特征在于,包括:输入接口、输出接口、至少一个处理器和至少一个存储器,所述至少一个存储器用于存储代码, 所述至少一个处理器用于执行所述存储器中的代码,当所述代码被执行时,所述芯片实现权利要求1至6、13至15任一所述的方法。
  20. 一种计算机可读存储介质,其特征在于,其上存储有程序指令,所述程序指令当被计算机执行时使得所述计算机执行权利要求1至6、13至15任一所述的方法。
  21. 一种计算机程序产品,其特征在于,其包括有程序指令,所述程序指令当被计算机执行时使得所述计算机执行权利要求1至6、13至15任一所述的方法。
  22. 一种车辆,其特征在于,包括权利要求16至18任意一项权利要求所述的雷达。
PCT/CN2020/086408 2020-04-23 2020-04-23 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达 WO2021212410A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20932103.3A EP4130781A4 (en) 2020-04-23 2020-04-23 METHOD AND DEVICE FOR CONTROLLING RADAR FREQUENCY JUMPS, RADAR SPEED MEASUREMENT METHODS AND RADAR
PCT/CN2020/086408 WO2021212410A1 (zh) 2020-04-23 2020-04-23 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达
CN202080004379.7A CN112639521B (zh) 2020-04-23 2020-04-23 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达
MX2022013268A MX2022013268A (es) 2020-04-23 2020-04-23 Método para controlar el salto de frecuencia de radar, aparato, método de medición de velocidad de radar y radar.
CA3176539A CA3176539A1 (en) 2020-04-23 2020-04-23 Method for controlling radar frequency hopping, apparatus, radar speed measurement method, and radar
US17/970,949 US20230053033A1 (en) 2020-04-23 2022-10-21 Method for Controlling Radar Frequency Hopping, Apparatus, Radar Speed Measurement Method, and Radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086408 WO2021212410A1 (zh) 2020-04-23 2020-04-23 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/970,949 Continuation US20230053033A1 (en) 2020-04-23 2022-10-21 Method for Controlling Radar Frequency Hopping, Apparatus, Radar Speed Measurement Method, and Radar

Publications (1)

Publication Number Publication Date
WO2021212410A1 true WO2021212410A1 (zh) 2021-10-28

Family

ID=75291531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086408 WO2021212410A1 (zh) 2020-04-23 2020-04-23 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达

Country Status (6)

Country Link
US (1) US20230053033A1 (zh)
EP (1) EP4130781A4 (zh)
CN (1) CN112639521B (zh)
CA (1) CA3176539A1 (zh)
MX (1) MX2022013268A (zh)
WO (1) WO2021212410A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721512B (zh) * 2021-08-26 2023-05-23 中国民用航空总局第二研究所 雷达控制方法、电子设备及存储介质
CN117377887A (zh) * 2022-05-06 2024-01-09 华为技术有限公司 一种信号发送方法、接收方法及对应装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089653A (zh) * 2007-07-20 2007-12-19 西安理工大学 近程调频连续波fmcw雷达抗干扰方法
CN103983953A (zh) * 2014-06-10 2014-08-13 武汉拓宝电子系统有限公司 一种雷达系统中避免相互干扰的方法
US9395435B2 (en) * 2013-05-31 2016-07-19 Wistron Neweb Corporation Signal generating method and radar system
CN108627807A (zh) * 2018-08-08 2018-10-09 中国航空工业集团公司雷华电子技术研究所 一种机载雷达抗干扰方法
CN109164421A (zh) * 2018-09-26 2019-01-08 西安电子科技大学 一种基于二维重构算法的目标检测方法
WO2019106656A1 (en) * 2017-11-29 2019-06-06 Arbe Robotics Ltd. Detection, mitigation and avoidance of mutual interference between automotive radars
WO2019215734A1 (en) * 2018-05-07 2019-11-14 Arbe Robotics Ltd. Fmcw automotive radar incorporating nonlinear frequency hopping sequence of fractional bandwidth multiband chirps with spectral probability windowing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309703A (en) * 1979-12-28 1982-01-05 International Business Machines Corporation Segmented chirp waveform implemented radar system
US6553447B1 (en) * 1999-11-09 2003-04-22 International Business Machines Corporation Data processing system with fully interconnected system architecture (FISA)
EP1634095B1 (en) * 2003-05-22 2008-09-03 General Atomics Ultra-wideband radar system using sub-band coded pulses
US7215278B2 (en) * 2003-11-16 2007-05-08 Preco Electronics, Inc Radar frequency hopping
CN100370276C (zh) * 2005-09-22 2008-02-20 西安电子科技大学 编码跳频测距测速方法及雷达
JP4871104B2 (ja) * 2006-11-24 2012-02-08 日立オートモティブシステムズ株式会社 レーダ装置及び信号処理方法
CN101980046A (zh) * 2010-10-14 2011-02-23 西安电子科技大学 调频步进雷达复合测速运动补偿方法
DE102013200951A1 (de) * 2013-01-22 2014-07-24 Robert Bosch Gmbh FMCW-Radar mit Abstandsbereichseinteilung
CN103138799B (zh) * 2013-03-21 2014-12-17 哈尔滨工业大学 一种低旁瓣随机跳频脉冲信号的调制方法
KR101551811B1 (ko) * 2014-05-19 2015-09-10 최수호 레이더 장치 및 그의 주파수 간섭 제거방법
CN105337636B (zh) * 2015-10-08 2017-11-21 西安电子科技大学 基于频率拼接的异步跳频信号参数盲估计方法
CN105301591A (zh) * 2015-10-22 2016-02-03 上海无线电设备研究所 一种道路交通监控雷达及其实现方法
EP3460510B1 (en) * 2016-05-16 2021-03-17 Mitsubishi Electric Corporation Fm-cw radar and method for generating fm-cw signal
JP2019056670A (ja) * 2017-09-22 2019-04-11 ミツミ電機株式会社 レーダー装置
CN108776329A (zh) * 2018-04-20 2018-11-09 南京理工大学 基于混沌编码频率捷变线性调频连续波系统及其应用方法
CN109061589B (zh) * 2018-07-06 2022-08-26 西安电子科技大学 随机跳频雷达的目标运动参数估计方法
KR20190102147A (ko) * 2019-08-14 2019-09-03 엘지전자 주식회사 사용자 근접 검출 장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089653A (zh) * 2007-07-20 2007-12-19 西安理工大学 近程调频连续波fmcw雷达抗干扰方法
US9395435B2 (en) * 2013-05-31 2016-07-19 Wistron Neweb Corporation Signal generating method and radar system
CN103983953A (zh) * 2014-06-10 2014-08-13 武汉拓宝电子系统有限公司 一种雷达系统中避免相互干扰的方法
WO2019106656A1 (en) * 2017-11-29 2019-06-06 Arbe Robotics Ltd. Detection, mitigation and avoidance of mutual interference between automotive radars
WO2019215734A1 (en) * 2018-05-07 2019-11-14 Arbe Robotics Ltd. Fmcw automotive radar incorporating nonlinear frequency hopping sequence of fractional bandwidth multiband chirps with spectral probability windowing
CN108627807A (zh) * 2018-08-08 2018-10-09 中国航空工业集团公司雷华电子技术研究所 一种机载雷达抗干扰方法
CN109164421A (zh) * 2018-09-26 2019-01-08 西安电子科技大学 一种基于二维重构算法的目标检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130781A4 *

Also Published As

Publication number Publication date
EP4130781A1 (en) 2023-02-08
EP4130781A4 (en) 2023-08-30
CN112639521A (zh) 2021-04-09
US20230053033A1 (en) 2023-02-16
CN112639521B (zh) 2022-03-29
CA3176539A1 (en) 2021-10-28
MX2022013268A (es) 2023-01-24

Similar Documents

Publication Publication Date Title
US11754668B2 (en) Detection method, detection apparatus, and system
US20230053033A1 (en) Method for Controlling Radar Frequency Hopping, Apparatus, Radar Speed Measurement Method, and Radar
WO2020177647A1 (zh) 一种利用无线电信号进行目标物探测的方法及相关装置
CN111505641B (zh) 无线电信号发送方法和装置
US20230014866A1 (en) Signal processing method and apparatus, and storage medium
US20220171055A1 (en) Signal Transmission Method and Apparatus
US20220082655A1 (en) Radar signal sending method and device
JP7361804B2 (ja) 通信方法および通信装置
US20220413086A1 (en) Signal sending method and related apparatus
EP4075158A1 (en) Method for determining state of frequency band, and related device
US11971468B2 (en) Method for detecting target object and corresponding detection apparatus
WO2023212935A1 (zh) 一种信号发送方法、接收方法及对应装置
WO2022140889A1 (zh) 探测方法、探测装置、探测系统及雷达
US20210356580A1 (en) Method for Detecting Target Object and Corresponding Detection Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3176539

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020932103

Country of ref document: EP

Effective date: 20221102

NENP Non-entry into the national phase

Ref country code: DE